
1

Effective Generation of Test Sequences for

Structural Testing of Concurrent Programs

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas

ewong@utdallas.edu
http://www.utdallas.edu/~ewong

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

2

Speaker Biographical SketchSpeaker Biographical SketchSpeaker Biographical SketchSpeaker Biographical Sketch

� Professor & Director of International Outreach
Department of Computer Science
University of Texas at Dallas

� Guest Researcher
Computer Security Division
National Institute of Standards and Technology (NIST)

� Vice President, IEEE Reliability Society

� Secretary, ACM SIGAPP (Special Interest Group on Applied Computing)

� Principal Investigator, NSF TUES (Transforming Undergraduate Education in
Science, Technology, Engineering and Mathematics) Project
– Incorporating Software Testing into Multiple Computer Science and Software

Engineering Undergraduate Courses

� Founder & Steering Committee co-Chair for the SERE conference
(IEEE International Conference on Software Security and Reliability)
(http://paris.utdallas.edu/sere13)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

3

� Let P be a concurrent program.

� Structural testing of P involves
– White box-based testing

– Deriving the reachability graph of P

– Generating a set of test sequences from this graph to
satisfy some well-defined coverage criterion

� all-node criterion

� all-edge criterion

� In order to reduce testing effort and costs, it is important to
reduce the number of test sequences being selected

� Four different methods
– Two based on hot spot prioritization

– Tow based on topological sort

MotivationMotivationMotivationMotivation

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

4

� Without losing generality, we only discuss the all-node criterion.

� To cover all the edges of a reachability graph, we first generate a
dual graphwith respect to the original graph such that

– Each nodein the dual graph represents one edgein the original graph

– Each edgein the dual graph represents one node in the original graph.

– Refer to the figure on the following slide for details.

� A pseudo node H is added to the dual graph as the head of the edge converted
from the root of the original graph (s1 in our case), and

� A pseudo node T is added to the dual graph as the tail of the edge converted
from each leaf of the original graph (s4, s5, s6, and s7 in our case).

� These pseudo nodes will be ignoredwhile generating test sequences to cover
all the nodes in the dual graph, i.e., to cover all the edges in the original graph.

� Through this conversion, the methods that solve the all-node coverage
problem can also be applied to solve the all-edge coverage problem.

AllAllAllAll----node versus allnode versus allnode versus allnode versus all----edge/graph versus dual graph edge/graph versus dual graph edge/graph versus dual graph edge/graph versus dual graph (1)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

5

AllAllAllAll----node versus allnode versus allnode versus allnode versus all----edge/graph versus dual graph edge/graph versus dual graph edge/graph versus dual graph edge/graph versus dual graph (2)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

6

� Two methods M1 and M2 are derived with this strategy

� The major difference between these two methods
– M1 uses a conservativeapproach to identify hot spots

– M2 uses an aggressiveapproach

� A hot spotis an uncovered node with the highest composite weight
(to be explained) so that covering this node can increase the overall
coverage in an efficient way

Hot spot prioritizationHot spot prioritizationHot spot prioritizationHot spot prioritization----based methodsbased methodsbased methodsbased methods

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

7

� M11: Assign a weight to each node.

– Each node is initially assigned a weight of one.

– If a node is covered by at least one test sequence, its weight is reassigned
to zero.

– Once a node’s weight becomes zero, it will not be changed again,
i.e., once a node is covered, it stays covered.

– This also implies that every uncovered node has a weight of one and every
covered node has a weight of zero.

– Note that the weights in our graph are associated with nodes instead of
edges.

MethodMethodMethodMethod M1 (1)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

8

� M12: If all the nodes have a weight zero, i.e., every node has been
covered, STOP.

� M13: Compute the composite weightfor each uncovered node.
– The composite weight of a node is the number of uncovered nodes

that are guaranteed to be covered, if this node is covered.

– This is why we say method M1 uses a conservative approachto identify
hot spots

– It is the number of uncovered nodes (i.e., nodes whose weight is one) on
the shortest pathfrom the root of the graph to the given node.

– Covered nodes (i.e., nodes whose weight is zero) on this path do not
count.

– The computation can be done by using a modified breadth first search.

MethodMethodMethodMethod M1 (2)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

9

� M14: Identify the hot spot which is the node with the highest composite
weight.
– If there is more than one hot spot, identify (by a random selection) a hot spot

which is one of the nodes with the highest composite weight.

� M15: Backtrackfrom the hot spot identified at step M14 to the root
of the graph.

