
1Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 11

Reducing the Cost of Program Debugging
with Effective Software Fault Localization

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas

ewong@utdallas.edu
http://www.utdallas.edu/~ewong

Speaker Biographical Sketch
 Professor & Director

Advanced Research for Software Testing & Quality Assurance
Department of Computer Science
University of Texas at Dallas
 Guest Researcher

Computer Security Division
National Institute of Standards and Technology (NIST)
 Editor-in-Chief, IEEE Transactions on Reliability
 Engineer of the Year, 2014, IEEE Reliability Society
 Vice President, IEEE Reliability Society (202−2015)
 Secretary, ACM SIGAPP (Special Interest Group on Applied Computing)

2009 −2013
 Founder & Steering Committee Chair of the QRS conference

(IEEE International Conference on Software Quality, Reliability and Security) &
IWPD (IEEE International Workshop on Program Debugging)

2Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas)

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 3

 Motivation and Background
 Execution Dice-based Fault Localization
 Suspiciousness Ranking-based Fault Localization

– Program Spectra-based Fault Localization
– Code Coverage-based Fault Localization
– Statistical Analysis-based Fault Localization
– Neural Network-based Fault Localization
– Similarity Coefficient-based Fault Localization

 Empirical Evaluation
 Theoretical Comparison: Equivalence
 Mutation-based Automatic Bug Fixing
 Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 3

Outline

3

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 4

 Testing and debugging activities constitute one of the most expensive
aspects of software development
– Often more than 50% of the cost [Hailpern & Santhanam, 2003]

 Manual debugging is…
– Tedious
– Time Consuming
– Error prone
– Prohibitively expensive

Need ways to debug…
automatically

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 4

Motivation

4

B. Hailpern and P. Santhanam, “Software Debugging, Testing, and Verification,” IBM Systems Journal, 41(1):4-12, 2002

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 5Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 5

Debugging Today
 Program debugging consists of three fundamental activities

– Learning that the program has a fault – fault detection
– Finding the location of the fault – fault localization
– Actually removing the fault – fault fixing

 A lot of progress has been made in the area of test case generation and
thus we can assume that we will have a collection of test cases (i.e., a test
set) that can reveal that the program has faults.
– So the programmer can avoid the first task (fault detection).

 Recently fault localization has received a lot of focus
– It is one of the most expensive debugging activities [Vessey, 1985]

 Fault Fixing has also been an important research area
– Have to be very careful not to introduce new faults in the process

5

Iris Vessy, “Expertise in Debugging Computer Programs: A Process Analysis,” International Journal of
Man-Machine Studies, 23(5):459-494, March1985

Software Fault Localization

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 7Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 77

Objectives
 Develop a robust and reliable fault localization technique to identify

faults from dynamic behaviors of programs
 Reduce the cost of program debugging by providing a more accurate set

of candidate fault positions
 Provide software engineers with effective tool support

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 8Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 8

Perfect Bug Detection
 A bug in a statement will be detected by a programmer if the statement is

examined
– A correct statement will not be mistakenly identified as a faulty statement
– If the assumption does not hold, a programmer may need to examine more

code than necessary in order to find a faulty statement

8

Traditional Approach

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 10Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 10

Commonly Used Techniques
 Insert print statements
 Add assertions or set breakpoints
 Examine core dump or stack trace

10

Rely on programmers’ intuition and domain expert knowledge

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 11

 Motivation and Background
 Execution Dice-based Fault Localization
 Suspiciousness Ranking-based Fault Localization

– Program Spectra-based Fault Localization
– Code Coverage-based Fault Localization
– Statistical Analysis-based Fault Localization
– Neural Network-based Fault Localization
– Similarity Coefficient-based Fault Localization

 Empirical Evaluation
 Theoretical Comparison: Equivalence
 Mutation-based Automatic Bug Fixing
 Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 11

Outline

11

Execution Dice-based Fault Localization

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 13Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 13

Execution Slice & Dice
 Faults reside in the execution slice of a test that fails on execution

– An execution slice is the set of a program’s code
(blocks, statements, decisions, c-uses, or p-uses) executed by a test

– An execution slice can be constructed very easily if we know the coverage of
the test (instead of reporting the coverage percentage, it reports which parts of
the program are covered).

– Too much code in the slice
 Narrowing search domain by execution dices

– An execution dice is obtained by subtracting
successful execution slices from failed execution slices

13

Dice = Execution slices of failed tests – Execution slices of successful tests
Discussion 2Discussion 1Static & Dynamic

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 14Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 14

Example (1)

14

A Sample Program

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 15Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 15

Example (2)

15

Initial Test Set

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 16Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 16

Example (3)

16

Failure Detected

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 17Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 17

Example (4)

17

Where is the Bug?

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 18Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 18

Example (5)

18

Execution Slice w.r.t. the Failed Test T6 = (4 3 3)

Too much code needs
To be examined!

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 19Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 19

Example (6): Which Test Should be Used ?

19

Failure Detected

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 20Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 20

Example (7)

20

A Successful Test T2 and a Failed Test T6

(should be isosceles)

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 21Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 21

Example (8)

21

Execution Slice w.r.t. the Successful Test T2 = (4 4 3)

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 22Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 22

Example (9)

22

Execution Dice = Slice (4 3 3) - Slice (4 4 3)

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 23Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 23

One Failed and One Successful Test

23

Possible locations of faults
 Code in the execution dice (top priority)
 A bug is in the failed execution slice (the red

path) but not in the successful execution slice
(the blue path)

 Code in the failed execution slice but not in the dice
 A bug is in the failed execution slice (the red path)

and in the successful execution slice (the blue path)

 The dicing-based technique can be effective in locating some program bugs
– H. Agrawal, J. R. Horgan, S. London, and W. E. Wong, “Fault localization using execution slices and

dataflow tests,” in Proceedings of the 6th IEEE International Symposium on Software Reliability
Engineering, pp. 143-151, Toulouse, France, October 1995.
†Authors are listed in alphabetical order
‡Number of citations: 155 (according to the Google Scholar)

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 24Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 24

Locating Bugs using Execution Dice (1)

24

A test case in red fails the program

A test case in green runs the program successfully

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 25Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 25

Locating Bugs using Execution Dice (2)

25

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 26Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 26

Locating Bugs using Execution Dice (3)

26

Code in red is executed by the failed
test BUT NOT the successful one

Code in blue is executed by the
failed test AND the successful one

Code in white is NOT executed
by the failed test

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 27Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 27

Multiple Failed and Successful Tests (1)
 The more that successful tests execute a piece of code, the less likely for

it to contain any fault.

