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 Testing and debugging activities constitute one of the most expensive 
aspects of software development
– Often more than 50% of the cost [Hailpern & Santhanam, 2003]

 Manual debugging is…
– Tedious
– Time Consuming
– Error prone
– Prohibitively expensive

Need ways to debug…
automatically
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Motivation
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B. Hailpern and P. Santhanam, “Software Debugging, Testing, and Verification,” IBM Systems Journal, 41(1):4-12, 2002
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Debugging Today
 Program debugging consists of three fundamental activities

– Learning that the program has a fault – fault detection
– Finding the location of the fault – fault localization
– Actually removing the fault – fault fixing

 A lot of progress has been made in the area of test case generation and 
thus we can assume that we will have a collection of test cases (i.e., a test 
set) that can reveal that the program has faults.
– So the programmer can avoid the first task (fault detection).

 Recently fault localization has received a lot of focus
– It is one of the most expensive debugging activities [Vessey, 1985]

 Fault Fixing has also been an important research area
– Have to be very careful not to introduce new faults in the process

5

Iris Vessy, “Expertise in Debugging Computer Programs: A Process Analysis,” International Journal of 
Man-Machine Studies, 23(5):459-494, March1985

Software Fault Localization
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Objectives
 Develop a robust and reliable fault localization technique to identify 

faults from dynamic behaviors of programs 
 Reduce the cost of program debugging by providing a more accurate set 

of candidate fault positions
 Provide software engineers with effective tool support
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Perfect Bug Detection
 A bug in a statement will be detected by a programmer if the statement is 

examined 
– A correct statement will not be mistakenly identified as a faulty statement
– If the assumption does not hold, a programmer may need to examine more 

code than necessary in order to find a faulty statement

8



Traditional Approach
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Commonly Used Techniques
 Insert print statements
 Add assertions or set breakpoints
 Examine core dump or stack trace

10

Rely on programmers’ intuition and domain expert knowledge
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Execution Slice & Dice
 Faults reside in the execution slice of a test that fails on execution

– An execution slice is the set of a program’s code 
(blocks, statements, decisions, c-uses, or p-uses) executed by a test

– An execution slice can be constructed very easily if we know the coverage of 
the test (instead of reporting the coverage percentage, it reports which parts of 
the program are covered).

– Too much code in the slice
 Narrowing search domain by execution dices

– An execution dice is obtained by subtracting 
successful execution slices from failed execution slices

13

Dice = Execution slices of failed tests – Execution slices of successful tests
Discussion 2Discussion 1Static & Dynamic
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Example (1)

14

A Sample Program
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Example (2)

15

Initial Test Set
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Example (3)

16

Failure Detected
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Example (4)

17

Where is the Bug?
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Example (5)

18

Execution Slice w.r.t. the Failed Test T6 = (4 3 3)

Too much code needs
To be examined!
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Example (6): Which Test Should be Used ?

19

Failure Detected
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Example (7)

20

A Successful Test T2 and a Failed Test T6

(should be isosceles)
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Example (8)

21

Execution Slice w.r.t. the Successful Test T2 = (4 4 3)
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Example (9)

22

Execution Dice = Slice (4 3 3) - Slice (4 4 3)
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One Failed and One Successful Test

23

Possible locations of faults
 Code in the execution dice (top priority)
 A bug is in the failed execution slice (the red 

path) but not in the successful execution slice 
(the blue path)

 Code in the failed execution slice but not in the dice
 A bug is in the failed execution slice (the red path) 

and in the successful execution slice (the blue path)

 The dicing-based technique can be effective in locating some program bugs 
– H. Agrawal, J. R. Horgan, S. London, and W. E. Wong, “Fault localization using execution slices and 

dataflow tests,” in Proceedings of the 6th IEEE International Symposium on Software Reliability 
Engineering, pp. 143-151, Toulouse, France, October 1995.
†Authors are listed in alphabetical order
‡Number of citations: 155 (according to the Google Scholar)
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Locating Bugs using Execution Dice (1)

24

A test case in red fails the program

A test case in green runs the program successfully
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Locating Bugs using Execution Dice (2)

25
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Locating Bugs using Execution Dice (3)

26

Code in red is executed by the failed
test BUT NOT the successful one

Code in blue is executed by the 
failed test AND the successful one

Code in white is NOT executed 
by the failed test
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Multiple Failed and Successful Tests (1)
 The more that successful tests execute a piece of code, the less likely for 

it to contain any fault.

 The more that failed tests with respect to a given fault execute a piece of 
code, the more likely for it to contain this fault.

 A piece of code containing a specific fault is 
– inversely proportional to the number of successful tests that execute it
– proportional to the number of failed tests (with respect to this fault) that 

execute it.

27

W. E. Wong, T. Sugeta, Y. Qi, and J. C. Maldonado, “Smart Debugging Software Architectural 
Design in SDL,” Journal of Systems and Software, Volume 76, Number 1, pp. 15-28, April 2005 

Jump to Slide 97
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Multiple Failed and Successful Tests (2)
 Need to consider precision and recall

– intersection of failed tests – union of successful tests
– union of failed tests – union of successful tests
– intersection of failed tests – intersection of successful tests
– union of failed tests – intersection of successful tests

28
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More Advanced Heuristics
 A bad dice does not contain the bug 

– Augmentation of a bad execution dice using inter-block data dependency

 A good dice with too much code
– Refining a good execution dice using additional successful tests

29

W. E. Wong and Yu Qi, “An Execution Slice and Inter-Block Data Dependency-Based Approach for
Fault Localization,” Journal of Systems and Software, Volume 79, Number 7, pp. 891-903, July 2006 
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 Bug is not in the execution dice
 Much code that is executed by both the failed test (the red path) and the 

successful test (the blue path)
 How to prioritize the code that still needs to be examined
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Augmentation of A Bad Execution Dice D(1)  (1)

30

Bug!
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 If the bug is not in D(1), we need to examine additional code from the rest
of the failed execution slice (i.e., EF – D(1) denoted by )
– For a block , the notation ∈ implies  is in the failed execution slice EFbut not in D(1). 