– In this way, we have selected a path from the root to the hot spot,
i.e., a test sequence to cover this hot spot.

– During the back tracking, a greedy approach is used at each step.

– For a given hot spot (say α), we compare the composite weight of all the
uncovered nodes that can go to α in one step, i.e., have an edge from
itself to α.

� These nodes must be the neighboring nodes of α.

� However, since a reachability graph is a directed graph, not every
uncovered neighboring node of α needs to be examined.

Method Method Method Method M1 (3)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

10

� M15: (cont’d)
– Refer to the following reachability graph.
– The number next to each node is its composite weight.
– We start from the hot spotα. The composite weights of nodesσ, ε, andβ (but notη or ω) are

compared with each other.
– Since nodeβ has the highest composite weight, it is selected as the next node to be back

tracked.
– This implies we are going to select a test sequence covering the hot spotα containing the edge

from β to α as part of the sequence.

– Mark β as covered and change its weight to zero.
– Repeat the same process forβ to find the next node to be back tracked.
– Continue this process until the root node is reached.

MethodMethodMethodMethod M1 (4)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

11

� M16: Go back to step M12

� After each test sequence is selected, all the nodes on the sequence are
marked as coveredwith their weights changed to zero at step M15, and
the composite weight of every uncovered node is recomputedat step
M13.

� As a result, hot spots (i.e., the remaining uncovered nodes with the
highest composite weight) move to different locations to provide new
guidelines on how to select the next efficient test sequence.

� Finally, every test sequence selected by using the back tracking at
step M15 is feasible because this is part of the nature of reachability
graphs.

Method Method Method Method M1 (5)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

12

� The composite weight of a given node in M1 is the number of
uncovered nodes on the shortest pathfrom the root of the graph to the
node. But, in M2, it is the number of uncovered nodes on the
longest path (after the weight negation and possible cycle deletions)
from the root to the given node.

� This also implies that M1 uses a conservative approachto identify hot
spots, whereas M2 uses an aggressive approach.

� Once again, similar to method M1, the weights in our graph are
associated with nodes instead of edges.

MethodMethodMethodMethod M2 (1)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

13

� M21: This step is the same as step M11 except that the initial weight of
each node is negative oneinstead of one.
– In the negated graph, every uncovered node has a weight of negative one

and every covered node has a weight of zero.

� M22: If all the nodes have a weight zero, i.e., every node has been
covered, STOP.

� M23: Use a modified DSP (DAG-SHORTEST-PATHS) algorithm to
compute the composite weight for each uncovered node in the
corresponding negated acyclic graph.
– The well-known Dijkstra’s algorithmcannot be used here because it

requires all weights to be non-negative which is not the case in method
M2.

MethodMethodMethodMethod M2 (2)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

14

� M23: (cont’d)
– The first step in DSP is to conduct a topological sortwith respect to all

the nodes in the graph. Since this can only be done on acyclic graphs, all
the cycles (if any) in the graph have to be removed.

– We used a “modified” DFS-based algorithmthat can not only remove
cycles by deleting all the back edgesbut also return a topological sort of
the corresponding acyclic graph.

� Cycle deletion and topological sort are done simultaneously by using
one algorithm.

� Since the purpose of M2 is to select an efficient set of test sequences
to cover all the nodes in a graph, it is all right to remove some back
edges in order to break the cycles in the graph.

MethodMethodMethodMethod M2 (3)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

15

� M23: (cont’d)
– The composite weight of a given node is the number of uncovered nodes

on the shortest path from the root of the negated acyclic graph to the
given node.

– This corresponds to the number of uncovered nodes on the longest path
from the root of the “modified” original graph(obtained by deleting all
the cycles in the original graph) to the given node.

MethodMethodMethodMethod M2 (4)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

16

� M24: Find a hot spot.
A hot spot is the node whose composite weight has the smallest
(negative) value. If there is more than one hot spot, we can randomly
select one.

� M25: Conduct a back tracking from the hot spot to the root of the
negated acyclic graph. The same approach as in M15 is also used here.

� M26: Go back to step M22.

Method Method Method Method M2 (5)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

17

Topological sortTopological sortTopological sortTopological sort----based methods based methods based methods based methods (1)

� A topological sortis used to list all the nodes of a directed acyclic
graphin a sequential listing such that if there is an edge from
node u to node v, then u precedes v in the listing.
– If the graph has cycles, these cycles will be deleted as explained in

methods M3 and M4.