 The more that failed tests with respect to a given fault execute a piece of
code, the more likely for it to contain this fault.

 A piece of code containing a specific fault is
– inversely proportional to the number of successful tests that execute it
– proportional to the number of failed tests (with respect to this fault) that

execute it.

27

W. E. Wong, T. Sugeta, Y. Qi, and J. C. Maldonado, “Smart Debugging Software Architectural
Design in SDL,” Journal of Systems and Software, Volume 76, Number 1, pp. 15-28, April 2005

Jump to Slide 97

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 28Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 28

Multiple Failed and Successful Tests (2)
 Need to consider precision and recall

– intersection of failed tests – union of successful tests
– union of failed tests – union of successful tests
– intersection of failed tests – intersection of successful tests
– union of failed tests – intersection of successful tests

28

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 29Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 29

More Advanced Heuristics
 A bad dice does not contain the bug

– Augmentation of a bad execution dice using inter-block data dependency

 A good dice with too much code
– Refining a good execution dice using additional successful tests

29

W. E. Wong and Yu Qi, “An Execution Slice and Inter-Block Data Dependency-Based Approach for
Fault Localization,” Journal of Systems and Software, Volume 79, Number 7, pp. 891-903, July 2006

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 30

 Bug is not in the execution dice
 Much code that is executed by both the failed test (the red path) and the

successful test (the blue path)
 How to prioritize the code that still needs to be examined

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 30

Augmentation of A Bad Execution Dice D(1) (1)

30

Bug!

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 31

 If the bug is not in D(1), we need to examine additional code from the rest
of the failed execution slice (i.e., EF – D(1) denoted by)
– For a block , the notation ∈ implies is in the failed execution slice EFbut not in D(1).

 More prioritization based on inter-block data dependency
 Define a “direct data dependency” relation Δ between a block and an

execution dice D(1) such that Δ D(1)

if and only if defines a variable x that is used in D(1) or uses a variable
y defined in D(1).

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 31

Augmentation of A Bad Execution Dice D(1) (2)

31

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 32Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 32

Augmentation of A Bad Execution Dice D(1) (3)

32

Code in red is in
the execution dice

Code in blue has some data
dependency with code in red
 Higher Priority

Code in green has no data
dependency with code in red
 Lower Priority

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 33Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 33

Augmentation of A Bad Execution Dice D(1) (4)
 Construct A(1), the augmented code segment from the first iteration,

such that A(1) = { | ∈Φ∧ (Δ D(1))}.
 set k = 1
 Examine code in A(k) to see whether it contains the bug ()
 If YES,

then
– STOP because we have located the bug

else
– set k = k + 1

 Construct A(k), the augmented code segment from the kth iteration,
such that A(k) = A(k-1)

∪ { | b ∈Φ∧ (Δ A(k-1))}.
 If A(k) = A(k-1) (i.e., no new code can be included from the (k-1)th iteration to the kth iteration)

then
– STOP

At this point we have A(*), the final augmented code segment, which equals A(k) (and
A(k-1) as well)

else
– Go back to step ()

33

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 34Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 34

Augmentation of A Bad Execution Dice D(1) (5)

34

(a) the execution slice with respect to a failed test t1 (b) the execution slice with respect to a successful test t2(a=3; b=5) (a= -3; b=5)

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 35Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 35

Augmentation of A Bad Execution Dice D(1) (6)

35

dice obtained by subtracting the execution Code that has direct data dependency
slice in (b) from the execution slice in (a) with S3 (i.e., code in the dice)

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 36Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 36

Refining of A Good Execution Dice D(1)
 Construct the execution slices (denoted by Θ1, Θ2, …, Θk) with respect to

successful tests t1, t2, …,and tk D(1) = EF – Θ1
 D(2) = D(1) – Θ2 = EF – Θ1 – Θ2
 We have D(1)

⊇D(2)
⊇D(3), etc.

 Since we want to examine the more suspicious code before the less suspicious
code, code in D(2) should be examined before code in D(1) but not in D(2)

36

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 37

 Assume
– debugging as soon as a failure is detected (i.e., only one failed test)
– n (say 3) successful tests

 Assume the bug is in the code which is executed by the failed test but not the
successful test(s)
– first examining the code in D(3) followed by code in D(2) but not in D(3), then

code in D(1) but not in D(2)
 If this assumption does not hold (i.e., the bug is not in D(1)), then we need to inspect

additional code in the failed execution slice but not in D(1)
– then starting with code in A(1) but not in D(1), followed by A(2) but not in A(1), …

 Prioritize code in a failed execution slice based on its likelihood of containing the
bug. The prioritization is done by first using the refining method and then
the augmentation method.
– Examining code in D(3), D(2) but not in D(3), D(1) but not in D(2), A(1) but not in

D(1) , A(2) but not in A(1), A(3) but not in A(2) , … etc.
 In the worst case, we have to examine all the code in the failed execution slice.
Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 37

An Incremental Approach

37

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 38

 Motivation and Background
 Execution Dice-based Fault Localization
 Suspiciousness Ranking-based Fault Localization

– Program Spectra-based Fault Localization
– Code Coverage-based Fault Localization
– Statistical Analysis-based Fault Localization
– Neural Network-based Fault Localization
– Similarity Coefficient-based Fault Localization