 More prioritization based on inter-block data dependency
 Define a “direct data dependency” relation Δ between a block and an 

execution dice D(1) such that  Δ D(1)

if and only if defines a variable x that is used in D(1) or  uses a variable 
y defined in D(1). 
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Augmentation of A Bad Execution Dice D(1)  (2)

31
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Augmentation of A Bad Execution Dice D(1)  (3)

32

Code in red is in 
the execution dice

Code in blue has some data 
dependency with code in red
 Higher Priority

Code in green has no data 
dependency with code in red 
 Lower Priority
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Augmentation of A Bad Execution Dice D(1)  (4)
 Construct A(1), the augmented code segment from the first iteration, 

such that A(1) = { | ∈Φ∧ ( Δ D(1))}.
 set k = 1
 Examine code in A(k) to see whether it contains the bug ()
 If YES, 

then
– STOP because we have located the bug

else
– set k = k + 1

 Construct A(k), the augmented code segment from the kth iteration,
such that A(k) = A(k-1)

∪ { | b ∈Φ∧ ( Δ A(k-1))}.
 If A(k) = A(k-1) (i.e., no new code can be included from the (k-1)th iteration to the kth iteration) 

then 
– STOP

At this point we have A(*), the final augmented code segment, which equals A(k) (and 
A(k-1) as well)

else
– Go back to step ()

33
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Augmentation of A Bad Execution Dice D(1)  (5)

34

(a) the execution slice with respect to a failed test t1 (b) the execution slice with respect to a successful test t2(a=3; b=5)                                          (a= -3; b=5)
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Augmentation of A Bad Execution Dice D(1)  (6)

35

dice obtained by subtracting the execution                      Code that has direct data dependency
slice in (b) from the execution slice in (a)                    with S3 (i.e., code in the dice)
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Refining of A Good Execution Dice D(1)  
 Construct the execution slices (denoted by Θ1, Θ2, …, Θk) with respect to 

successful tests t1, t2, …,and tk D(1) = EF – Θ1
 D(2) = D(1) – Θ2 =  EF – Θ1 – Θ2
 We have D(1)

⊇D(2)
⊇D(3), etc.

 Since we want to examine the more suspicious code before the less suspicious 
code, code in D(2) should be examined before code in D(1) but not in D(2)

36
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 Assume 
– debugging as soon as a failure is detected (i.e., only one failed test)
– n (say 3) successful tests

 Assume the bug is in the code which is executed by the failed test but not the 
successful test(s)
– first examining the code in D(3) followed by code in D(2) but not in D(3), then 

code in D(1) but not in D(2)
 If this assumption does not hold (i.e., the bug is not in D(1)), then we need to inspect 

additional code in the failed execution slice but not in D(1)
– then starting with code in A(1) but not in D(1), followed by A(2) but not in A(1), …

 Prioritize code in a failed execution slice based on its likelihood of containing the 
bug. The prioritization is done by first using the refining method and then
the augmentation method.
– Examining code in D(3), D(2) but not in D(3), D(1) but not in D(2), A(1) but not in

D(1) , A(2) but not in A(1), A(3) but not in A(2) , … etc.
 In the worst case, we have to examine all the code in the failed execution slice.
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An Incremental Approach
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Suspiciousness Ranking-based 
Fault Localization
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Overview
 Compute the suspiciousness (likelihood of containing bug) of each 

statement
 Rank all the executable statements in descending order of their 

suspiciousness
 Examine the statements one-by-one from the top of the ranking until the 

first faulty statement is located
 Statements with higher suspiciousness should be examined before 

statements with lower suspiciousness as the former are more likely to 
contain bugs than the latter

40
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 Code coverage-based and calibration
 Crosstab: statistical analysis-based
 BP (Back Propagation) & RBF (Radial Basis Function) neural network
 Similarity coefficient-based
 Tarantula: heuristic-based
 SOBER: statistical analysis-based
 Liblit: statistical analysis-based
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Techniques for Computing Suspiciousness

41

Take advantage of code coverage (namely, execution slice)
and execution result of each test (success or failure) for debugging.

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 42

 Motivation and Background
 Execution Dice-based Fault Localization
 Suspiciousness Ranking-based Fault Localization

– Program Spectra-based Fault Localization
– Code Coverage-based Fault Localization
– Statistical Analysis-based Fault Localization
– Neural Network-based Fault Localization
– Similarity Coefficient-based Fault Localization

 Empirical Evaluation
 Theoretical Comparison: Equivalence
 Mutation-based Automatic Bug Fixing
 Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 42

Outline

42



Spectra-based Fault Localization
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Spectra-Based Fault Localization Techniques
 Possible Program Spectra

Name Description
BHS Branch Hit Spectra conditional branches that are executed
BCS Branch Count Spectra number of times each conditional branch is executed
CPS Complete Path Spectra complete path that is executed
PHS Path Hit Spectra loop-free path that is executed
PCS Path Count Spectra number of times each loop-free path is executed
DHS Data-Dependence Hit Spectra definition-use pairs that are executed
DCS Data-Dependence Count Spectra number of times each definition-use pair is executed
OPS Output Spectra output that is produced
ETS Execution Trace Spectra execution trace that is produced
DVS Data Value Spectra the values of variables in the execution
ESHS Executable Statement Hit Spectra executable statements that are executed

Jump
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A Sample Program for Program Spectra
1 double power (double x, int n)
2 {
3 int i;
4 int rv = 1;
5 for (i=0; i<abs(n); i++)
6 {
7 rv = rv× x;
8 }
9 if (n<0) 
10 {
11 if (x!=0)
12 rv = 1/rv;
13 else
14 {
15 printf ("Error input.\n");
16 return 0;
17 }
18 }
19 return rv;
20 }

 Given an integer n and a real number x, the program calculates xn

Return
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Branch Hit Spectra
 BHS records the conditional branches that are covered by the test execution
 Suppose there are m conditional branches: b1, b2, …, bm
 The spectrum with respect to bi (i = 1, 2, …, m) indicates whether bi is covered by 

the test execution
 There are 6 branches in the sample program:(5,7), (5,9), (9,19), (9,11), (11,12), 

and (11,15)
 When test case (x = 2, n = 3) is executed, 

the branch hit spectrum is ( Y, Y,  Y, N, N,  N).

(5,7) is covered
(5,9) is covered

(9,19) is covered

(9,11) is not covered

(11,15) is not covered
(11,12) is not covered

Return
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Branch Count Spectra
 BCS records the number of times that each conditional branch is executed
 Suppose there are m conditional branches: b1, b2, …, bm. The spectrum with 

respect to bi (i = 1, 2, …, m), denoted by si, indicates that bi is executed si times 
by the test execution
 When test case (2,3) is executed, the branch count spectrum is (3, 1, 1, 0, 0, 0)

(5,7) is executed 3 times (9,19) is executed one time

(11,15) is not executed

Return

 BCS records the number of times that each conditional branch is executed
 Suppose there are m conditional branches: b1, b2, …, bm. The spectrum with 

respect to bi (i = 1, 2, …, m), denoted by si, indicates that bi is executed si times 
by the test execution
 When test case (2,3) is executed, the branch count spectrum is (3, 1, 1, 0, 0, 0)

(5,7) is executed 3 times (9,19) is executed one time

(11,15) is not executed
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Complete Path Spectra
 CPS records the complete paths that are traversed by the test execution
 When test case (2,3) is executed, the CPS is (3,4,(5,7)3,9,19)