� Reverse such a topologically sorted order and make one pass over the
nodes in the reversed listingin order to increase the coverage with
respect to the all-node criterion in an efficient way.

� The underlying motivation is that a topological sort of a graph can be
viewed as an ordering of its nodes along a horizontal lineso that all
directed edges go from left to right. Covering the nodes in the reversed
listing first (i.e., the nodes starting from the right end of original
topological listing) has a good chance of selecting a path that covers
more nodes. As a result, it is more likely to increase the coverage
efficiently.

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

18

Topological sortTopological sortTopological sortTopological sort----based methods based methods based methods based methods (2)

� Two methods M3 and M4 are derived with this strategy

� Method M3 uses a BFS-based algorithm, whereas method M4 uses a
DFS-based algorithm.

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

19

� M31: Conduct a BFS-based topological sort to generate a sequential
listing of all the nodes.
– As discussed before, the underlying graph has to be acyclic, i.e., all the

cycles (if any) in the graph have to be removed.

– This is done by a “modified” BFS-based algorithm that can not only
identify and ignore cycles but also return a topological listing of the
corresponding acyclic graph.

� M32: Reversethe listing obtained at step M32.

� M33: If the reversed listing is empty, STOP.
Otherwise, remove the first node from this listing.
– In the beginning, the reversed listing contains all the nodes in the graph.

MethodMethodMethodMethod M3 (1)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

20

� M34: Find a path from the root of the graph to the node selected at step
M33 using a “modified” DFS algorithm.

– The DFS is modified in a way such that it will check every visited node to
see whether it is the target node.If so, the search is terminated. And, we
have a test sequence selected for covering the target node.

– All the nodes in the sequence are marked as “covered” and removed from
the remaining listing.

� M35: Go back to step M33.

MethodMethodMethodMethod M3 (2)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

21

� The procedure for M4 is the same as that for M3 except that the
topological sort at step M41 is a DFS-based algorithm, whereas it is a
BFS-based algorithmat step M31.

MethodMethodMethodMethod M4

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

22

� In M1 and M2, a re-computation of the composite weight for all
remaining uncovered nodes is necessary in order to identify a new hot
spot every time after the previous hot spot is covered.

� Only one topological sort is needed in M3 and M4 to generate a
sequential listing of all the nodes.

ObservationObservationObservationObservation (1)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

23

� For methods M1 and M2, the most expensive step is to compute the composite
weightsat steps M13 and M23, respectively.

� In the first iteration, the composite weight of every nodein the graph needs to
be computed because no node has been covered yet. This requires an order of
Θ(V(V+E)).

� In the subsequent iterations, composite weight is computed only for the
remaining uncovered nodes.

� Clearly, the number of such uncovered nodes is less thanthe total number of
nodes in the graph.

� Hence, the time complexity of each subsequent iteration will not exceedthe
order of Θ(V(V+E)).

� Suppose there are n iterations(i.e., n test sequences to satisfy the all-node or
all-edge criterion), the overall run-time complexity for M1 and M2 is
Θ(nV(V+E)).

RunRunRunRun----time complexity for time complexity for time complexity for time complexity for M1 andandandand M2

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

24

� For method M3 and M4, the most expensive step is to find a path from
the root to a selected node using a “modified” DFS algorithm(refer to
step M33).

� This implies the run-time complexity for selecting each test sequence
is in the order of Θ(V+E).

� Hence, the overall run-time complexity for M3 and M4 is in the order
of Θ(n(V+E)), where V and E are the number of nodes and edges in
the graph and n is number of test sequences selected.

� Note that a topological sorting at steps M31 and M41 requires an order
of Θ(V+E). However, this only needs to be a one-time sortingso it has
little impact on the overall run-time complexity.

RunRunRunRun----time complexity for time complexity for time complexity for time complexity for M3 andandandand M4

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

25

� Since graphs are saved as adjacency lists, the space required for each
method is the same and in the order of Θ(V+E).

Space complexitySpace complexitySpace complexitySpace complexity

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

26

� To demonstrate the effectiveness of our methods, we conducted a case
study using reachability graphs generated for five well-known
distributed algorithms.

– le-n: the leader election algorithmwhere n is the number of processes in the ring

– tp-n: the token passing algorithmwhere n is the number of processes in the ring

– me-n: the mutual exclusion algorithmwhere n is the number of processes in the
network

– fl-n: the flooding protocolwhere n is the number of process in the network

– sw-n: the sliding window protocolwhere n is the window size

� Reduced reachability graphs of the above algorithms are also
constructed.

