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� Let P be a concurrent program. 

� Structural testing of P involves
– White box-based testing

– Deriving the reachability graph of P

– Generating a set of test sequences from this graph to 
satisfy some well-defined coverage criterion

� all-node criterion

� all-edge criterion

� In order to reduce testing effort and costs, it is important to 
reduce the number of test sequences being selected

� Four different methods
– Two based on hot spot prioritization

– Tow based on topological sort

MotivationMotivationMotivationMotivation
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� Without losing generality, we only discuss the all-node criterion.

� To cover all the edges of a reachability graph, we first generate a 
dual graphwith respect to the original graph such that

– Each nodein the dual graph represents one edgein the original graph

– Each edgein the dual graph represents one node in the original graph. 

– Refer to the figure on the following slide for details.

� A pseudo node H is added to the dual graph as the head of the edge converted 
from the root of the original graph (s1 in our case), and

� A pseudo node T is added to the dual graph as the tail of the edge converted 
from each leaf of the original graph (s4, s5, s6, and s7 in our case). 

� These pseudo nodes will be ignoredwhile generating test sequences to cover 
all the nodes in the dual graph, i.e., to cover all the edges in the original graph. 

� Through this conversion, the methods that solve the all-node coverage 
problem can also be applied to solve the all-edge coverage problem.

AllAllAllAll----node versus allnode versus allnode versus allnode versus all----edge/graph versus dual graph  edge/graph versus dual graph  edge/graph versus dual graph  edge/graph versus dual graph  (1)
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AllAllAllAll----node versus allnode versus allnode versus allnode versus all----edge/graph versus dual graph  edge/graph versus dual graph  edge/graph versus dual graph  edge/graph versus dual graph  (2)
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� Two methods M1 and M2 are derived with this strategy

� The major difference between these two methods
– M1 uses a conservativeapproach to identify hot spots

– M2 uses an aggressiveapproach

� A hot spotis an uncovered node with the highest composite weight
(to be explained) so that covering this node can increase the overall 
coverage in an efficient way

Hot spot prioritizationHot spot prioritizationHot spot prioritizationHot spot prioritization----based methodsbased methodsbased methodsbased methods
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� M11: Assign a weight to each node.

– Each node is initially assigned a weight of one.

– If a node is covered by at least one test sequence, its weight is reassigned 
to zero. 

– Once a node’s weight becomes zero, it will not be changed again, 
i.e., once a node is covered, it stays covered.

– This also implies that every uncovered node has a weight of one and every 
covered node has a weight of zero.

– Note that the weights in our graph are associated with nodes instead of 
edges.

MethodMethodMethodMethod M1  (1) 
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� M12: If all the nodes have a weight zero, i.e., every node has been 
covered, STOP.

� M13: Compute the composite weightfor each uncovered node. 
– The composite weight of a node is the number of uncovered nodes 

that are guaranteed to be covered, if this node is covered. 

– This is why we say method M1 uses a conservative approachto identify 
hot spots

– It is the number of uncovered nodes (i.e., nodes whose weight is one) on 
the shortest pathfrom the root of the graph to the given node. 

– Covered nodes (i.e., nodes whose weight is zero) on this path do not 
count.

– The computation can be done by using a modified breadth first search. 

MethodMethodMethodMethod M1 (2)
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� M14: Identify the hot spot which is the node with the highest composite 
weight. 
– If there is more than one hot spot, identify (by a random selection) a hot spot 

which is one of the nodes with the highest composite weight.

� M15: Backtrackfrom the hot spot identified at step M14 to the root 
of the graph.

– In this way, we have selected a path from the root to the hot spot,  
i.e., a test sequence to cover this hot spot. 

– During the back tracking, a greedy approach is used at each step.

– For a given hot spot (say α), we compare the composite weight of all the 
uncovered nodes that can go to α in one step, i.e., have an edge from 
itself to α. 

� These nodes must be the neighboring nodes of α.

� However, since a reachability graph is a directed graph, not every 
uncovered neighboring node of α needs to be examined. 

Method  Method  Method  Method  M1 (3)
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� M15: (cont’d)
– Refer to the following reachability graph.
– The number next to each node is its composite weight.
– We start from the hot spotα. The composite weights of nodesσ, ε, andβ (but notη or ω) are 

compared with each other. 
– Since nodeβ has the highest composite weight, it is selected as the next node to be back 

tracked. 
– This implies we are going to select a test sequence covering the hot spotα containing the edge 

from β to α as part of the sequence.