Statement 5 and 7 are executed 3 times

Return
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Path Hit Spectra
 PHS records the intra-procedural, loop-free paths that are covered by the test 

execution
 The sample program has six possible paths

– 3,4,5,9,19
– 3,4,5,7,9,19
– 3,4,5,9,11,12,19
– 3,4,5,7, 9,11,12,19
– 3,4,5,9,11,15,16
– 3,4,5,7,9,11,15,16

 With respect to  the execution of test case (2,3), the path hit spectrum can be 
represented by

– (Y,N,N,N,N,N)

(3,4,5,9,19) is covered (3,4,5,7,9,11,15,16) is not covered

Return
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Path Count Spectra
 PCS records the number of times that each intra-procedural, loop-free path is covered by the test execution
 The sample program has six possible loop-free paths

– 3,4,5,9,19
– 3,4,5,7,9,19
– 3,4,5,9,11,12,19
– 3,4,5,7, 9,11,12,19
– 3,4,5,9,11,15,16
– 3,4,5,7,9,11,15,16

 When test case (2,3) is executed, the path count spectrum can be represented by
– (1,0,0,0,0,0)
– When the function is executed more than one time, the elements in PCS may be larger than 1

(3,4,5,9,19) is executed 
one time

(3,4,5,7,9,11,15,16) 
is not executed

Return
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Data-Dependence Hit Spectra
 DHS records the definition-use pairs that are covered by the execution
 With respect to the sample program, let’s focus on the following definition-use 

pairs
– (rv, 4, 7)
– (rv, 4, 19)
– (rv, 7, 7)
– (rv, 7, 12)
– (rv, 7, 19)
– (rv, 12, 19)

 When test case (2,3) is executed, the spectrum can be represented by
– (Y,N,Y,N,Y,N) which implies (rv,4,7), (rv,7, 7) and (rv,7,19) are covered by this 

execution

Return
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Data-Dependence Count Spectra
 DCS records the number of times that each definition-use pair is executed
 With respect to the sample program, let’s focus on the following definition-use pairs

– (rv, 4, 7)
– (rv, 4, 19)
– (rv, 7, 7)
– (rv, 7, 12)
– (rv, 7, 19)
– (rv, 12, 19)

 When test case (2,3) is executed, the data-dependence count spectrum can be represented by (1,0,2,0,1,0)

(rv, 7, 7) is executed 2 times

Return
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Output Spectra
 OPS records the outputs produced by the test executions
 With respect to the sample program, when test case (2,3) is executed, the output 

spectrum can be represented by a value 8, which is the output of the function

Return
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Execution Trace Spectra
 ETS records the sequence of each program statement traversed by the test execution
 With respect to the sample program, when case (2,3) is executed, the execution trace spectrum can be represented by

(int i, double rv = 1, (for(i=0;i<abs(n);i++), rv = rv * x )3, if(n<0),return rv)
 Difference between ETS and CPS (Complete Path Spectrum):

– ETS records the actual instructions, whereas CPS does not

These statements are executed 3 times

Return
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Data Value Spectra
 DVS records the values of variables
 With respect to the sample program, we focus on the value of variable rv

– When test case (2,3) is executed, the sequence of the values of rv is (1,2,4,8) which is 
one of the DVS representations

Return
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Executable Statement Hit Spectra

Next

 ESHS records the executable statements that are 
covered by the test execution.

– excluding comments, blank lines, (some) variable 
declarations, function declarations, etc.

 Suppose there are m executable statements: s1, s2, …, sm
 The spectrum with respect to si (i = 1, 2, …, m), 

indicates whether si is covered by the test execution.
 There are 9 executable statements at lines 4, 5, 7, 9, 

11, 12, 15,16 and 19 
 When test case (2,3) is executed, the executable 

statement hit spectrum is
(Y, Y, Y, Y, N, N, N, N, Y). 

Statement 4 is executed Statement 11 is not executed

3

19 1612

15119

7

5

4

Start

End
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Code Coverage-based Fault Localization
& 

Calibration
W. E. Wong, V. Debroy and B. Choi, “A Family of Code Coverage-based 
Heuristics for Effective Fault Localization,” Journal of Systems and Software, 
Volume 83, Issue 2, pp. 188-208, February 2010 
(Best Paper Award; COMPSAC 2007)
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 Suppose for a large test suite, say 1000 test cases, a majority of them, say 
995, are successful test cases and only a small number of failed test cases 
(five in this example) will cause an execution failure.
 The challenge is how to use these five failed tests and the 995 successful 

tests to conduct an effective debugging.
 How can each additional test case that executes the program successfully 

help locate program bugs?
What about each additional test case that makes the program execution 

fail? 
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Code Coverage-based & Calibration (1)
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Code Coverage-based & Calibration (2)
 Should all the successful test executions provide the same contribution to 

locate software bugs?
 Intuitively, the answer should be “no”
 If a piece of code has already been executed successfully 994 times, then 

the contribution of the 995th successful execution is likely to be less than, 
for example, the contribution of the second successful execution when the 
code is only executed successfully once
We propose that with respect to a piece of code, the contribution 

introduced by the first successful test that executes it in computing its 
likelihood of containing a bug is larger than or equal to that of the second
successful test that executes it, which is larger than or equal to that of the 
third successful test that executes it, etc. 
 The same also applies to the failed tests. 

60
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 and  
 If the statement S is executed by at least one failed test, then the total contribution from all 

the successful tests that execute S should be less than the total contribution from all the 
failed tests that execute S (namely, )

 All the tests in the same failed group have the same contribution towards fault localization, 
but tests from different groups have different contributions 

S F
S, F,

1 1
i k

i k
c c

 
 N N
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Code Coverage-based & Calibration (3)

61

SS,1 S,2 S,3 S, ... c c c c    N FF,1 F,2 F,3 F, ... c c c c    N
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Code Coverage-based & Calibration (4)
 For illustrative purposes, we set GF = GS = 3, nF,1 = nS,1= 2, and nF,2 = nS,2 = 4 

– The first failed (or successful) group has at most two tests, the second group has at most 
four from the remaining, and the third has everything else, if any. 

 We also assume each test case in the first, second, and third failed groups gives a 
contribution of 1, 0.1 and 0.01, respectively (wF,1 = 1, wF,2 = 0.1, 
and wF,3 = 0.01).
 Similarly, we set wS,1 = 1, wS,2 = 0.1, and wS,3 to be a small value defined as ×F/S where  is a scaling factor.
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Code Coverage-based & Calibration (5)
More Details

Next
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Code Coverage-based & Calibration (6)
 Two fundamental principles

– and

–

64
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Crosstab-based Fault Localization
W. Eric Wong, Vidroha Debroy and Dianxiang Xu, “Towards Better 
Fault Localization: A Crosstab-based Statistical Approach,”
IEEE Transactions on Systems, Man, and Cybernetics – Part C: 
Applications & Reviews
(Accepted in December 2010 for publication) 
(http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05772029)
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Crosstab
 The crosstab (cross-classification table) analysis is used to study 

the relationship between two or more categorical variables.
 A crosstab is constructed for each statement as follows

67
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Dependency Relationship (1)
 For each crosstab, we conduct a hypothesis test to check the dependency 

relationship. The null hypothesis is

 A chi-square test can be used to determine whether this hypothesis should 
be rejected. The Chi-square statistic is given by

(1)      

where                                                      and

 Under the null hypothesis, the statistic 2() has approximately a 
Chi-square distribution.

