

Motivation and Background

- Execution Dice-based Fault Localization
- Suspiciousness Ranking-based Fault Localization
 - Program Spectra-based Fault Localization
 - Code Coverage-based Fault Localization
 - Statistical Analysis-based Fault Localization
 - Neural Network-based Fault Localization
 - Similarity Coefficient-based Fault Localization
- Empirical Evaluation
- Theoretical Comparison: Equivalence
- Mutation-based Automatic Bug Fixing
- Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas)

- Motivation and Background
- Execution Dice-based Fault Localization
- Suspiciousness Ranking-based Fault Localization
 - Program Spectra-based Fault Localization
 - Code Coverage-based Fault Localization
 - Statistical Analysis-based Fault Localization
 - Neural Network-based Fault Localization
 - Similarity Coefficient-based Fault Localization
- Empirical Evaluation
- Theoretical Comparison: Equivalence
- Mutation-based Automatic Bug Fixing
- Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas)

	Init	ial Te	st Se	t	
Test case		Input		Output	
	a	b	с	class	area
T_1	2	2	2	equilateral	1.73
T_2	4	4	3	isosceles	5.56
T_3	5	4	3	right	6.00
T_4	6	5	4	scalene	9.92
T ₅	3	3	3	equilateral	3.90

	Fa	iluro	Doto	cted	
[, i a		Dette		
Test case		Input		Output	
	а	b	с	class	area
Τ ₁	2	2	2	equilateral	1.73
T ₂	4	4	3	isosceles	5.56
T ₃	5	4	3	right	6.00
Τ ₄	6	5	4	scalene	9.92
T ₅	3	3	3	equilateral	3.90
T ₆	4	3	3	scalene	4.47
				Failure	

анри (1)	
Where is the Bug?	
read (a, b, c); - 4, 3, 3	
class = scalene;	
f a = b b = a	
Class = Isosceles;	
$ T a^*a = D^*D + C^*C$	
class = ngnt,	
$a = b \propto b = c$	
case class of	
right : area = $h^*c/2$	
equilateral : area = a^*a^* sort(3)/4:	
otherwise : $s = (a+b+c)/2$:	
area = $sort(s^*(s-a)^*(s-b)^*(s-c));$	
end;	
write(class, area); scalene	

	Fa	ilure	Dete	cted	
Test case		Input		Output	
	a	b	с	class	area
T_1	2	2	2	equilateral	1.73
T_2	4	4	3	isosceles	5.56
T_3	5	4	3	right	6.00
T_4	6	5	4	scalene	9.92
T ₅	3	3	3	equilateral	3.90
T_6	4	3	3	scalene	4.47

A Succes	ssful	Test	T ₂ an	d a Failed To	est T ₆
Test case		Input		Output	Success
	a	b	с	class /	area
Τ ₁	2	2	2	equilateral	1.73
T ₂	4	4	3	isosceles	5.56
Τ ₃	5	4	3	right	6.00
Τ ₄	6	5	4	scalene	9.92
T ₅	3	3	3	equilateral	3.90
T ₆	4	3	3	scalene	4.47

An Incremental Approach

- Assume
 - debugging as soon as a failure is detected (i.e., only one failed test)
 - -n (say 3) successful tests
- Assume the bug is in the code which is executed by the failed test but not the successful test(s)
 - first examining the code in $\mathcal{D}^{(3)}$ followed by code in $\mathcal{D}^{(2)}$ but not in $\mathcal{D}^{(3)}$, then code in $\mathcal{D}^{(1)}$ but not in $\mathcal{D}^{(2)}$
- If this assumption does not hold (i.e., the bug is not in D⁽¹⁾), then we need to inspect additional code in the failed execution slice but not in D⁽¹⁾
 - then starting with code in $\mathcal{A}^{(1)}$ but not in $\mathcal{D}^{(1)}$, followed by $\mathcal{A}^{(2)}$ but not in $\mathcal{A}^{(1)}$, ...
- Prioritize code in a failed execution slice based on its likelihood of containing the bug. The prioritization is done by first using the refining method and then the augmentation method.
 - Examining code in $\mathcal{D}^{(3)}$, $\mathcal{D}^{(2)}$ but not in $\mathcal{D}^{(3)}$, $\mathcal{D}^{(1)}$ but not in $\mathcal{D}^{(2)}$, $\mathcal{A}^{(1)}$ but not in $\mathcal{D}^{(1)}$, $\mathcal{A}^{(2)}$ but not in $\mathcal{A}^{(2)}$, ... etc.

37

• In the worst case, we have to examine all the code in the failed execution slice.