 Empirical Evaluation
 Theoretical Comparison: Equivalence
 Mutation-based Automatic Bug Fixing
 Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 38

Outline

38

Suspiciousness Ranking-based
Fault Localization

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 40Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 40

Overview
 Compute the suspiciousness (likelihood of containing bug) of each

statement
 Rank all the executable statements in descending order of their

suspiciousness
 Examine the statements one-by-one from the top of the ranking until the

first faulty statement is located
 Statements with higher suspiciousness should be examined before

statements with lower suspiciousness as the former are more likely to
contain bugs than the latter

40

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 41

 Code coverage-based and calibration
 Crosstab: statistical analysis-based
 BP (Back Propagation) & RBF (Radial Basis Function) neural network
 Similarity coefficient-based
 Tarantula: heuristic-based
 SOBER: statistical analysis-based
 Liblit: statistical analysis-based

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 41

Techniques for Computing Suspiciousness

41

Take advantage of code coverage (namely, execution slice)
and execution result of each test (success or failure) for debugging.

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 42

 Motivation and Background
 Execution Dice-based Fault Localization
 Suspiciousness Ranking-based Fault Localization

– Program Spectra-based Fault Localization
– Code Coverage-based Fault Localization
– Statistical Analysis-based Fault Localization
– Neural Network-based Fault Localization
– Similarity Coefficient-based Fault Localization

 Empirical Evaluation
 Theoretical Comparison: Equivalence
 Mutation-based Automatic Bug Fixing
 Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 42

Outline

42

Spectra-based Fault Localization

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 44Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 44

Spectra-Based Fault Localization Techniques
 Possible Program Spectra

Name Description
BHS Branch Hit Spectra conditional branches that are executed
BCS Branch Count Spectra number of times each conditional branch is executed
CPS Complete Path Spectra complete path that is executed
PHS Path Hit Spectra loop-free path that is executed
PCS Path Count Spectra number of times each loop-free path is executed
DHS Data-Dependence Hit Spectra definition-use pairs that are executed
DCS Data-Dependence Count Spectra number of times each definition-use pair is executed
OPS Output Spectra output that is produced
ETS Execution Trace Spectra execution trace that is produced
DVS Data Value Spectra the values of variables in the execution
ESHS Executable Statement Hit Spectra executable statements that are executed

Jump

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 45Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 45

A Sample Program for Program Spectra
1 double power (double x, int n)
2 {
3 int i;
4 int rv = 1;
5 for (i=0; i<abs(n); i++)
6 {
7 rv = rv× x;
8 }
9 if (n<0)
10 {
11 if (x!=0)
12 rv = 1/rv;
13 else
14 {
15 printf ("Error input.\n");
16 return 0;
17 }
18 }
19 return rv;
20 }

 Given an integer n and a real number x, the program calculates xn

Return

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 46Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 46

Branch Hit Spectra
 BHS records the conditional branches that are covered by the test execution
 Suppose there are m conditional branches: b1, b2, …, bm
 The spectrum with respect to bi (i = 1, 2, …, m) indicates whether bi is covered by

the test execution
 There are 6 branches in the sample program:(5,7), (5,9), (9,19), (9,11), (11,12),

and (11,15)
 When test case (x = 2, n = 3) is executed,

the branch hit spectrum is (Y, Y, Y, N, N, N).

(5,7) is covered
(5,9) is covered

(9,19) is covered

(9,11) is not covered

(11,15) is not covered
(11,12) is not covered

Return

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 47Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 47

Branch Count Spectra
 BCS records the number of times that each conditional branch is executed
 Suppose there are m conditional branches: b1, b2, …, bm. The spectrum with

respect to bi (i = 1, 2, …, m), denoted by si, indicates that bi is executed si times
by the test execution
 When test case (2,3) is executed, the branch count spectrum is (3, 1, 1, 0, 0, 0)

(5,7) is executed 3 times (9,19) is executed one time

(11,15) is not executed

Return

 BCS records the number of times that each conditional branch is executed
 Suppose there are m conditional branches: b1, b2, …, bm. The spectrum with

respect to bi (i = 1, 2, …, m), denoted by si, indicates that bi is executed si times
by the test execution
 When test case (2,3) is executed, the branch count spectrum is (3, 1, 1, 0, 0, 0)

(5,7) is executed 3 times (9,19) is executed one time

(11,15) is not executed

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 48Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 48

Complete Path Spectra
 CPS records the complete paths that are traversed by the test execution
 When test case (2,3) is executed, the CPS is (3,4,(5,7)3,9,19)

Statement 5 and 7 are executed 3 times

Return

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 49Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 49

Path Hit Spectra
 PHS records the intra-procedural, loop-free paths that are covered by the test

execution
 The sample program has six possible paths

– 3,4,5,9,19
– 3,4,5,7,9,19
– 3,4,5,9,11,12,19
– 3,4,5,7, 9,11,12,19
– 3,4,5,9,11,15,16
– 3,4,5,7,9,11,15,16

 With respect to the execution of test case (2,3), the path hit spectrum can be
represented by

– (Y,N,N,N,N,N)

(3,4,5,9,19) is covered (3,4,5,7,9,11,15,16) is not covered

Return

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 50Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 50

Path Count Spectra
 PCS records the number of times that each intra-procedural, loop-free path is covered by the test execution
 The sample program has six possible loop-free paths

– 3,4,5,9,19
– 3,4,5,7,9,19
– 3,4,5,9,11,12,19
– 3,4,5,7, 9,11,12,19
– 3,4,5,9,11,15,16
– 3,4,5,7,9,11,15,16

 When test case (2,3) is executed, the path count spectrum can be represented by
– (1,0,0,0,0,0)
– When the function is executed more than one time, the elements in PCS may be larger than 1

(3,4,5,9,19) is executed
one time

(3,4,5,7,9,11,15,16)
is not executed

Return

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 51Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 51