Case StudyCase StudyCase StudyCase Study

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

27

Data for the allData for the allData for the allData for the all----node criterionnode criterionnode criterionnode criterion

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

28

Data for the allData for the allData for the allData for the all----edge criterionedge criterionedge criterionedge criterion

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

29

� In spite of the run-time complexity based on the worst case analysis,
all the experiments in our study can find a set of test sequences to
cover all the nodes (or edges) in a reasonable time.

� In general, a graph containing more nodes and edges requires more test
sequences to cover all the nodes and edges.
– There are exceptions.

� Graphs with a linked-list structure only need one test sequence.

� There is no monotonically increasingrelation between the number of
nodes/edges and the number of test sequences.

– This is because the number of nodes and edges is not the only
factor in deciding how many test sequences are needed to cover all
the nodes or all the edges. The structure of the graph also has an
important impact.

ObservationObservationObservationObservation (2)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

30

� When the graph is small, the number of test sequences needed to cover all the
nodes is about the same for every method.

� But, as the size of the graph increases(or more precisely, as the number of nodes
and edges increases), the number of test sequences selected by M1 or M2 is
smaller than that selected by M3 or M4.

� Such a difference becomes more significant when the graph becomes larger.

� One may argue that this advantage (i.e., smaller number of test sequences) is
accompanied by a trade-off in terms of higher run-time complexity for
M1 and M2

– It is never an issue in our study even for graphs with
a few thousand nodes or edges.

– Of course, this may not always be the case.

– More studies on the trade-off between run-time complexity and the number
of test sequences selected are to be conducted.

ObservationObservationObservationObservation (3)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

31

� In general, the difference in terms of the number of test sequences
selected by methods M3 (which uses a BFS-based topological sort) and
M4 (which uses a DFS-based topological sort) is small.

– There are exceptions.

ObservationObservationObservationObservation (4)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

32

� M3 has all the deepest leaf nodes appear in the beginning of its listing,
there is a very good chance that the longest test sequence (i.e., the test
sequence with the most number of nodes) is in the first few selected
test sequences.

– For M3, nodes are covered level-by-level starting from the deepest
level, that is, nodes having the largest distance(i.e., largest number
of edges) from the root are covered first.

� Some leaf nodes might appear in the middle of the listing generated by
using M4. As a result, it is possible that the longest test sequence so
selected is also in the middle of all selected test sequences.

� This information is important because if resources only allow us to
select a few test sequences, it is better to select longer test sequences
than shorter test sequences. In this regard, M3 can perform better than
M4 for the graphs used in our study.

ObservationObservationObservationObservation (5)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

33

� To observe how each additional test sequence increases the coverage,
we can plot a curve by using the percentage of coverage as the index for
the vertical axis and the number of test sequences as the index for the
horizontal axis.

– Each curve has a steeper slopein the beginning, implying that coverage
increases in a more efficient way with respect to the first few
test sequences.

– This is particularly true for M1 and M2.

– In addition, the curves for M1 and M2 have steeper slopes than those for M3
and M4 which implies test sequences selected by the first two methods are
more efficient than those by the last methods on increasing the coverage.

– The first “few” test sequences selected by our methods can increase the
node and edge coverage in a very significant way.

ObservationObservationObservationObservation (6)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

34

� We present four different test sequence selection methods
(two based on hot spot prioritization and two based on topological
sort) to effectively select a small set of test sequences to cover all the
nodes in a reachability graph.

� The same methods can also be used to select test sequences for the all-
edge criterion by applying them to the corresponding dual graphs.

� Of these methods, M1 and M2 select fewer test sequences than M3 and M4 to
achieve 100% node and edge coverage.

– However, M1 and M2 have a higher run-time complexity than M3 and M4.

– For practical applications, the size of the reachability graphs can be very large
which may prevent M1 and M2 from being applied.

– Under this condition, M3 and M4 seem to be a more practical choice.

Conclusion Conclusion Conclusion Conclusion (1)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

35

� Our data also indicate that the coverage can be increased in a significant way
by the first few test sequences selected by our methods.

� While the advantage of using a smaller set of test sequences is obvious in
terms of management, output verification, etc., it is also important to examine
the fault detection effectivenessof these test sequences using real defect data
collected in practice.

– Our ongoing research is to apply test sequence selection methods discussed in this
presentation to real-life concurrent software and determine how they can help
testing practitioners do a better job in finding software bugs.

ConclusionConclusionConclusionConclusion (2)

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