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas)

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

statement	Juen
• Rank all the executable statements in descending order of their suspiciousness	•
• Examine the statements one-by-one from the top of the ranking first faulty statement is located	g until th
• Statements with higher suspiciousness should be examined bet statements with lower suspiciousness as the former are more li contain bugs than the latter	fore kely to

Techniques for Computing Suspiciousness

- Code coverage-based and calibration
- Crosstab: statistical analysis-based
- BP (Back Propagation) & RBF (Radial Basis Function) neural network
- Similarity coefficient-based
- Tarantula: heuristic-based
- SOBER: statistical analysis-based
- Liblit: statistical analysis-based

Take advantage of code coverage (namely, execution slice) and execution result of each test (success or failure) for debugging.

41

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas)

Outline Motivation and Background • Execution Dice-based Fault Localization Suspiciousness Ranking-based Fault Localization Program Spectra-based Fault Localization _ Code Coverage-based Fault Localization _ Statistical Analysis-based Fault Localization Neural Network-based Fault Localization _ - Similarity Coefficient-based Fault Localization • Empirical Evaluation • Theoretical Comparison: Equivalence • Mutation-based Automatic Bug Fixing Conclusions Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 42

	Name	Description
<u>BHS</u>	Branch Hit Spectra	conditional branches that are executed
BCS	Branch Count Spectra	number of times each conditional branch is executed
CPS	Complete Path Spectra	complete path that is executed
PHS	Path Hit Spectra	loop-free path that is executed
PCS	Path Count Spectra	number of times each loop-free path is executed
DHS	Data-Dependence Hit Spectra	definition-use pairs that are executed
DCS	Data-Dependence Count Spectra	number of times each definition-use pair is executed
OPS	Output Spectra	output that is produced
ETS	Execution Trace Spectra	execution trace that is produced
DVS	Data Value Spectra	the values of variables in the execution
ESHS	Executable Statement Hit Spectra	executable statements that are executed

- Motivation and Background
- Execution Dice-based Fault Localization
- Suspiciousness Ranking-based Fault Localization
 - Program Spectra-based Fault Localization
 - Code Coverage-based Fault Localization
 - Statistical Analysis-based Fault Localization
 - Neural Network-based Fault Localization
 - Similarity Coefficient-based Fault Localization
- Empirical Evaluation
- Theoretical Comparison: Equivalence
- Mutation-based Automatic Bug Fixing
- Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas)

- Suppose for a large test suite, say 1000 test cases, a majority of them, say 995, are successful test cases and only a small number of failed test cases (five in this example) will cause an execution failure.
- The challenge is how to use these five failed tests and the 995 successful tests to conduct an effective debugging.
- How can each additional test case that executes the program successfully help locate program bugs?
- What about each additional test case that makes the program execution fail?

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas)

- Should all the successful test executions provide the same contribution to locate software bugs?
- Intuitively, the answer should be "no"
- If a piece of code has already been executed successfully 994 times, then the contribution of the 995th successful execution is likely to be less than, for example, the contribution of the second successful execution when the code is only executed successfully once
- We propose that with respect to a piece of code, the contribution introduced by the first successful test that executes it in computing its likelihood of containing a bug is larger than or equal to that of the second successful test that executes it, which is larger than or equal to that of the third successful test that executes it, etc.
- The same also applies to the failed tests.

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas)

- Motivation and Background
- Execution Dice-based Fault Localization
- Suspiciousness Ranking-based Fault Localization
 - Program Spectra-based Fault Localization
 - Code Coverage-based Fault Localization
 - Statistical Analysis-based Fault Localization
 - Neural Network-based Fault Localization
 - Similarity Coefficient-based Fault Localization
- Empirical Evaluation
- Theoretical Comparison: Equivalence
- Mutation-based Automatic Bug Fixing
- Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas)

,103314	U					
The cross	stab (cros	ss-classifica	tion table) and	alysis is u	used to stu	dy
the relation	onship bo	etween two	or more categ	orical va	riables.	
A crossta	b is cons	tructed for e	each statemen	t as follo	ws	
1		() is covered	() is not covered	Σ		
successful e	xecutions	N _{cs} (ω)	N _{US} (ω)	Ns		
failed execu	tions	$N_{\rm CF}(\omega)$	$N_{\rm UF}(\omega)$	NF		
Σ		$N_{\rm C}(\omega)$	$N_{\rm U}(\omega)$	N		
N	total nu	mber of test c	ases			
NF	total nu	mber of failed	test cases			
Ns	total nu	mber of succe	essful test cases			
$N_{\rm c}(\omega)$	number	of test cases	covering (0)			
$N_{\rm CF}(\omega)$	number	of failed test	cases covering	ω		
$N_{\rm CS}(\omega)$	number	of successful	test cases cover	ring @		
$N_{\rm U}(\omega)$	number	of test cases	not covering (0			
$N_{\rm UF}(\omega)$	number	of failed test	cases not cover	ingω		
M. (m)		of manageful	tort ancor not a	attaring (a		

Dependency Relationship (2)

• Given a level of significance σ (for example, 0.05), we can find the corresponding *Chi-square critical value* χ^2_{σ} , from the Chi-square distribution table.