Data-Dependence Hit Spectra
 DHS records the definition-use pairs that are covered by the execution
 With respect to the sample program, let’s focus on the following definition-use

pairs
– (rv, 4, 7)
– (rv, 4, 19)
– (rv, 7, 7)
– (rv, 7, 12)
– (rv, 7, 19)
– (rv, 12, 19)

 When test case (2,3) is executed, the spectrum can be represented by
– (Y,N,Y,N,Y,N) which implies (rv,4,7), (rv,7, 7) and (rv,7,19) are covered by this

execution

Return

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 52Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 52

Data-Dependence Count Spectra
 DCS records the number of times that each definition-use pair is executed
 With respect to the sample program, let’s focus on the following definition-use pairs

– (rv, 4, 7)
– (rv, 4, 19)
– (rv, 7, 7)
– (rv, 7, 12)
– (rv, 7, 19)
– (rv, 12, 19)

 When test case (2,3) is executed, the data-dependence count spectrum can be represented by (1,0,2,0,1,0)

(rv, 7, 7) is executed 2 times

Return

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 53Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 53

Output Spectra
 OPS records the outputs produced by the test executions
 With respect to the sample program, when test case (2,3) is executed, the output

spectrum can be represented by a value 8, which is the output of the function

Return

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 54Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 54

Execution Trace Spectra
 ETS records the sequence of each program statement traversed by the test execution
 With respect to the sample program, when case (2,3) is executed, the execution trace spectrum can be represented by

(int i, double rv = 1, (for(i=0;i<abs(n);i++), rv = rv * x)3, if(n<0),return rv)
 Difference between ETS and CPS (Complete Path Spectrum):

– ETS records the actual instructions, whereas CPS does not

These statements are executed 3 times

Return

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 55Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 55

Data Value Spectra
 DVS records the values of variables
 With respect to the sample program, we focus on the value of variable rv

– When test case (2,3) is executed, the sequence of the values of rv is (1,2,4,8) which is
one of the DVS representations

Return

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 56Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 56

Executable Statement Hit Spectra

Next

 ESHS records the executable statements that are
covered by the test execution.

– excluding comments, blank lines, (some) variable
declarations, function declarations, etc.

 Suppose there are m executable statements: s1, s2, …, sm
 The spectrum with respect to si (i = 1, 2, …, m),

indicates whether si is covered by the test execution.
 There are 9 executable statements at lines 4, 5, 7, 9,

11, 12, 15,16 and 19
 When test case (2,3) is executed, the executable

statement hit spectrum is
(Y, Y, Y, Y, N, N, N, N, Y).

Statement 4 is executed Statement 11 is not executed

3

19 1612

15119

7

5

4

Start

End

Return

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 57

 Motivation and Background
 Execution Dice-based Fault Localization
 Suspiciousness Ranking-based Fault Localization

– Program Spectra-based Fault Localization
– Code Coverage-based Fault Localization
– Statistical Analysis-based Fault Localization
– Neural Network-based Fault Localization
– Similarity Coefficient-based Fault Localization

 Empirical Evaluation
 Theoretical Comparison: Equivalence
 Mutation-based Automatic Bug Fixing
 Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 57

Outline

57

Code Coverage-based Fault Localization
&

Calibration
W. E. Wong, V. Debroy and B. Choi, “A Family of Code Coverage-based
Heuristics for Effective Fault Localization,” Journal of Systems and Software,
Volume 83, Issue 2, pp. 188-208, February 2010
(Best Paper Award; COMPSAC 2007)

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 59

 Suppose for a large test suite, say 1000 test cases, a majority of them, say
995, are successful test cases and only a small number of failed test cases
(five in this example) will cause an execution failure.
 The challenge is how to use these five failed tests and the 995 successful

tests to conduct an effective debugging.
 How can each additional test case that executes the program successfully

help locate program bugs?
What about each additional test case that makes the program execution

fail?

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 59

Code Coverage-based & Calibration (1)

59

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 60Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 60

Code Coverage-based & Calibration (2)
 Should all the successful test executions provide the same contribution to

locate software bugs?
 Intuitively, the answer should be “no”
 If a piece of code has already been executed successfully 994 times, then

the contribution of the 995th successful execution is likely to be less than,
for example, the contribution of the second successful execution when the
code is only executed successfully once
We propose that with respect to a piece of code, the contribution

introduced by the first successful test that executes it in computing its
likelihood of containing a bug is larger than or equal to that of the second
successful test that executes it, which is larger than or equal to that of the
third successful test that executes it, etc.
 The same also applies to the failed tests.

60

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 61

 and
 If the statement S is executed by at least one failed test, then the total contribution from all

the successful tests that execute S should be less than the total contribution from all the
failed tests that execute S (namely,)

 All the tests in the same failed group have the same contribution towards fault localization,
but tests from different groups have different contributions

S F
S, F,

1 1
i k

i k
c c

 N N

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 61

Code Coverage-based & Calibration (3)

61

SS,1 S,2 S,3 S, ... c c c c N FF,1 F,2 F,3 F, ... c c c c N

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 62Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 62

Code Coverage-based & Calibration (4)
 For illustrative purposes, we set GF = GS = 3, nF,1 = nS,1= 2, and nF,2 = nS,2 = 4

– The first failed (or successful) group has at most two tests, the second group has at most
four from the remaining, and the third has everything else, if any.

 We also assume each test case in the first, second, and third failed groups gives a
contribution of 1, 0.1 and 0.01, respectively (wF,1 = 1, wF,2 = 0.1,
and wF,3 = 0.01).
 Similarly, we set wS,1 = 1, wS,2 = 0.1, and wS,3 to be a small value defined as ×F/S where is a scaling factor.