68

H0:  Program execution result is independent of the
coverage of statement 

2 2 2 22 CF CF CS CS UF UF US US
CF CS UF US

( (ω) (ω)) ( (ω) (ω)) ( (ω) (ω)) ( (ω) (ω))(ω) (ω) (ω) (ω) (ω)
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Dependency Relationship (2)
 Given a level of significance  (for example, 0.05), we can find the 

corresponding Chi-square critical value from the 
Chi-square distribution table.
– If χ2() >       we reject the null hypothesis, i.e., the execution result is 

dependent on the coverage of . 

– Otherwise, we accept the null hypothesis, i.e., the execution result and the 
coverage of  are “independent.”

69

2 ,

2 ,
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Degree of Association (1)
 The “dependency” relationship indicates a high association among the 

variables, whereas the “independency” relationship implies a low 
association. 
 Instead of the so-called “dependency”/ “independency” relationship, we 

are more interested in the degree of association between the execution 
result and the coverage of each statement. 
 This degree can be measured based on the standard Chi-square statistic. However, such a measure increases with increasing sample size. As a result, the measure by itself may not give the “true” degree of association.
 One way to fix this problem is to use the contingency coefficientcomputed as follows

(2)
where row and col are the number of categorical variables in all rows and columns, respectively, of the crosstab  

70
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 The contingency coefficient M() lies between 0 and 1.
– When χ2() = 0, it has the lower limit 0 for complete independence. 
– In the case of complete association, the coefficient can reach the upper limit 1

when row = col
 In our case, row = col = 2 and N is fixed. From Equation (2), M() 

increases with increasing χ2(). 
 Under this condition, the Chi-square statisticχ2() for statement  gives 

a good indication of the degree of the association between the execution 
result and the coverage of .

– N is fixed because every faulty version is executed with respect to all the test cases 
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Degree of Association (2)

71
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What kind of Execution Result is More Associated (1)
 Need to decide whether it is the failed or the successful execution result

that is more associated with the coverage of the statement. 

 For each statement , we compute PF() and PS() as          and      
which are the percentages of all failed and successful tests that execute . 

 If PF() is larger than PS(), then the association between the failed 
execution and the coverage of  is higher than that between the 
successful execution and the coverage of . 
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What kind of Execution Result is More Associated (2)
We define () as

(3)

 If () = 1, we haveχ2() = 0, which implies the execution result is 
completely independent of the coverage of . In this case, we say the 
coverage of  makes the same contribution to both the failed and the 
successful execution result. 
 If () > 1, the coverage of  is more associated with the failed

execution. 
 If () < 1, the coverage of  is more associated with the successful

execution.

73
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Five Classes of Statements
 Depending on the values of χ2() and (), statements of the program 

being debugged can be classified into five classes:
– Statements with  > 1 and χ2 >         have a high degree of association

between their coverage and the failed execution result
– Statements with  > 1 and χ2

≤ have a low degree of association
between their coverage and the failed execution result

– Statements with  < 1 and χ2 >         have a high degree of association
between their coverage and the successful execution result

– Statements with  < 1 and χ2
≤ have a low degree of association

between their coverage and the successful execution result
– Statements with  = 1 (under this situation 0 = χ2 <       ) whose coverage is 

independent of the execution result

74

2 ,

2 ,

2 ,
2 ,
2 ,

Statements in the first class are most likely (i.e., have the highest suspiciousness) to contain 
program bugs followed by those in the second, the fifth, and the fourth classes, respectively. 
Statements in the third class are least likely (i.e., have the least suspiciousness) to contain bugs.
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 The larger the coefficient M(), the higher the association between the 
execution result and the coverage of .
– For statements in the first and the second classes, those with a larger M are 

more suspicious. 
– For statements in the third and the fourth classes, those with a smaller M are 

more suspicious.
 The suspiciousness of a statement  can be defined by a statistic  as

(4)

 Each  lies between -1 and 1. The larger the  value, the more suspicious 
the statement . 
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Suspiciousness of Each Statement
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Crosstab Example (1)
 The following table gives the statement coverage and execution results. 

Of the 36 test cases, there are nine failed tests (e.g., t1) and 27 successful 
tests (e.g., t2)

– An entry 1 implies the statement is covered by the corresponding test and an entry 0 
means it is not. 

– An entry 1 implies a failed execution and an entry 0 means a successful execution.
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 We can construct the crosstab for s1 as shown in the following

We have

 From Equation (1)

= 5.2800

Crosstab Example (2)
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 If we choose the level of significance as 0.05, the Chi-square critical value is 
3.841. Since 2(s1) = 5.2800 is larger than 3.841, the null hypothesis for s1 should 
be rejected. 
 Similarly, we can compute 2 for other statements. For example, we have 2(s2) = 

4.4954, 2(s3) = 0.1481, and 2(s4) = 1.3333.
 Next, we use Equation (2) to compute the contingency coefficient M for each 

statement. We have M(s1)= 0.1467, M(s2)= 0.1249, M(s3)= 0.0041, and M(s4)= 
0.0370. 
 Compute and  using Equations (3) and (4).
 Based on the suspiciousness, 

statement s8 should be examined first 
for locating program bugs followed by 
s1, s5, s10, s9, s6, s3, s7, s4, and s2.
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Crosstab Example (3)
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RBF Neural Network-based
Fault Localization

• W. Eric Wong, Vidroha Debroy, Richard Golden, Xiaofeng Xu 
and Bhavani Thuraisingham, “Effective Software Fault Localization using 
an RBF Neural Network,” IEEE Transactions on Reliability
(Accepted in May 2011 for publication)
(http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6058639)

• W. Eric Wong and Yu Qi, “BP Neural Network-based Effective 
Fault Localization,” International Journal of Software Engineering 
and Knowledge Engineering, 19(4): 573-597, June 2009
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 A typical RBF neural network has a three-layer feed-forward structure
– Input layer: Serve as an input distributor to the hidden layer by passing inputs 

to the hidden layer without changing their values. 
– Hidden layer: All neurons in this layer simultaneously receive the 

n-dimensional real-valued input vector x. 
Each neuron uses a Radial Basis Function (RBF) as the activation function
An RBF is a strictly positive radically symmetric function, where the center has 

the unique maximum and the value drops off rapidly to zero away from the center
When the distance between x and  (denoted as ||x–||) is smaller than the receptive 

field width , the function has an appreciable value.
A commonly used RBF is the Gaussian basis function

where j and j are the mean (namely, the center) and the standard deviation
(namely, the width) of the receptive field of the jth hidden layer neuron, and Rj(x) is 
the corresponding activation function. 
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RBF Neural Network  (1)
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– Usually the distance ||x–|| is the Euclidean distance between x and  (||x–||E) 
– However, (||x–||E) is inappropriate in the fault localization context 
– We use a weighted bit-comparison based distance (||x–||WBC)

Let x be      (the coverage vector of ith test case ti)

where          and          are the kth element of                    respectively. 
This distance is more desirable because it effectively takes into account the 
number of bits that are both 1 in two coverage vectors (i.e., those statements 
covered by both vectors). 
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RBF Neural Network  (2)
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RBF Neural Network  (3)

83

– Output layer: y = [y1, y2, …, yk] with yi as the output of the ith neuron given by 

for i = 1, 2 ,…, k
where h is the number of neurons in the hidden layer and wji is the weight
associated with the link connecting the jth hidden layer neuron and the ith
output layer neuron.