If $x^2(\omega) > \chi^2_{\sigma}$, we reject the null hypothesis, i.e., the execution result is dependent on the coverage of ω .

- Otherwise, we accept the null hypothesis, i.e., the execution result and the coverage of ω are "independent."

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas)

Crosstab Example (3)					
• If we choose the level of significance as 0.05 3.841. Since $\chi^2(s_1) = 5.2800$ is larger than 3.3 be rejected.	, the (341, ti	Chi-squa he null h	re critica ypothesi	al value i s for s ₁ s	s hou
• Similarly, we can compute χ^2 for other stater 4.4954, $\chi^2(s_3) = 0.1481$, and $\chi^2(s_4) = 1.3333$.	nents.	. For exa	mple, we	e have χ^2	$^{2}(s_{2})$
• Next, we use Equation (2) to compute the <i>constatement</i> . We have $\mathcal{M}(s_1) = 0.1467$, $\mathcal{M}(s_2) = 0$ 0.0370.	<i>ntinge</i> .1249	$\mathcal{M}(s_3) =$	ficient N 0.0041,	$\frac{1}{2} \text{ for eac}^2$ and $\mathcal{M}(s)$	h 4)=
 Next, we use Equation (2) to compute the <i>constatement</i>. We have M(s₁)= 0.1467, M(s₂)= 0.0.0370. Compute φ and ζ using Equations (3) and (4) 	$\frac{1249}{51}$	$\mathcal{M}(s_3) = \frac{\chi^2}{5.2800}$	ficient 9 0.0041, 9 0.1467 0.1249	for each and $\mathcal{M}(s)$ φ 1.6875 0.3529	h $_{4})=$
 Next, we use Equation (2) to compute the <i>constatement</i>. We have <i>M</i>(<i>s</i>₁)= 0.1467, <i>M</i>(<i>s</i>₂)= 0.0.0370. Compute φ and ζ using Equations (3) and (4) Based on the suspiciousness 	$\frac{s_1}{s_2}$	$\frac{2}{3} \mathcal{M}(s_3) = \frac{2^2}{5.2800}$ $\frac{2}{4.4954}$ 0.1481	M 0.1467 0.1249 0.0041	f for each and $\mathcal{M}(s)$ $\frac{\varphi}{1.6875}$ 0.3529 0.8571	h $_{4}) = 0$ $_{-(}$
 Next, we use Equation (2) to compute the <i>constatement</i>. We have <i>M</i>(<i>s</i>₁)= 0.1467, <i>M</i>(<i>s</i>₂)= 0.0.0370. Compute φ and ζ using Equations (3) and (4) Based on the suspiciousness, statement s, should be examined first 	$\begin{array}{c} \text{ntinge}\\ .1249\\ \hline \\ s_1\\ \hline \\ s_2\\ \hline \\ s_3\\ \hline \\ s_4 \end{array}$	$\frac{2^{2}}{\sqrt{(s_{3})^{2}}}$ $\frac{2^{2}}{5.2800}$ $\frac{4.4954}{0.1481}$ 1.3333	M 0.1467 0.1249 0.0041	1 for eac and <i>M</i> (s) 0.3529 0.8571 0.6000	h $_{4}) = 0$ -0 -0 -0
 Next, we use Equation (2) to compute the <i>constatement</i>. We have <i>M</i>(<i>s</i>₁)= 0.1467, <i>M</i>(<i>s</i>₂)= 0.0.0370. Compute φ and ζ using Equations (3) and (4) Based on the suspiciousness, statement <i>s</i>₈ should be examined first for locating program bugg followed by 	$\begin{array}{c} \text{ntinge}\\ .1249\\ \hline \\ \underline{s_1}\\ \underline{s_2}\\ \underline{s_3}\\ \underline{s_4}\\ \underline{s_5} \end{array}$	$\begin{array}{c} \underline{s}, \mathcal{M}(s_3) = \\ \underline{s}, \mathcal{M}(s_3) = \\ \underline{s}, \mathcal{M}(s_3) = \\ \underline{s}, \mathcal{M}(s_3) = \\ \underline{s}, \mathbf{s}, s$	M 0.0041, M 0.1467 0.1249 0.0041 0.0370 0.0506	1 for eac and M(s)	h $_{4}) = 0$ -(0) -(0) -(0)