62

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 63

Code Coverage-based & Calibration (5)
More Details

Next

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 64Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 64

Code Coverage-based & Calibration (6)
 Two fundamental principles

– and

–

64

SS,1 S,2 S,3 S, ... c c c c N FF,1 F,2 F,3 F, ... c c c c N

S F
S, F,

1 1
i k

i k
c c

 N N

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 65

 Motivation and Background
 Execution Dice-based Fault Localization
 Suspiciousness Ranking-based Fault Localization

– Program Spectra-based Fault Localization
– Code Coverage-based Fault Localization
– Statistical Analysis-based Fault Localization
– Neural Network-based Fault Localization
– Similarity Coefficient-based Fault Localization

 Empirical Evaluation
 Theoretical Comparison: Equivalence
 Mutation-based Automatic Bug Fixing
 Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 65

Outline

65

Crosstab-based Fault Localization
W. Eric Wong, Vidroha Debroy and Dianxiang Xu, “Towards Better
Fault Localization: A Crosstab-based Statistical Approach,”
IEEE Transactions on Systems, Man, and Cybernetics – Part C:
Applications & Reviews
(Accepted in December 2010 for publication)
(http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05772029)

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 67Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 67

Crosstab
 The crosstab (cross-classification table) analysis is used to study

the relationship between two or more categorical variables.
 A crosstab is constructed for each statement as follows

67

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 68Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 68

Dependency Relationship (1)
 For each crosstab, we conduct a hypothesis test to check the dependency

relationship. The null hypothesis is

 A chi-square test can be used to determine whether this hypothesis should
be rejected. The Chi-square statistic is given by

(1)

where and

 Under the null hypothesis, the statistic 2() has approximately a
Chi-square distribution.

68

H0: Program execution result is independent of the
coverage of statement

2 2 2 22 CF CF CS CS UF UF US US
CF CS UF US

((ω) (ω)) ((ω) (ω)) ((ω) (ω)) ((ω) (ω))(ω) (ω) (ω) (ω) (ω)
N E N E N E N E

E E E E

C FCF
(ω)(ω) ,N NE N

 C SCS
(ω)(ω) ,N NE N

 U FUF
(ω)(ω) ,N NE N

U SUS
(ω)(ω) .N NE N

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 69Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 69

Dependency Relationship (2)
 Given a level of significance (for example, 0.05), we can find the

corresponding Chi-square critical value from the
Chi-square distribution table.
– If χ2() > we reject the null hypothesis, i.e., the execution result is

dependent on the coverage of .

– Otherwise, we accept the null hypothesis, i.e., the execution result and the
coverage of are “independent.”

69

2 ,

2 ,

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 70Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 70

Degree of Association (1)
 The “dependency” relationship indicates a high association among the

variables, whereas the “independency” relationship implies a low
association.
 Instead of the so-called “dependency”/ “independency” relationship, we

are more interested in the degree of association between the execution
result and the coverage of each statement.
 This degree can be measured based on the standard Chi-square statistic. However, such a measure increases with increasing sample size. As a result, the measure by itself may not give the “true” degree of association.
 One way to fix this problem is to use the contingency coefficientcomputed as follows

(2)
where row and col are the number of categorical variables in all rows and columns, respectively, of the crosstab

70

2(ω)(ω) (1)(1)
N

row col
 M

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 71

 The contingency coefficient M() lies between 0 and 1.
– When χ2() = 0, it has the lower limit 0 for complete independence.
– In the case of complete association, the coefficient can reach the upper limit 1

when row = col
 In our case, row = col = 2 and N is fixed. From Equation (2), M()

increases with increasing χ2().
 Under this condition, the Chi-square statisticχ2() for statement gives

a good indication of the degree of the association between the execution
result and the coverage of .

– N is fixed because every faulty version is executed with respect to all the test cases

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 71

Degree of Association (2)

71

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 72Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 72

What kind of Execution Result is More Associated (1)
 Need to decide whether it is the failed or the successful execution result

that is more associated with the coverage of the statement.

 For each statement , we compute PF() and PS() as and
which are the percentages of all failed and successful tests that execute .

 If PF() is larger than PS(), then the association between the failed
execution and the coverage of is higher than that between the
successful execution and the coverage of .

72

CF
F

(ω)N
N

CS
S

(ω)N
N

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 73Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 73

What kind of Execution Result is More Associated (2)
We define () as

(3)

 If () = 1, we haveχ2() = 0, which implies the execution result is
completely independent of the coverage of . In this case, we say the
coverage of makes the same contribution to both the failed and the
successful execution result.
 If () > 1, the coverage of is more associated with the failed

execution.
 If () < 1, the coverage of is more associated with the successful

execution.

73

CF
F

CS
S

 (ω)
F

(ω)
S

 (ω)(ω) (ω)
N N
N N

 P
P

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 74Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 74

Five Classes of Statements
 Depending on the values of χ2() and (), statements of the program

being debugged can be classified into five classes:
– Statements with > 1 and χ2 > have a high degree of association

between their coverage and the failed execution result
– Statements with > 1 and χ2

≤ have a low degree of association
between their coverage and the failed execution result

– Statements with < 1 and χ2 > have a high degree of association
between their coverage and the successful execution result

– Statements with < 1 and χ2
≤ have a low degree of association

between their coverage and the successful execution result
– Statements with = 1 (under this situation 0 = χ2 <) whose coverage is

independent of the execution result

74

2 ,

2 ,

2 ,
2 ,
2 ,

Statements in the first class are most likely (i.e., have the highest suspiciousness) to contain
program bugs followed by those in the second, the fifth, and the fourth classes, respectively.
Statements in the third class are least likely (i.e., have the least suspiciousness) to contain bugs.

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 75

 The larger the coefficient M(), the higher the association between the
execution result and the coverage of .
– For statements in the first and the second classes, those with a larger M are

more suspicious.
– For statements in the third and the fourth classes, those with a smaller M are

more suspicious.
 The suspiciousness of a statement can be defined by a statistic as

(4)

 Each lies between -1 and 1. The larger the value, the more suspicious
the statement .