1
( )h

i ji j
j

y w R


 x
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RBF Neural Network  (4)

84

Input Layer

Hidden Layer

Output Layer

w11 whkOutput Layer Weights:w11, w12, …, whk

Reception Field Centers and Widths:1, 2, …, h,1, 2, …, h

x1 x2 xmxm-1

y1Output y = (y1, …, yk)

Input x = (x1, x2, …, xm)

1 1 2 2 h hh-1h-1

yk

w1k wh1

 An RBF network implements a mapping from the m dimensional real-valued input space to 
the k dimensional real-valued output space. In between, there is a layer of hidden-layer space. 

 The transformation from the input space to the hidden-layer space is nonlinear, whereas the 
transformation from the hidden-layer space to the output space is linear. 

 The parameters that need to be trained are the centers (i.e., m1,m2,…, mh) and widths (i.e., s1, s2, …, sh) of the receptive fields of hidden layer neurons, and the output layer weights.
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RBF Neural Network  (5)
We construct an RBF neural network with 

– m input layer neurons (each of which corresponds to one element in a given 
coverage vector of a test case)

– one output layer neuron (corresponding to the execution result of test ti)
– one hidden layer between the input and output layers 

85
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RBF Neural Network  (6)
 Once an RBF network is trained, it provides a good mapping between the 

input (the coverage vector of a test case) and the output 
(the corresponding execution result). 
 It can then be used to identify suspicious code of a given program in 

terms of its likelihood of containing bugs. 
 To do so, we use a set of virtual test cases v1, v2, …, vm whose coverage 

vectors are where

Note that execution of test vj covers only one statement sj
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 If the execution of vj fails, the probability that the bugs are contained in sj is high.
 This suggests that during the fault localization, we should first examine the statements whose corresponding virtual test case fails. 
 However, the execution results of these virtual tests can rarely be collected in the 

real world because it is very difficult, if not impossible, to construct such tests.
 When the coverage vector      of a virtual test case vj is input to the trained neural network, its output      is the conditional expectation of whether the execution of vjfails given 
 This implies the larger the value of      the more likely that the execution of vjfails. 
 Together, we have the larger the value of     the more likely it is that sj contains  the bug. 
 We can treat     as the suspiciousness of sj in terms of its likelihood of containing the bug.  

RBF Neural Network  (7)
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RBF Neural Network  (7)
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Summary of RBF-based Fault Localization (1)

88
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Summary of RBF-based Fault Localization (2)

89
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 Introduce a method for representing test cases, statement coverage, 
execution results within a modified RBF neural network formalism
– Training with example test cases and execution results
– Testing with virtual test cases

 Develop a novel algorithm to simultaneously estimate the number of 
hidden neurons and their receptive field centers
 Instead of using the traditional Euclidean distance which has been 

proved to be inappropriate in the fault localization context, 
a weighted bit-comparison based distance is defined to measure the 
distance between the statement coverage vectors of two test cases. 
– Estimate the number of hidden neurons and their receptive field centers
– Compute the output of each hidden neuron
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Three Novel Aspects

90
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RBF Example (1)
 Suppose we have a program with ten statements. Seven test cases have 

been executed on the program. Table 1 gives the coverage vector and the 
execution result of each test. 

91

s1 is executed by t1 s6 is not executed by t2

t1 is a successful test

t6 is a failed test
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RBF Example (2)
 An RBF neural network is constructed and trained

– 10 neurons in the input layer
– 7 neurons in the hidden layer 
– The field width  is 0.395
– 1 neuron in the output layer
– The output layer weights are w = [w1, w2, w3, w4, w5, w6, w7]T

=[-1.326, -0.665, 0.391, -0.378, -0.308, 1.531, 1.381]T

92
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RBF Example (3)
 Use the coverage vectors of the virtual test cases as the inputs to the 

trained network. 
 The output with respect to each statement is the suspiciousness of the 

corresponding statement.

93

Highest/
Most suspicious
Lowest/
Least suspicious
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BP versus RBF
 Although BP (back propagation) networks are the widely used networks 

for supervised learning, RBF networks (whose output layer weights are 
trained in a supervised way) are even better in our case because 
RBF can learn much faster than BP networks and do not suffer from 
pathologies like local minima as BP networks do.

94
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The Construction of D* (1)
 The suspiciousness assigned to a statement should be
 Intuition 1: directly proportional to the number of failed test cases that 

cover it                                              suspiciousness(s) α NCF
 Intuition 2: inversely proportional to the number of successful test cases 

that cover it                                     suspiciousness(s) α 1/NCS
 Intuition 3: inversely proportional to the number of failed test cases that

do not cover it                         suspiciousness(s) α 1/NUF
 Conveniently enough such a coefficient already exists

Kulczynski [Kulczynski, 1928]:   NCF /(NCS+NUF)

97

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 98Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 98

The Construction of D* (with * = 2) (2)

98

 However, we also have a fourth intuition …
 Intuition 4: Intuition 1 is the most sound of the other intuitions and should 

therefore carry a higher weight.
 Kulczynski does not lead to the realization of the fourth intuition. 
 Under the circumstances we might try to do something like this:

But this is not going to help us (as we shall later see)
So instead we make use of a different coefficient (D*)

( ) CF CF
UF CS

N Nsuspiciousness s N N
 

2( ) CF
UF CS

Nsuspiciousness s N N
 

100( ) CF
UF CS

Nsuspiciousness s N N
 or maybe even
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D* Example : with * = 2 (1)
 Suppose we are writing a program that computes the sum or average of 

two numbers.
– But with respect to the sum computation (statement 5), instead of adding the 

two numbers, we accidentally subtract them
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Program ( P )
read (a);
read (b);
read (choice);
if (choice == “sum”)

result = a - b;   //Correct: a + b;
else if (choice == “average”)

result = (a + b) / 2;
print (result);