 Next, we use Equation (2) to compute the <i>co</i> statement. We have <i>M</i>(s₁)= 0.1467, <i>M</i>(s₂)= 0 0.0370. Compute φ and ζ using Equations (3) and (4) Based on the suspiciousness, statement s₈ should be examined first for locating program bugs followed by 	$\begin{array}{c} \text{ntinge}\\ 1249\\ \hline \\ 5_1\\ \hline \\ 5_2\\ \hline \\ 5_3\\ \hline \\ 5_4\\ \hline \\ 5_5\\ \hline \\ 5_6\end{array}$	$\frac{2^{2}}{5.2800}$ $\frac{2^{2}}{5.2800}$ $\frac{2^{2}}{4.4954}$ 0.1481 1.3333 1.8204 0.1558	M 0.0041, M 0.1467 0.1249 0.0041 0.0370 0.0506 0.0043	1 for eac and M(s) 0.3529 0.8571 0.6000 1.6364 1.2000	h $_{4}) = 0$ -(0) -(0) 0
 Next, we use Equation (2) to compute the <i>co</i> statement. We have <i>M</i>(<i>s</i>₁)= 0.1467, <i>M</i>(<i>s</i>₂)= 0 0.0370. Compute φ and ζ using Equations (3) and (4) Based on the suspiciousness, statement <i>s</i>₈ should be examined first for locating program bugs followed by <i>s</i>₁, <i>s</i>₅, <i>s</i>₁₀, <i>s</i>₉, <i>s</i>₆, <i>s</i>₃, <i>s</i>₇, <i>s</i>₄, and <i>s</i>₂. 	$\begin{array}{c} \text{ntinge}\\ 1249\\ \hline \\ s_1\\ \hline \\ s_2\\ \hline \\ s_3\\ \hline \\ s_4\\ \hline \\ s_5\\ \hline \\ s_6\\ \hline \\ s_7\\ \hline \end{array}$	$\mathcal{M}(s_3) = \frac{2^2}{5.2800}$ $\frac{2^2}{4.4954}$ $\frac{1.3333}{1.8204}$ $\frac{1.358}{0.6000}$	M 0.0041, M 0.1467 0.1249 0.0041 0.0370 0.0506 0.0043 0.0167	1 for eac and M(s) 0.3529 0.8571 0.6000 1.6364 1.2000 0.7500	$ \begin{array}{c} h\\ _{4} = \\ 0\\ -1\\ -1\\ 0\\ 0\\ -1\\ -1\\ 0\\ 0\\ 0\\ -1\\ -1\\ 0\\ 0\\ 0\\ -1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
 Next, we use Equation (2) to compute the <i>co</i> statement. We have <i>M</i>(s₁)= 0.1467, <i>M</i>(s₂)= 0 0.0370. Compute φ and ζ using Equations (3) and (4) Based on the suspiciousness, statement s₈ should be examined first for locating program bugs followed by s₁, s₅, s₁₀, s₉, s₆, s₃, s₇, s₄, and s₂. 	ntinge .1249 .1249 .1249 .1249 	$\mathcal{M}(s_3) = \frac{2^2}{5.2800}$ $\frac{2^2}{5.2800}$ $\frac{4.4954}{0.1481}$ $\frac{1.3333}{1.8204}$ 0.1558 0.6000 7.6364 0.1246	M 0.0041, M 0.1467 0.1249 0.0041 0.0370 0.0506 0.0043 0.0167 0.2121	4 for eac and M(s) φ 1.6875 0.3529 0.8571 0.6000 1.6364 1.2000 0.7500 2.0769 4.1052	$ \begin{array}{c} h\\ _{4} \\ _{4} \\ _{4} \\ _{-} \\ _{-} \\ _{-} \\ _{0} \\ _{0} \\ _{-} \\ _{0} $

- Motivation and Background
- Execution Dice-based Fault Localization
- Suspiciousness Ranking-based Fault Localization
 - Program Spectra-based Fault Localization
 - Code Coverage-based Fault Localization
 - Statistical Analysis-based Fault Localization
 - Neural Network-based Fault Localization
 - Similarity Coefficient-based Fault Localization
- Empirical Evaluation
- Theoretical Comparison: Equivalence
- Mutation-based Automatic Bug Fixing
- Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas)