– Mark β as covered and change its weight to zero. 
– Repeat the same process forβ to find the next node to be back tracked.
– Continue this process until the root node is reached.

MethodMethodMethodMethod M1 (4)
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� M16: Go back to step M12

� After each test sequence is selected, all the nodes on the sequence are 
marked as coveredwith their weights changed to zero at step M15, and 
the composite weight of every uncovered node is recomputedat step 
M13. 

� As a result, hot spots (i.e., the remaining uncovered nodes with the 
highest composite weight) move to different locations to provide new 
guidelines on how to select the next efficient test sequence.

� Finally, every test sequence selected by using the back tracking at 
step M15 is feasible because this is part of the nature of reachability 
graphs.

Method  Method  Method  Method  M1 (5)
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� The composite weight of a given node in M1 is the number of 
uncovered nodes on the shortest pathfrom the root of the graph to the 
node. But, in M2, it is the number of uncovered nodes on the 
longest path (after the weight negation and possible cycle deletions)
from the root to the given node. 

� This also implies that M1 uses a conservative approachto identify hot 
spots, whereas M2 uses an aggressive approach.

� Once again, similar to method M1, the weights in our graph are 
associated with nodes instead of edges.

MethodMethodMethodMethod M2 (1)
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� M21: This step is the same as step M11 except that the initial weight of 
each node is negative oneinstead of one. 
– In the negated graph, every uncovered node has a weight of negative one 

and every covered node has a weight of zero.

� M22: If all the nodes have a weight zero, i.e., every node has been 
covered, STOP.

� M23: Use a modified DSP (DAG-SHORTEST-PATHS) algorithm to 
compute the composite weight for each uncovered node in the 
corresponding negated acyclic graph.
– The well-known Dijkstra’s algorithmcannot be used here because it 

requires all weights to be non-negative which is not the case in method 
M2. 

MethodMethodMethodMethod M2 (2)
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� M23: (cont’d)
– The first step in DSP is to conduct a topological sortwith respect to all 

the nodes in the graph. Since this can only be done on acyclic graphs, all 
the cycles (if any) in the graph have to be removed. 

– We used a “modified” DFS-based algorithmthat can not only remove 
cycles by deleting all the back edgesbut also return a topological sort of 
the corresponding acyclic graph. 

� Cycle deletion and topological sort are done simultaneously by using 
one algorithm.

� Since the purpose of M2 is to select an efficient set of test sequences 
to cover all the nodes in a graph, it is all right to remove some back 
edges in order to break the cycles in the graph.

MethodMethodMethodMethod M2 (3)
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� M23: (cont’d)
– The composite weight of a given node is the number of uncovered nodes 

on the shortest path from the root of the negated acyclic graph to the 
given node. 

– This corresponds to the number of uncovered nodes on the longest path 
from the root of the “modified” original graph(obtained by deleting all 
the cycles in the original graph) to the given node. 

MethodMethodMethodMethod M2 (4)
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� M24: Find a hot spot. 
A hot spot is the node whose composite weight has the smallest 
(negative) value. If there is more than one hot spot, we can randomly 
select one.

� M25: Conduct a back tracking from the hot spot to the root of the 
negated acyclic graph. The same approach as in M15 is also used here.

� M26: Go back to step M22.

Method Method Method Method M2 (5)
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Topological sortTopological sortTopological sortTopological sort----based methods  based methods  based methods  based methods  (1) 

� A topological sortis used to list all the nodes of a directed acyclic 
graphin a sequential listing such that if there is an edge from 
node u to node v, then u precedes v in the listing.
– If the graph has cycles, these cycles will be deleted as explained in 

methods M3 and M4.

� Reverse such a topologically sorted order and make one pass over the 
nodes in the reversed listingin order to increase the coverage with 
respect to the all-node criterion in an efficient way. 