Stmt. #. t1
1
2
3
4
5
6
7
8

t2 t3

Coverage

•
•
•
•
•

•

•
•
•
•
•

•

•
•
•
•

•
•
•

t5
•
•
•
•

•
•
•

Execution Result (0 = Successful / 1 = Failed) 1 1 0 0

•
•
•
•
•

•
0

t4
•
•
•
•

•
•
•
0

t6
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D* Example: with * = 2 (2)

100

Most suspicious

Statement ranking: 5, 1, 2, 3, 4, 8, 6, 7
Tied together Tied together

 Next we collect the statistics we need for D* (NCF, NUF and NCS)
Stmt. # NCF NUF NCS

Suspiciousness based on D*
NCF NCF / (NUF+NCS)

1 2 0 4 1
2 2 0 4 1
3 2 0 4 1
4 2 0 4 1
5 2 0 1 4
6 0 2 3 0
7 0 2 3 0
8 2 0 4 1



Other Fault Localization Techniques
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Tarantula, Ochiai, SOBER, & Liblit05
 Tarantula

– passed(e) is the number of passed test cases that execute statement e one or more times
– failed(e) is the number of failed test cases that execute statement e one or more times
– totalpassed is the total number of test cases that pass in the test suite
– totalfailed is the total number of test cases that fail in the test suite

 Ochiai

 SOBER
 Liblit05
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failed( e )
totalfailedsuspiciousness( e ) passed( e ) failed( e )

totalpassed totalfailed




( )
CF

F CF CS

N
N N N 
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 Motivation and Background
 Execution Dice-based Fault Localization
 Suspiciousness Ranking-based Fault Localization

– Program Spectra-based Fault Localization
– Code Coverage-based Fault Localization
– Statistical Analysis-based Fault Localization
– Neural Network-based Fault Localization
– Similarity Coefficient-based Fault Localization

 Empirical Evaluation
 Theoretical Comparison: Equivalence
 Mutation-based Automatic Bug Fixing
 Conclusions
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Empirical Evaluation
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Is a Technique Good at Locating Faults ?
 “Good” is more of a relative term. We can show a fault localization 

technique is good by showing that it is more effective than other 
competing techniques
We do this via rigorous case studies

– Using a comprehensive set of subject programs
– Comparing the effectiveness between different fault localization techniques
– Evaluating across multiple criteria

 Since it is not possible to theoretically prove that one fault localization 
technique is always more effective than another, such empirical 
evaluation is typically the norm
– We will return to this issue later on
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Subject Programs
 Four sets of subject programs – the Siemens suite, the Unix suite, gzip and 

Ant – were used (19 different programs in all – C & Java)
– Two additional programs (grep and make) are also used which makes a total of 

21 programs

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 106

Program Lines of Code Number of faulty versions used† Number of test cases
print_tokens 565 5 4130
print_tokens2 510 10 4115
schedule 412 9 2650
schedule2 307 9 2710
replace 563 32 5542
tcas 173 41 1608
tot_info 406 23 1052
cal 202 20 162
checkeq 102 20 166
col 308 30 156
comm 167 12 186
crypt 134 14 156
look 170 14 193
sort 913 21 997
spline 338 13 700
tr 137 11 870
uniq 143 17 431
gzip 6573 28 211
Ant 75333 23 871

† Some versions 
were created using
mutation-based 
fault injection
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Techniques D* is Compared to
 First compared D* to the Kulcyznski coefficient

 Also compared it with 11 other well-known coefficients forming a 
baker’s dozen [Choi et al. 2010, Willett 2003]
(1) Simple-Matching (7) Gower
(2) BraunBanquet (8) Michael
(3) Dennis (9) Pierce
(4) Mountford (10) Baroni-Urbani/Buser
(5) Fossum (11) Tarwid
(6) Pearson (2)
 Further comparisons with other techniques were also performed

– To be discussed later
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Number of statements examined
– The number of statements that need to be examined by D* to locate faults 

versus other techniques
– An absolute measure

 The EXAM score: the percentage of code examined
– The percentage of code that needs to be examined by using D* to locate faults 

versus other techniques
– A relative (graphical) measure

 The Wilcoxon Signed-Rank Test
– Evaluate the alternative hypothesis that other techniques will require the 

examination of more statements than D*
D* is more effective than other techniques
Null hypothesis being that the other techniques require the examination of a number 

of statements that is less than or equal to that required by D*
– A statistical measure

Three Evaluation Metrics/Criteria
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Ties in the Ranking: Best/Worst
 The suspiciousness assigned to a statement by D* (and other techniques) 

may not be unique, i.e., two or more statements can be tied for the same 
position in the ranking.

From our 
example:

 Assuming a faulty statement and some correct statements are tied
– In the best case we examine the faulty statement first
– In the worst case we examine it last

 For each of the previously discussed evaluation criteria, we will have the 
best case and the worst case effectiveness.
– Presenting only the average would have resulted in a loss of information
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Statement ranking: 5, 1, 2, 3, 4, 8, 6, 7
Tied together Tied together
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 D* is very consistent in its performance
 Often the worst case of D* is better than the best case of the other 

techniques (Note that * = 2)

Results – Total Number of Statements Examined
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Fault Localization
Technique

Best Case Worst Case
Siemens Unix gzip Ant Siemens Unix gzip Ant

D* 1754 1805 1220 672 2650 5226 3087 1184
Kulcynzki 2327 2358 1272 1557 3186 5779 3139 2069
Simple-Matching 6335 5545 9087 250414 7187 8977 10968 253631
BraunBanquet 2438 2767 1358 2196 3296 6187 3135 2698
Dennis 2206 2934 1960 1974 3074 6504 3737 2476
Mountford 1974 2183 1317 3298 2832 5644 3111 3818
Fossum 2230 2468 4547 150415 3126 5843 8701 150917
Pearson 3279 3581 1450 1188 4247 7221 3227 1690
Gower 6586 8630 26215 967307 7434 12027 27992 967809
Michael 1993 3713 2504 4502 2864 7283 4281 5004
Pierce 8072 11782 24065 322033 15299 23387 46753 1018725
Baroni-Urbani/Buser 3547 3189 1428 4693 4404 6605 3205 5195
Tarwid 2453 3399 3110 5964 3321 7883 5032 9935

D* is clearly 
the most 
effective
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Results – EXAM Score (Siemens suite)
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Results – EXAM Score (Unix suite)
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Results – EXAM Score (Gzip)
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Results – EXAM Score (Ant)
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Results – Wilcoxon Signed-Rank Test  (1)

 Generally the confidence with which we can claim that D* is more
effective than the other techniques is very high (easily over 99%).
 But there are a few exceptions.
Why? Perhaps this has something to do with the way our hypothesis was 

constructed.
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Fault Localization
Technique