- Motivation and Background
- Execution Dice-based Fault Localization
- Suspiciousness Ranking-based Fault Localization
 - Program Spectra-based Fault Localization
 - Code Coverage-based Fault Localization
 - Statistical Analysis-based Fault Localization
 - Neural Network-based Fault Localization
 - Similarity Coefficient-based Fault Localization
- Empirical Evaluation
- Theoretical Comparison: Equivalence
- Mutation-based Automatic Bug Fixing
- Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas)

- Motivation and Background
- Execution Dice-based Fault Localization
- Suspiciousness Ranking-based Fault Localization
 - Program Spectra-based Fault Localization
 - Code Coverage-based Fault Localization
 - Statistical Analysis-based Fault Localization
 - Neural Network-based Fault Localization
 - Similarity Coefficient-based Fault Localization

Empirical Evaluation

- Theoretical Comparison: Equivalence
- Mutation-based Automatic Bug Fixing
- Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas)

bject P	rograms			
our sets of nt – were u Two addit 21 prograr	subject pro used (19 di ional progra ns <i>i</i>	ograms – the <i>Siemens</i> fferent programs in a ums (<i>grep</i> and <i>make</i>) are	s suite, the <i>Uni</i> . ll – C & Java) e also used whic	x suite, <i>gzip</i> ar h makes a total
Program	Lines of Code	Number of faulty versions used [†]	Number of test cases	+ Como vonsiono
print tokens	565	5	4130	Some versions
print_tokens2	510	10	4115	were created u
schedule	412	9	2650	mutation-based
schedule2	307	9	2710	fault injection
replace	563	32	5542	
tcas	173	41	1608	
tot info	406	23	1052	-
cal	202	20	162	
checkeq	102	20	166	
col	308	30	156	
comm	167	12	186	
crypt	134	14	156	
look	170	14	193	
sort	913	21	997	
spline	338	13	700	
tr	137	11	870	
uniq	143	17	431	
gzip	6573	28	211	

Fechnique D*	Siemens	Unix	gzip	A					
D*	1754		F	Ant	Siemens	Unix	gzip	Ant	
	1/54	1805	1220	672	2650	5226	3087	(1184)	↓
Kulcynzki	2327	2358	1272	1557	3186	5779	3139	2069	
Simple-Matching	6335	5545	9087	250414	7187	8977	10968	253631	
BraunBanquet	2438	2767	1358	2196	3296	6187	3135	2698	D* is cle
Dennis	2206	2934	1960	1974	3074	6504	3737	2476	the most
Mountford	1974	2183	1317	3298	2832	5644	3111	3818	effective
Fossum	2230	2468	4547	150415	3126	5843	8701	150917	
Pearson	3279	3581	1450	1188	4247	7221	3227	1690	Jump to S
Gower	6586	8630	26215	967307	7434	12027	27992	967809	
Michael	1993	3713	2504	4502	2864	7283	4281	5004	
Pierce	8072	11782	24065	322033	15299	23387	46753	1018725	
Baroni-Urbani/Buser	3547	3189	1428	4693	4404	6605	3205	5195	
Tarwid	2453	3399	3110	5964	3321	7883	5032	9935	

Unix 99.99% 100% 99.99%	gzip 93.75% 97.60%	Ant 98.43% 99.80%
99.99% 100% 99.99%	93.75% 97.60%	98.43% 99.80%
100% 99.99%	97.60%	99.80%
99.99%	71 420/	
	/1.45%	99.21%
100%	94.20%	99.21%
99.99%	73.82%	99.80%
99.99%	99.62%	96.87%
99.99%	70.87%	96.87%
100%	99.99%	99.99%
99.99%	99.99%	99.97%
100%	99.99%	99.99%
100%	74.42%	98.82%
100%	99.99%	99.99%
	99.99% 99.99% 100% 99.99% 100% 100% 100%	99.99% 99.62% 99.99% 70.87% 100% 99.99% 90.99% 99.99% 100% 99.99% 100% 74.42% 100% 99.99%