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 75

Suspiciousness of Each Statement

75

(ω) if (ω) 1
(ω) 0 if (ω) 1

(ω) if (ω) < 1

M

M

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 76Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 76

Crosstab Example (1)
 The following table gives the statement coverage and execution results.

Of the 36 test cases, there are nine failed tests (e.g., t1) and 27 successful
tests (e.g., t2)

– An entry 1 implies the statement is covered by the corresponding test and an entry 0
means it is not.

– An entry 1 implies a failed execution and an entry 0 means a successful execution.

76

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 77Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 77

 We can construct the crosstab for s1 as shown in the following

We have

 From Equation (1)

= 5.2800

Crosstab Example (2)

77

C 1 FCF 1
() 25 9() 6.25,36

N s NE s N

C 1 SCS 1
() 25 27() 18.75,36

N s NE s N

U 1 FUF 1
() 11 9() 2.75,36

N s NE s N

U 1 SUS 1
() 11 27() 8.25.36

N s NE s N

2 2 2 22 CF 1 CF 1 CS 1 CS 1 UF 1 UF 1 US 1 US 11
CF 1 CS 1 UF 1 US 1

(() ()) (() ()) (() ()) (() ())() () () () ()
N s E s N s E s N s E s N s E ss E s E s E s E s

2 2 2 2(9 6.25) (16 18.75) (0 2.75) (11 8.25)
6.25 18.75 2.75 8.25

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 78

 If we choose the level of significance as 0.05, the Chi-square critical value is
3.841. Since 2(s1) = 5.2800 is larger than 3.841, the null hypothesis for s1 should
be rejected.
 Similarly, we can compute 2 for other statements. For example, we have 2(s2) =

4.4954, 2(s3) = 0.1481, and 2(s4) = 1.3333.
 Next, we use Equation (2) to compute the contingency coefficient M for each

statement. We have M(s1)= 0.1467, M(s2)= 0.1249, M(s3)= 0.0041, and M(s4)=
0.0370.
 Compute and using Equations (3) and (4).
 Based on the suspiciousness,

statement s8 should be examined first
for locating program bugs followed by
s1, s5, s10, s9, s6, s3, s7, s4, and s2.

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 78

Crosstab Example (3)

78

Jump to Slide 164 Level of Significance

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 79

 Motivation and Background
 Execution Dice-based Fault Localization
 Suspiciousness Ranking-based Fault Localization

– Program Spectra-based Fault Localization
– Code Coverage-based Fault Localization
– Statistical Analysis-based Fault Localization
– Neural Network-based Fault Localization
– Similarity Coefficient-based Fault Localization

 Empirical Evaluation
 Theoretical Comparison: Equivalence
 Mutation-based Automatic Bug Fixing
 Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 79

Outline

79

RBF Neural Network-based
Fault Localization

• W. Eric Wong, Vidroha Debroy, Richard Golden, Xiaofeng Xu
and Bhavani Thuraisingham, “Effective Software Fault Localization using
an RBF Neural Network,” IEEE Transactions on Reliability
(Accepted in May 2011 for publication)
(http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6058639)

• W. Eric Wong and Yu Qi, “BP Neural Network-based Effective
Fault Localization,” International Journal of Software Engineering
and Knowledge Engineering, 19(4): 573-597, June 2009

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 81

 A typical RBF neural network has a three-layer feed-forward structure
– Input layer: Serve as an input distributor to the hidden layer by passing inputs

to the hidden layer without changing their values.
– Hidden layer: All neurons in this layer simultaneously receive the

n-dimensional real-valued input vector x.
Each neuron uses a Radial Basis Function (RBF) as the activation function
An RBF is a strictly positive radically symmetric function, where the center has

the unique maximum and the value drops off rapidly to zero away from the center
When the distance between x and (denoted as ||x–||) is smaller than the receptive

field width , the function has an appreciable value.
A commonly used RBF is the Gaussian basis function

where j and j are the mean (namely, the center) and the standard deviation
(namely, the width) of the receptive field of the jth hidden layer neuron, and Rj(x) is
the corresponding activation function.

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 81

RBF Neural Network (1)

2
2

|| ||() exp 2
jj

j
R

x μx

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 82

– Usually the distance ||x–|| is the Euclidean distance between x and (||x–||E)
– However, (||x–||E) is inappropriate in the fault localization context
– We use a weighted bit-comparison based distance (||x–||WBC)

Let x be (the coverage vector of ith test case ti)

where and are the kth element of respectively.
This distance is more desirable because it effectively takes into account the
number of bits that are both 1 in two coverage vectors (i.e., those statements
covered by both vectors).

WBC ,|| || 1 cosi t jit j c μc μ

1,
E E 2 2

1 1

() ()
where cos ,|| || || || [()] [()]

i
i

t ji
i

i

m
t k j kt j k

m mt j
t k j k

k k

 c μ

c μc μ
c μ c μ

()c it k ()μ j k and ,it jc μ

itc

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 82

RBF Neural Network (2)

82

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 83Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 83

RBF Neural Network (3)

83

– Output layer: y = [y1, y2, …, yk] with yi as the output of the ith neuron given by

for i = 1, 2 ,…, k
where h is the number of neurons in the hidden layer and wji is the weight
associated with the link connecting the jth hidden layer neuron and the ith
output layer neuron.

1
()h

i ji j
j

y w R

 x

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 84Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 84

RBF Neural Network (4)

84

Input Layer

Hidden Layer

Output Layer

w11 whkOutput Layer Weights:w11, w12, …, whk

Reception Field Centers and Widths:1, 2, …, h,1, 2, …, h

x1 x2 xmxm-1

y1Output y = (y1, …, yk)

Input x = (x1, x2, …, xm)

1 1 2 2 h hh-1h-1

yk

w1k wh1

 An RBF network implements a mapping from the m dimensional real-valued input space to
the k dimensional real-valued output space. In between, there is a layer of hidden-layer space.

 The transformation from the input space to the hidden-layer space is nonlinear, whereas the
transformation from the hidden-layer space to the output space is linear.