� The underlying motivation is that a topological sort of a graph can be 
viewed as an ordering of its nodes along a horizontal lineso that all 
directed edges go from left to right. Covering the nodes in the reversed 
listing  first (i.e., the nodes starting from the right end of original 
topological listing) has a good chance of selecting a path that covers 
more nodes. As a result, it is more likely to increase the coverage 
efficiently. 
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Topological sortTopological sortTopological sortTopological sort----based methods  based methods  based methods  based methods  (2)

� Two methods M3 and M4 are derived with this strategy

� Method M3 uses a BFS-based algorithm, whereas method M4 uses a 
DFS-based algorithm.
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� M31: Conduct a BFS-based topological sort to generate a sequential 
listing of all the nodes.
– As discussed before, the underlying graph has to be acyclic, i.e., all the 

cycles (if any) in the graph have to be removed. 

– This is done by a “modified” BFS-based algorithm that can not only 
identify and ignore cycles but also return a topological listing of the 
corresponding acyclic graph.

� M32: Reversethe listing obtained at step M32.

� M33: If the reversed listing is empty, STOP. 
Otherwise, remove the first node from this listing.
– In the beginning, the reversed listing contains all the nodes in the graph.

MethodMethodMethodMethod M3 (1)
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� M34: Find a path from the root of the graph to the node selected at step 
M33 using a “modified” DFS algorithm. 

– The DFS is modified in a way such that it will check every visited node to 
see whether it is the target node.If so, the search is terminated. And, we 
have a test sequence selected for covering the target node. 

– All the nodes in the sequence are marked as “covered” and removed from 
the remaining listing.

� M35: Go back to step M33.

MethodMethodMethodMethod M3 (2)
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� The procedure for M4 is the same as that for M3 except that the 
topological sort at step M41 is a DFS-based algorithm, whereas it is a 
BFS-based algorithmat step M31.

MethodMethodMethodMethod M4

Test Generation for Concurrent Programs (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)



22

� In M1 and M2, a re-computation of the composite weight for all 
remaining uncovered nodes is necessary in order to identify a new hot 
spot every time after the previous hot spot is covered.

� Only one topological sort is needed in M3 and M4 to generate a 
sequential listing of all the nodes. 

ObservationObservationObservationObservation (1)
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� For methods M1 and M2, the most expensive step is to compute the composite 
weightsat steps M13 and M23, respectively. 

� In the first iteration, the composite weight of every nodein the graph needs to 
be computed because no node has been covered yet. This requires an order of 
Θ(V(V+E)).

� In the subsequent iterations, composite weight is computed only for the 
remaining uncovered nodes. 

� Clearly, the number of such uncovered nodes is less thanthe total number of 
nodes in the graph. 

� Hence, the time complexity of each subsequent iteration will not exceedthe 
order of Θ(V(V+E)). 

� Suppose there are n iterations(i.e., n test sequences to satisfy the all-node or 
all-edge criterion), the overall run-time complexity for M1 and M2 is 
Θ(nV(V+E)).

RunRunRunRun----time complexity for  time complexity for  time complexity for  time complexity for  M1 andandandand M2
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� For method M3 and M4, the most expensive step is to find a path from 
the root to a selected node using a “modified” DFS algorithm(refer to 
step M33). 

� This implies the run-time complexity for selecting each test sequence 
is in the order of Θ(V+E).

� Hence, the overall run-time complexity for M3 and M4 is in the order 
of Θ(n(V+E)), where V and E are the number of nodes and edges in 
the graph and n is number of test sequences selected. 

� Note that a topological sorting at steps M31 and M41 requires an order 
of Θ(V+E). However, this only needs to be a one-time sortingso it has 
little impact on the overall run-time complexity. 

RunRunRunRun----time complexity for  time complexity for  time complexity for  time complexity for  M3 andandandand M4
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� Since graphs are saved as adjacency lists, the space required for each 
method is the same and in the order of Θ(V+E).

Space complexitySpace complexitySpace complexitySpace complexity
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� To demonstrate the effectiveness of our methods, we conducted a case 
study using reachability graphs generated for five well-known 
distributed algorithms.

– le-n: the leader election algorithmwhere n is the number of processes in the ring

– tp-n: the token passing algorithmwhere n is the number of processes in the ring

– me-n: the mutual exclusion algorithmwhere n is the number of processes in the 
network

– fl-n: the flooding protocolwhere n is the number of process in the network

– sw-n: the sliding window protocolwhere n is the window size

� Reduced reachability graphs of the above algorithms are also 
constructed.

Case StudyCase StudyCase StudyCase Study
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Data for the allData for the allData for the allData for the all----node criterionnode criterionnode criterionnode criterion
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Data for the allData for the allData for the allData for the all----edge criterionedge criterionedge criterionedge criterion
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� In spite of the run-time complexity based on the worst case analysis, 
all the experiments in our study can find a set of test sequences to 
cover all the nodes (or edges) in a reasonable time.