 We now evaluate to s the other techniques. 	see if D* is	more effe	ctive than, o	or at least	as effective
 Which is to say D* re less than or equal to t 	equires the that require	examinati d by the o	on of a num ther techniq	ber of stat ues.	tements that
	Best	Case	Worst	ן	
Fault Localization Technique	gzip	Ant	gzip	Ant	1
	100%	100%	100%	100%	T
Kulcynzki					D4 1
Kulcynzki Simple-Matching	100%	100%	99.94%	99.90%	D* 15 C
Kulcynzki Simple-Matching BraunBanquet	100% 100%	100% 100%	99.94% 99.14%	99.90% 99.61%	D* is cl
Kulcynzki Simple-Matching BraunBanquet Dennis	100% 100% 100%	100% 100% 100%	99.94% 99.14% 99.43%	99.90% 99.61% 99.61%	D* is cl the mos
Kulcynzki Simple-Matching BraunBanquet Dennis Mountford	100% 100% 100% 100%	100% 100% 100%	99.94% 99.14% 99.43% 95.78%	99.90% 99.61% 99.61% 99.90%	D* is cl the mos effectiv
Kulcynzki Simple-Matching BraunBanquet Dennis Mountford Fossum	100% 100% 100% 100% 100%	100% 100% 100% 100%	99.94% 99.14% 99.43% 95.78% 99.67%	99.90% 99.61% 99.61% 99.90% 99.44%	D* 18 cl the mos effectiv
Kulcynzki Simple-Matching BraunBanquet Dennis Mountford Fossum Pearson	100% 100% 100% 100% 100%	100% 100% 100% 100% 100% 100%	99.94% 99.14% 99.43% 95.78% 99.67% 92.19%	99.90% 99.61% 99.61% 99.90% 99.44% 98.44%	D* is cl the mos effectiv

The Dest- al	iu wu			100111	Inner	c of 1	8 ton	It loo	al1701	ion to	achri	0110
/ 1 1 -		131-02		iccur	ciics	5 01 1	o lau	n ioc	anzai	1011 1	comm	que
(excluding I	D*) o	n 21 (differ	ent p	rogra	ms.						
				-	-							
	[Best	Case					Wors	t Case		
	Unix	Simens	grep	gzip	make	Ant	Unix	Simens	grep	gzip	make	Ant
H3c	1655	1396	2702	1535	8553	1320	5026	2292	4435	3312	14272	1882
H3b	1701	1439	3019	1535	10817	1358	5072	2335	4752	3313	16556	1860
RBF	1302	2114	2075	2966	9188	233	4758	2980	3964	4743	14590	759
Ochiai	1906	1796	3092	1270	10305	887	5322	2692	4825	3047	16044	1389
Crosstab	2524	2005	4005	1314	12403	1076	6094	2873	7443	3091	18142	1578
Tarantula	3394	2453	5793	3110	16890	5964	7704	3311	7812	5032	23468	993
Kulcynzki	2358	2327	3458	1272	10701	1557	5779	3186	5192	3139	16668	206
Simple-Matching	5545	6335	23806	9087	41374	250414	8977	7187	25606	10968	48401	2536
BraunBanquet	2767	2438	4114	1358	11734	2196	3296	3296	5847	3135	17986	269
Dennis	2934	2206	5498	1960	15016	1974	6504	3074	8936	3737	20755	247
Mountford	2183	1974	3450	1317	11269	3298	5644	2832	5189	3111	17152	3818
Fossum	2468	2230	15952	4547	19567	150415	5843	3126	21193	8701	25036	1509
Pearson	3581	3279	6894	1450	17689	1188	7221	4247	10796	3227	23569	1690
Gower	8630	6586	43428	26215	128318	967307	12027	7434	45262	27992	134057	9678
Michael	3713	1993	5027	2504	14986	4502	7283	2864	8501	4281	20725	500
Pierce	11782	8072	16646	24065	30568	322033	23387	15299	60437	46753	164856	10187
Baroni-Urbani/Buser	3189	3547	4902	1428	12130	4693	6605	4404	6635	3205	17689	519
						20.64	5003	2221	0517	6022	22469	0024