 The parameters that need to be trained are the centers (i.e., m1,m2,…, mh) and widths (i.e., s1, s2, …, sh) of the receptive fields of hidden layer neurons, and the output layer weights.

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 85Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 85

RBF Neural Network (5)
We construct an RBF neural network with

– m input layer neurons (each of which corresponds to one element in a given
coverage vector of a test case)

– one output layer neuron (corresponding to the execution result of test ti)
– one hidden layer between the input and output layers

85

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 86Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 86

RBF Neural Network (6)
 Once an RBF network is trained, it provides a good mapping between the

input (the coverage vector of a test case) and the output
(the corresponding execution result).
 It can then be used to identify suspicious code of a given program in

terms of its likelihood of containing bugs.
 To do so, we use a set of virtual test cases v1, v2, …, vm whose coverage

vectors are where

Note that execution of test vj covers only one statement sj

86

1

2

1 0 0
0 1 0

0 0 1m

v
v

v

c
c

c

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 87

 If the execution of vj fails, the probability that the bugs are contained in sj is high.
 This suggests that during the fault localization, we should first examine the statements whose corresponding virtual test case fails.
 However, the execution results of these virtual tests can rarely be collected in the

real world because it is very difficult, if not impossible, to construct such tests.
 When the coverage vector of a virtual test case vj is input to the trained neural network, its output is the conditional expectation of whether the execution of vjfails given
 This implies the larger the value of the more likely that the execution of vjfails.
 Together, we have the larger the value of the more likely it is that sj contains the bug.
 We can treat as the suspiciousness of sj in terms of its likelihood of containing the bug.

RBF Neural Network (7)

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 87

RBF Neural Network (7)

87

ˆ jvr

ˆ jvr

jvc
ˆ jvr

ˆ jvr

.jvc

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 88Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 88

Summary of RBF-based Fault Localization (1)

88

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 89Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 89

Summary of RBF-based Fault Localization (2)

89

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 90

 Introduce a method for representing test cases, statement coverage,
execution results within a modified RBF neural network formalism
– Training with example test cases and execution results
– Testing with virtual test cases

 Develop a novel algorithm to simultaneously estimate the number of
hidden neurons and their receptive field centers
 Instead of using the traditional Euclidean distance which has been

proved to be inappropriate in the fault localization context,
a weighted bit-comparison based distance is defined to measure the
distance between the statement coverage vectors of two test cases.
– Estimate the number of hidden neurons and their receptive field centers
– Compute the output of each hidden neuron

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 90

Three Novel Aspects

90

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 91Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 91

RBF Example (1)
 Suppose we have a program with ten statements. Seven test cases have

been executed on the program. Table 1 gives the coverage vector and the
execution result of each test.

91

s1 is executed by t1 s6 is not executed by t2

t1 is a successful test

t6 is a failed test

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 92Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 92

RBF Example (2)
 An RBF neural network is constructed and trained

– 10 neurons in the input layer
– 7 neurons in the hidden layer
– The field width is 0.395
– 1 neuron in the output layer
– The output layer weights are w = [w1, w2, w3, w4, w5, w6, w7]T

=[-1.326, -0.665, 0.391, -0.378, -0.308, 1.531, 1.381]T

92

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 93Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 93

RBF Example (3)
 Use the coverage vectors of the virtual test cases as the inputs to the

trained network.
 The output with respect to each statement is the suspiciousness of the

corresponding statement.

93

Highest/
Most suspicious
Lowest/
Least suspicious

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 94Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 94

BP versus RBF
 Although BP (back propagation) networks are the widely used networks

for supervised learning, RBF networks (whose output layer weights are
trained in a supervised way) are even better in our case because
RBF can learn much faster than BP networks and do not suffer from
pathologies like local minima as BP networks do.

94

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 95

 Motivation and Background
 Execution Dice-based Fault Localization
 Suspiciousness Ranking-based Fault Localization

– Program Spectra-based Fault Localization
– Code Coverage-based Fault Localization
– Statistical Analysis-based Fault Localization
– Neural Network-based Fault Localization
– Similarity Coefficient-based Fault Localization

 Empirical Evaluation
 Theoretical Comparison: Equivalence
 Mutation-based Automatic Bug Fixing
 Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 95

Outline

95

DStar − A Similarity Coefficient-based
Fault Localization

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 97Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 97

The Construction of D* (1)
 The suspiciousness assigned to a statement should be
 Intuition 1: directly proportional to the number of failed test cases that

cover it suspiciousness(s) α NCF
 Intuition 2: inversely proportional to the number of successful test cases

that cover it suspiciousness(s) α 1/NCS
 Intuition 3: inversely proportional to the number of failed test cases that

do not cover it suspiciousness(s) α 1/NUF
 Conveniently enough such a coefficient already exists

Kulczynski [Kulczynski, 1928]: NCF /(NCS+NUF)

97

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 98Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 98

The Construction of D* (with * = 2) (2)

98

 However, we also have a fourth intuition …
 Intuition 4: Intuition 1 is the most sound of the other intuitions and should

therefore carry a higher weight.
 Kulczynski does not lead to the realization of the fourth intuition.
 Under the circumstances we might try to do something like this:

But this is not going to help us (as we shall later see)
So instead we make use of a different coefficient (D*)

() CF CF
UF CS

N Nsuspiciousness s N N

2() CF
UF CS

Nsuspiciousness s N N

100() CF
UF CS

Nsuspiciousness s N N
 or maybe even

Back to Slide 118

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 99

D* Example : with * = 2 (1)
 Suppose we are writing a program that computes the sum or average of

two numbers.
– But with respect to the sum computation (statement 5), instead of adding the

two numbers, we accidentally subtract them

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 99

Program (P)
read (a);
read (b);
read (choice);
if (choice == “sum”)

result = a - b; //Correct: a + b;
else if (choice == “average”)

result = (a + b) / 2;
print (result);