� In general, a graph containing more nodes and edges requires more test 
sequences to cover all the nodes and edges. 
– There are exceptions.

� Graphs with a linked-list structure only need one test sequence. 

� There is no monotonically increasingrelation between the number of 
nodes/edges and the number of test sequences. 

– This is because the number of nodes and edges is not the only 
factor in deciding how many test sequences are needed to cover all 
the nodes or all the edges. The structure of the graph also has an 
important impact. 

ObservationObservationObservationObservation (2)
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� When the graph is small, the number of test sequences needed to cover all the 
nodes is about the same for every method.  

� But, as the size of the graph increases(or more precisely, as the number of nodes 
and edges increases), the number of test sequences selected by M1 or M2 is 
smaller than that selected by M3 or M4. 

� Such a difference becomes more significant when the graph becomes larger.

� One may argue that this advantage (i.e., smaller number of test sequences) is 
accompanied by a trade-off in terms of higher run-time complexity for 
M1 and M2

– It is never an issue in our study even for graphs with 
a few thousand nodes or edges.

– Of course, this may not always be the case.

– More studies on the trade-off between run-time complexity and the number 
of test sequences selected are to be conducted.

ObservationObservationObservationObservation (3)
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� In general, the difference in terms of the number of test sequences 
selected by methods M3 (which uses a BFS-based topological sort) and 
M4 (which uses a DFS-based topological sort) is small. 

– There are exceptions.

ObservationObservationObservationObservation (4)
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� M3 has all the deepest leaf nodes appear in the beginning of its listing, 
there is a very good chance that the longest test sequence (i.e., the test 
sequence with the most number of nodes) is in the first few selected 
test sequences. 

– For M3, nodes are covered level-by-level starting from the deepest 
level, that is, nodes having the largest distance(i.e., largest number 
of edges) from the root are covered first.

� Some leaf nodes might appear in the middle of the listing generated by 
using M4. As a result, it is possible that the longest test sequence so 
selected is also in the middle of all selected test sequences. 

� This information is important because if resources only allow us to 
select a few test sequences, it is better to select longer test sequences 
than shorter test sequences. In this regard, M3 can perform better than 
M4 for the graphs used in our study.

ObservationObservationObservationObservation (5)
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� To observe how each additional test sequence increases the coverage, 
we can plot a curve by using the percentage of coverage as the index for 
the vertical axis and the number of test sequences as the index for the 
horizontal axis.

– Each curve has a steeper slopein the beginning, implying that coverage 
increases in a more efficient way with respect to the first few 
test sequences. 

– This is particularly true for M1 and M2. 

– In addition, the curves for M1 and M2 have steeper slopes than those for M3
and M4 which implies test sequences selected by the first two methods are 
more efficient than those by the last methods on increasing the coverage. 

– The first “few” test sequences selected by our methods can increase the 
node and edge coverage in a very significant way.

ObservationObservationObservationObservation (6)
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� We present four different test sequence selection methods 
(two based on hot spot prioritization and two based on topological 
sort) to effectively select a small set of test sequences to cover all the 
nodes in a reachability graph.

� The same methods can also be used to select test sequences for the all-
edge criterion by applying them to the corresponding dual graphs. 

� Of these methods, M1 and M2 select fewer test sequences than M3 and M4 to 
achieve 100% node and edge coverage. 

– However, M1 and M2 have a higher run-time complexity than M3 and M4. 

– For practical applications, the size of the reachability graphs can be very large 
which may prevent M1 and M2 from being applied. 

– Under this condition, M3 and M4 seem to be a more practical choice.

Conclusion  Conclusion  Conclusion  Conclusion  (1)
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� Our data also indicate that the coverage can be increased in a significant way 
by the first few test sequences selected by our methods. 

� While the advantage of using a smaller set of test sequences is obvious in 
terms of management, output verification, etc., it is also important to examine 
the fault detection effectivenessof these test sequences using real defect data 
collected in practice. 

– Our ongoing research is to apply test sequence selection methods discussed in this 
presentation to real-life concurrent software and determine how they can help 
testing practitioners do a better job in finding software bugs.

ConclusionConclusionConclusionConclusion (2)
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