Comp	oari.	son b	etw	een	$D^{\star}a$	nd	Oth	ier Te	chnig	<i>ques</i>		
The e based	ffecti fault	iveness t localiz	of D ² zation	is be techr	tter tha iques.	in the	e othe	er 12 si	milarit	y coef	ficient	-
From value regare – Th	the f of *) dless e cell	ollowin perfor of the s with a b	ng tabl ms be subjec olack b	le, we tter th t prog ackgro	e also c nan oth grams, ound gi	bserver er fau and t	ve tha ult lo the bo ne sm	at D* (calizati est- or allest *	with an ion tech worst-c such tha	a <i>appr</i> nnique case. at D*	opriate es,	2
out	perfo	rms oth	ers.									
	Their	5:	Best C	ase	males	4	Tinin	¢:	Worst	Case	maka	
D2	Unix 1805	Simens	Best C grep 3023	Case gzip	make 10287	Ant 672	Unix 5226	Simens 2650	Worst grep 4757	Case gzip 3087	make 16254	
D ² D ³	Unix 1805 1667	Simens 1754 1526	Best 0 grep 3023 2946	Case gzip 1220 1088	make 10287 10257	Ant 672 368	Unix 5226 5088	Simens 2650 2422	Worst grep 4757 4680	Case gzip 3087 2955	make 16254 16224	
D ² D ³ D ⁴	Unix 1805 1667 1594	Simens 1754 1526 1460	Best 0 grep 3023 2946 2833	Zase gzip 1220 1088 1087	make 10287 10257 10022	Ant 672 368 293	Unix 5226 5088 5015	Simens 2650 2422 2356	Worst grep 4757 4680 4567	Case gzip 3087 2955 2954	make 16254 16224 15989	
D ² D ³ D ⁴ D ⁵	Unix 1805 1667 1594 1507	Simens 1754 1526 1460 1435	Best C grep 3023 2946 2833 2762	Case gzip 1220 1088 1087 1085	make 10287 10257 10022 10022	Ant 672 368 293 228	Unix 5226 5088 5015 4928	Simens 2650 2422 2356 2331	Worst grep 4757 4680 4567 4496	Case gzip 3087 2955 2954 2952	make 16254 16224 15989 15989	
D ² D ³ D ⁴ D ⁵ D*	Unix 1805 1667 1594 1507	Simens 1754 1526 1460 1435 1386 (*=7)	Best (grep 3023 2946 2833 2762 2693 (*=8)	Case gzip 1220 1088 1087 1085	make 10287 10257 10022 10022 8529 (*=20)	Ant 672 368 293 228	Unix 5226 5088 5015 4928	Simens 2650 2422 2356 2331 2284 (*=7)	Worst grep 4757 4680 4567 4496 4427 (*=8)	Case gzip 3087 2955 2954 2952	make 16254 16224 15989 15989 14219 (*=25	
D ² D ³ D ⁴ D ⁵ D* H3b	Unix 1805 1667 1594 1507 1701	Simens 1754 1526 1460 1435 1386 (*=7) 1439	Best (grep 3023 2946 2833 2762 2693 (*=8) 3019	Case gzip 1220 1088 1087 1085 1535	make 10287 10257 10022 10022 8529 (*=20) 10817	Ant 672 368 293 228 1358	Unix 5226 5088 5015 4928 5072	Simens 2650 2422 2356 2331 2284 (*=7) 2335	Worst grep 4757 4680 4567 4496 4427 (*=8) 4752	Case gzip 3087 2955 2954 2952 3313	make 16254 16224 15989 15989 14219 (*=25 16556	
D ² D ³ D ⁴ D ⁵ D [*] H3b H3c	Unix 1805 1667 1594 1507 	Simens 1754 1526 1460 1435 1386 (*=7) 1439 1396	Best (grep 3023 2946 2833 2762 2693 (*=8) 3019 2702	Case gzip 1220 1088 1087 1085 1535 1535	make 10287 10257 10022 10022 8529 (*=20) 10817 8553	Ant 672 368 293 228 1358 1320	Unix 5226 5088 5015 4928 5072 5072	Simens 2650 2422 2356 2331 2284 (*=7) 2335 2292	Worst grep 4757 4680 4567 4496 4427 (*=8) 4752 4435	Case gzip 3087 2955 2954 2952 3313 3312	make 16254 16224 15989 15989 14219 (*=25 16556 14272	
D ² D ³ D ⁴ D ⁵ D* H3b H3c Tarantula	Unix 1805 1667 1594 1507 1701 1655 3394	Simens 1754 1526 1460 1435 1386 (*=7) 1439 1396 2453 1706	Best (grep 3023 2946 2833 2762 2693 (*=8) 3019 2702 5793 2002	Case gzip 1220 1088 1087 1085 1535 1535 3110 1270	make 10287 10257 10022 10022 8529 (*=20) 10817 8553 16890 10305	Ant 672 368 293 228 1358 1320 5964	Unix 5226 5088 5015 4928 5072 5026 7704	Simens 2650 2422 2356 2331 2284 (*=7) 2335 2292 3311 2692	Worst grep 4757 4680 4567 4496 4427 (*=8) 4752 4435 7812 4935	Case gzip 3087 2955 2954 2952 3313 3312 5032 2047	make 16254 16224 15989 15989 14219 (*=25 16556 14272 23468 16044	
D ² D ³ D ⁴ D ⁵ D* H3b H3b Tarantula Ochiai	Unix 1805 1667 1594 1507 1701 1655 3394 1906	Simens 1754 1526 1460 1435 1386 (*=7) 1439 1396 2453 1796	Best (grep 3023 2946 2833 2762 2693 (*=8) 3019 2702 5793 3092	Case gzip 1220 1088 1087 1085 1535 1535 3110 1270	make 10287 10257 10022 10022 8529 (*=20) 10817 8553 16890 10305	Ant 672 368 293 228 1358 1320 5964 887	Unix 5226 5088 5015 4928 5072 5026 7704 5322	Simens 2650 2422 2356 2331 2284 (*=7) 2335 2292 3311 2692	Worst grep 4757 4680 4567 4496 4427 (*=8) 4752 4435 7812 4825	Case gzip 3087 2955 2954 2952 3313 3312 5032 3047 Jump t	make 16254 16224 15989 15989 14219(=25 16556 14272 23468 16044 0 Slide 1	