Best Case Worst Case
Siemens Unix gzip Ant Siemens Unix gzip Ant

Kulcynzki 99.99% 99.99% 93.75% 98.43% 99.99% 99.99% 93.75% 98.43%
Simple-Matching 100% 100% 99.80% 99.90% 100% 100% 97.60% 99.80%
BraunBanquet 99.99% 100% 99.80% 99.80% 99.99% 99.99% 71.43% 99.21%
Dennis 99.99% 100% 99.99% 99.80% 99.99% 100% 94.20% 99.21%
Mountford 99.99% 99.99% 99.21% 99.90% 99.99% 99.99% 73.82% 99.80%
Fossum 100% 99.99% 99.21% 99.21% 100% 99.99% 99.62% 96.87%
Pearson 100% 99.99% 99.21% 99.21% 100% 99.99% 70.87% 96.87%
Gower 100% 100% 99.99% 99.99% 100% 100% 99.99% 99.99%
Michael 99.68% 99.99% 99.99% 99.97% 99.54% 99.99% 99.99% 99.97%
Pierce 100% 100% 99.99% 99.99% 100% 100% 99.99% 99.99%
Baroni-Urbani/Buser 99.99% 100% 99.80% 99.80% 99.99% 100% 74.42% 98.82%
Tarwid 99.99% 99.99% 99.99% 99.99% 99.99% 100% 99.99% 99.99%
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Results – Wilcoxon Signed-Rank Test (2)
 Let us modify our alternative hypothesis to consider equalities.

– We now evaluate to see if D* is more effective than, or at least as effective as,
the other techniques.

– Which is to say D* requires the examination of a number of statements that is 
less than or equal to that required by the other techniques.
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Fault Localization Technique Best Case Worst Case
gzip Ant gzip Ant

Kulcynzki 100% 100% 100% 100%
Simple-Matching 100% 100% 99.94% 99.90%
BraunBanquet 100% 100% 99.14% 99.61%
Dennis 100% 100% 99.43% 99.61%
Mountford 100% 100% 95.78% 99.90%
Fossum 100% 100% 99.67% 99.44%
Pearson 100% 100% 92.19% 98.44%
Baroni-Urbani/Buser 100% 100% 95.42% 99.22%

Confidence levels have gone up significantly. All entries but one are greater than 95%.

D* is clearly 
the most 
effective
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More Discussion on D*
 D* with a higher value for the *
 Compare D* with other fault localization techniques
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Effectiveness of D*
 The effectiveness of D* for the make program increases until it levels off 

as the value of * increases.
 A similar observation also applies to other programs.
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Effectiveness of Other Fault Localization Techniques
 The best- and worst-case effectiveness of 18 fault localization techniques 

(excluding D*) on 21 different programs.
Best Case Worst Case

Unix Simens grep gzip make Ant Unix Simens grep gzip make Ant
H3c 1655 1396 2702 1535 8553 1320 5026 2292 4435 3312 14272 1882
H3b 1701 1439 3019 1535 10817 1358 5072 2335 4752 3313 16556 1860
RBF 1302 2114 2075 2966 9188 233 4758 2980 3964 4743 14590 759
Ochiai 1906 1796 3092 1270 10305 887 5322 2692 4825 3047 16044 1389
Crosstab 2524 2005 4005 1314 12403 1076 6094 2873 7443 3091 18142 1578
Tarantula 3394 2453 5793 3110 16890 5964 7704 3311 7812 5032 23468 9935
Kulcynzki 2358 2327 3458 1272 10701 1557 5779 3186 5192 3139 16668 2069
Simple-Matching 5545 6335 23806 9087 41374 250414 8977 7187 25606 10968 48401 253631
BraunBanquet 2767 2438 4114 1358 11734 2196 3296 3296 5847 3135 17986 2698
Dennis 2934 2206 5498 1960 15016 1974 6504 3074 8936 3737 20755 2476
Mountford 2183 1974 3450 1317 11269 3298 5644 2832 5189 3111 17152 3818
Fossum 2468 2230 15952 4547 19567 150415 5843 3126 21193 8701 25036 150917
Pearson 3581 3279 6894 1450 17689 1188 7221 4247 10796 3227 23569 1690
Gower 8630 6586 43428 26215 128318 967307 12027 7434 45262 27992 134057 967809
Michael 3713 1993 5027 2504 14986 4502 7283 2864 8501 4281 20725 5004
Pierce 11782 8072 16646 24065 30568 322033 23387 15299 60437 46753 164856 1018725
Baroni-Urbani/Buser 3189 3547 4902 1428 12130 4693 6605 4404 6635 3205 17689 5195
Tarwid 3399 2453 5793 3110 16890 5964 7883 3321 9517 5032 23468 9935
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Comparison between D* and Other Techniques
 The effectiveness of D2 is better than the other 12 similarity coefficient-

based fault localization techniques.
 From the following table, we also observe that D* (with an appropriate 

value of *) performs better than other fault localization techniques, 
regardless of the subject programs, and the best- or worst-case.
– The cell with a black background gives the smallest * such that D* 

outperforms others.
Best Case Worst Case

Unix Simens grep gzip make Ant Unix Simens grep gzip make Ant
D2 1805 1754 3023 1220 10287 672 5226 2650 4757 3087 16254 1184
D3 1667 1526 2946 1088 10257 368 5088 2422 4680 2955 16224 880
D4 1594 1460 2833 1087 10022 293 5015 2356 4567 2954 15989 805
D5 1507 1435 2762 1085 10022 228 4928 2331 4496 2952 15989 740
D* 1386 (*=7) 2693 (*=8) 8529 (*=20) 2284 (*=7) 4427 (*=8) 14219 (*=25)

H3b 1701 1439 3019 1535 10817 1358 5072 2335 4752 3313 16556 1860
H3c 1655 1396 2702 1535 8553 1320 5026 2292 4435 3312 14272 1882

Tarantula 3394 2453 5793 3110 16890 5964 7704 3311 7812 5032 23468 9935
Ochiai 1906 1796 3092 1270 10305 887 5322 2692 4825 3047 16044 1389
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 Motivation and Background
 Execution Dice-based Fault Localization
 Suspiciousness Ranking-based Fault Localization

– Program Spectra-based Fault Localization
– Code Coverage-based Fault Localization
– Statistical Analysis-based Fault Localization
– Neural Network-based Fault Localization
– Similarity Coefficient-based Fault Localization

 Empirical Evaluation
 Theoretical Comparison: Equivalence
 Mutation-based Automatic Bug Fixing
 Conclusions
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 As discussed earlier the general norm for comparing fault localization 
techniques has been to use empirical data.
 If technique  is better than technique , then it should lead programmers 

to the location of fault(s) faster than .
 Multiple metrics have been proposed to do this such as the ones used in 

our research.
 Case studies can be quite expensive and time-consuming to perform. 