- Motivation and Background
- Execution Dice-based Fault Localization
- Suspiciousness Ranking-based Fault Localization
 - Program Spectra-based Fault Localization
 - Code Coverage-based Fault Localization
 - Statistical Analysis-based Fault Localization
 - Neural Network-based Fault Localization
 - Similarity Coefficient-based Fault Localization
- Empirical Evaluation
- Theoretical Comparison: Equivalence
- Mutation-based Automatic Bug Fixing
- Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas)

Comparing Fault Localization Techniques (3)

• Recall the suspiciousness computation of Kulczynski

$$suspiciousness(s) = \frac{N_{CF}}{N_{UF} + N_{CS}}$$

• It now becomes clear that an identical ranking will be produced by

$$suspiciousness(s) = \left(\frac{N_{CF}}{N_{UF} + N_{CS}}\right) + 1 \quad \text{or} \quad suspiciousness(s) = \left(\frac{N_{CF}}{N_{UF} + N_{CS}}\right) \times 10$$

- This is why D* was constructed the way it was
- Any operation that is *order-preserving* can be safely performed on the suspiciousness function without changing the ranking.
- If the ranking does not change...then the effectiveness will not change either. *We can exploit this!*

125

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas)

Comparing Fault Localization Techniques (4) • Consider a program P with a set of elements \mathcal{M} . Let rank(r,s) be a function that returns the position of statement s in ranking r. • Two rankings r_{α} and r_{β} (produced by using two techniques \mathcal{L}_{α} and \mathcal{L}_{β} on the same input data) are equal if $- \forall s \in \mathcal{M}, rank(r_{\alpha}, s) = rank(r_{\beta}, s).$ - Two rankings are equal if for every statement, the position is the same in both rankings. • If two fault localization techniques \mathcal{L}_{α} and \mathcal{L}_{β} always produce rankings that are equal, then the techniques are said to be equivalent, i.e., $\mathcal{L}_{\alpha} \equiv \mathcal{L}_{\beta}$ and therefore will always be equally as effective (at fault localization). • So is the equivalence relation useful? Certainly! In at least two scenarios it holds great potential - Eliminating the need for time-consuming case studies. - Making suspiciousness computations more efficient. Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 126

	Programs	Average Percentage Time Saved	
-	print_tokens	35.37%	
	print_tokens2	39.21%	
	schedule	44.62%	
	schedule2	49.74%	
	replace	41.65%	
	tcas	52.46%	
	tot_info	47.68%	
The savings in Jsing the equi implified for	terms of time ar valence relation ns, thereby great	e quite significat can thus, help re ly increasing effi	t. luce techniques ciency.

 Mot 	ivation and Background	
• Exe	cution Dice-based Fault Localization	
• Susj	piciousness Ranking-based Fault Localization	
_	Program Spectra-based Fault Localization	
_	Code Coverage-based Fault Localization	
-	Statistical Analysis-based Fault Localization	
-	Neural Network-based Fault Localization	
_	Similarity Coefficient-based Fault Localization	
• Emj	pirical Evaluation	
• The	oretical Comparison: Equivalence	
• Mut	ation-based Automatic Bug Fixing	
Con	aluciona	

Mutation	Fault Localization
The Good: Can result in potential fixes for faulty programs automatically.	The Good: Can potentially identify the location of a fault in a program.
The Bad: We have no idea as to where in a program a fault is, and so we do not know how to proceed. Randomly examining mutants can be prohibitively expensive.	The Bad: Even if we locate fault, we have no idea as to how to fix the fault. This is l solely as the responsibility o the programmers/debuggers.