Often a lot of data has to be analyzed.
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Comparing Fault Localization Techniques (1) 

But is empirical comparison always required…especially when 
trying to show that two techniques will be equally effective?
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Comparing Fault Localization Techniques (2)
 Note that the suspiciousness of a statement is irrelevant from an absolute

sense. 
– It only matters how the suspiciousness of two (or more) statements compare 

with respect to each other (i.e., relative to one another).
 Supposing we have two statements s1 and s2 with suspiciousness values of 

5 and 6, respectively. This means that s2 is ranked above s1 as it is more 
suspicious.
 However, s2 would still be ranked above s1 if the suspiciousness values 

were 6 and 7, or 50 and 60, respectively – the relative ordering of s1 and 
s2 is still maintained. 
 Thus, subtracting the same constant from (or adding it to) the 

suspiciousness of every statement will have no effect on the final ranking. 
The same applies for multiplication/division operations.

124
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 Recall the suspiciousness computation of Kulczynski

 It now becomes clear that an identical ranking will be produced by

or

 This is why D* was constructed the way it was
 Any operation that is order-preserving can be safely performed on the 

suspiciousness function without changing the ranking.
 If the ranking does not change…then the effectiveness will not change 

either. We can exploit this!
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Comparing Fault Localization Techniques (3)
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 Consider a program P with a set of elements M. Let rank(r,s) be a 
function that returns the position of statement s in ranking r.
 Two rankings r and r (produced by using two techniques L and L on 

the same input data) are equal if
– ∀sM, rank(r,s) = rank(r,s). 
– Two rankings are equal if for every statement, the position is the same in both 

rankings.
 If two fault localization techniques L and L always produce rankings 

that are equal, then the techniques are said to be equivalent, i.e., L  Land therefore will always be equally as effective (at fault localization).
 So is the equivalence relation useful?

Certainly! In at least two scenarios it holds great potential
– Eliminating the need for time-consuming case studies.
– Making suspiciousness computations more efficient.

126
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Eliminating the Need for Case Studies (1)
 Take the example of [Abreu et al. 2009] where

– The authors use of the Ochiai coefficient to compute suspiciousness. 
– The coefficient is compared to several other coefficients empirically.
– Among others, it is compared to the Jaccard and Sorensen-Dice coefficients.

We posit that this was unnecessary, as per the equivalence relation.

 Via a set of order-preserving operations, both can be 
reduced to:

127
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Jaccard Sorensen-Dice

( ) CF
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Nsuspiciousness s N N 
R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A Practical Evaluation of Spectrum-based 
Fault Localization,” Journal of Systems and Software, 82(11):1780-1792, November 2009
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 As it turns out the coefficient Anderberg also evaluates to the same form. 
Ochiai was empirically compared to Anderberg.

 In fact the authors also compared Ochiai to the SimpleMatching and 
Rogers and Tanimoto coefficients, the both of which are also equivalent 
to one another.
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Eliminating the Need for Case Studies (2)

128

Such redundant comparisons could have been avoided by making 
use of the fault localization equivalence relation.

Jaccard  Sorensen-Dice  Anderberg

SimpleMatching  Rogers and Tanimoto 
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 As shown, if Jaccard were the chosen fault localization technique, using 
the suspiciousness function

would give the same results as using

We should go with the simplest computation as it is expected to be faster. 
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Making Computations More Efficient (1)

129
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Making Computations More Efficient (2)
We performed an additional case study on the 7 programs of the Siemens 

suite
 Observed the relative time saved in computing suspiciousness for all the 

statements in a faulty program, by using the simplified form of Jaccard 
(J*) as opposed to the original (J).
– The quantity (J–J*) represents the computational time that is saved.
– ((J–J*)/J)×100% represents the relative time saved, i.e., efficiency gained. 

 100 trials were performed per faulty version. 
 Difference in times was computed to nanosecond precision.

130
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Making Computations More Efficient (3)

131

Programs
Average 

Percentage Time 
Saved

print_tokens 35.37%
print_tokens2 39.21%
schedule 44.62%
schedule2 49.74%
replace 41.65%
tcas 52.46%
tot_info 47.68%

 The savings in terms of time are quite significant.
 Using the equivalence relation can thus, help reduce techniques to 

simplified forms, thereby greatly increasing efficiency.

Programs with Multiple Faults
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Programs with Multiple Faults
 One bug at a time
 A good approach is to use “fault-focused” clustering.

– Divide failed test cases into clusters that target different faults 
– Failed test cases in each fault-focused cluster are combined with the successful 

tests for debugging a single fault.

133
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 Motivation and Background
 Execution Dice-based Fault Localization
 Suspiciousness Ranking-based Fault Localization

– Program Spectra-based Fault Localization
– Code Coverage-based Fault Localization
– Statistical Analysis-based Fault Localization
– Neural Network-based Fault Localization
– Similarity Coefficient-based Fault Localization

 Empirical Evaluation
 Theoretical Comparison: Equivalence
 Mutation-based Automatic Bug Fixing
 Conclusions
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Mutation-based Automatic Bug Fixing
V. Debroy and W. E. Wong, “Using Mutation to Automatically Suggest 
Fixes for Faulty Programs,” in Proceedings of the 3rd International 
Conference on Software Testing, Verification and Validation (ICST), 
Paris, France, April 2010 
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 For research experiments, large comprehensive data sets are rarely 
available
 Need faulty versions of programs to perform all kinds of experiments on, 

but don’t always have a way to get them
 Recently many researchers have relied on mutation

– Mutants generated can represent realistic faults
– Experiments that use these mutants as faulty versions can yield trustworthy 

results
– As opposed to seeding faults, mutant generation is automatic
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Mutation as a Fault Generation Aid

136
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If mutating a correct program can produce a realistic fault, can
mutating an incorrect program produce a realistic fix?
 Supposing we wanted to write program P
 But we ended up writing a faulty program P’

– We know P’ is faulty because at least one test case in our test set results in 
failure when executed on P’

 Mutate P’ to get P”
 If P” = P… we automatically fixed the fault in P’
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Mutation as a Fault Fixing Aid?

137
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Our Solution

138

Mutation
The Good: Can result in 
potential fixes for faulty 
programs automatically.
The Bad: We have no idea as to 
where in a program a fault is, and 
so we do not know how to 
proceed. Randomly examining 
mutants can be prohibitively 
expensive.

Fault Localization
The Good: Can potentially 
identify the location of a fault 
in a program.
The Bad: Even if we locate the 
fault, we have no idea as to 
how to fix the fault. This is left 
solely as the responsibility of 
the programmers/debuggers.

So…what if we combined the two?



Conclusion

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 140

 Existing and new fault localization techniques
– Many of them use the same information (statement coverage and execution 

results) to identify suspicious code likely to contain program bug(s)

 A strategy to automatically suggest fixes for faults that 
– makes as few assumptions as possible about the software being debugged
– is generally applicable to different types of software and programming 

languages
– still manages to produce some useful information even when it is unable 

to fix faults automatically
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What We Have Discussed

Present a framework to automate the debugging process.