Stmt. #. t1
1
2
3
4
5
6
7
8

t2 t3

Coverage

•
•
•
•
•

•

•
•
•
•
•

•

•
•
•
•

•
•
•

t5
•
•
•
•

•
•
•

Execution Result (0 = Successful / 1 = Failed) 1 1 0 0

•
•
•
•
•

•
0

t4
•
•
•
•

•
•
•
0

t6

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 100Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 100

D* Example: with * = 2 (2)

100

Most suspicious

Statement ranking: 5, 1, 2, 3, 4, 8, 6, 7
Tied together Tied together

 Next we collect the statistics we need for D* (NCF, NUF and NCS)
Stmt. # NCF NUF NCS

Suspiciousness based on D*
NCF NCF / (NUF+NCS)

1 2 0 4 1
2 2 0 4 1
3 2 0 4 1
4 2 0 4 1
5 2 0 1 4
6 0 2 3 0
7 0 2 3 0
8 2 0 4 1

Other Fault Localization Techniques

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 102

Tarantula, Ochiai, SOBER, & Liblit05
 Tarantula

– passed(e) is the number of passed test cases that execute statement e one or more times
– failed(e) is the number of failed test cases that execute statement e one or more times
– totalpassed is the total number of test cases that pass in the test suite
– totalfailed is the total number of test cases that fail in the test suite

 Ochiai

 SOBER
 Liblit05

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 102

failed(e)
totalfailedsuspiciousness(e) passed(e) failed(e)

totalpassed totalfailed

()
CF

F CF CS

N
N N N

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 103

 Motivation and Background
 Execution Dice-based Fault Localization
 Suspiciousness Ranking-based Fault Localization

– Program Spectra-based Fault Localization
– Code Coverage-based Fault Localization
– Statistical Analysis-based Fault Localization
– Neural Network-based Fault Localization
– Similarity Coefficient-based Fault Localization

 Empirical Evaluation
 Theoretical Comparison: Equivalence
 Mutation-based Automatic Bug Fixing
 Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 103

Outline

103

Empirical Evaluation

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 105

Is a Technique Good at Locating Faults ?
 “Good” is more of a relative term. We can show a fault localization

technique is good by showing that it is more effective than other
competing techniques
We do this via rigorous case studies

– Using a comprehensive set of subject programs
– Comparing the effectiveness between different fault localization techniques
– Evaluating across multiple criteria

 Since it is not possible to theoretically prove that one fault localization
technique is always more effective than another, such empirical
evaluation is typically the norm
– We will return to this issue later on

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 105

Jump to Slide 123

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 106

Subject Programs
 Four sets of subject programs – the Siemens suite, the Unix suite, gzip and

Ant – were used (19 different programs in all – C & Java)
– Two additional programs (grep and make) are also used which makes a total of

21 programs

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 106

Program Lines of Code Number of faulty versions used† Number of test cases
print_tokens 565 5 4130
print_tokens2 510 10 4115
schedule 412 9 2650
schedule2 307 9 2710
replace 563 32 5542
tcas 173 41 1608
tot_info 406 23 1052
cal 202 20 162
checkeq 102 20 166
col 308 30 156
comm 167 12 186
crypt 134 14 156
look 170 14 193
sort 913 21 997
spline 338 13 700
tr 137 11 870
uniq 143 17 431
gzip 6573 28 211
Ant 75333 23 871

† Some versions
were created using
mutation-based
fault injection

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 107

Techniques D* is Compared to
 First compared D* to the Kulcyznski coefficient

 Also compared it with 11 other well-known coefficients forming a
baker’s dozen [Choi et al. 2010, Willett 2003]
(1) Simple-Matching (7) Gower
(2) BraunBanquet (8) Michael
(3) Dennis (9) Pierce
(4) Mountford (10) Baroni-Urbani/Buser
(5) Fossum (11) Tarwid
(6) Pearson (2)
 Further comparisons with other techniques were also performed

– To be discussed later

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 107

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 108

Number of statements examined
– The number of statements that need to be examined by D* to locate faults

versus other techniques
– An absolute measure

 The EXAM score: the percentage of code examined
– The percentage of code that needs to be examined by using D* to locate faults

versus other techniques
– A relative (graphical) measure

 The Wilcoxon Signed-Rank Test
– Evaluate the alternative hypothesis that other techniques will require the

examination of more statements than D*
D* is more effective than other techniques
Null hypothesis being that the other techniques require the examination of a number

of statements that is less than or equal to that required by D*
– A statistical measure

Three Evaluation Metrics/Criteria

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 109

Ties in the Ranking: Best/Worst
 The suspiciousness assigned to a statement by D* (and other techniques)

may not be unique, i.e., two or more statements can be tied for the same
position in the ranking.

From our
example:

 Assuming a faulty statement and some correct statements are tied
– In the best case we examine the faulty statement first
– In the worst case we examine it last

 For each of the previously discussed evaluation criteria, we will have the
best case and the worst case effectiveness.
– Presenting only the average would have resulted in a loss of information

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 109

Statement ranking: 5, 1, 2, 3, 4, 8, 6, 7
Tied together Tied together

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 110

 D* is very consistent in its performance
 Often the worst case of D* is better than the best case of the other

techniques (Note that * = 2)

Results – Total Number of Statements Examined

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 110

Fault Localization
Technique

Best Case Worst Case
Siemens Unix gzip Ant Siemens Unix gzip Ant

D* 1754 1805 1220 672 2650 5226 3087 1184
Kulcynzki 2327 2358 1272 1557 3186 5779 3139 2069
Simple-Matching 6335 5545 9087 250414 7187 8977 10968 253631
BraunBanquet 2438 2767 1358 2196 3296 6187 3135 2698
Dennis 2206 2934 1960 1974 3074 6504 3737 2476
Mountford 1974 2183 1317 3298 2832 5644 3111 3818
Fossum 2230 2468 4547 150415 3126 5843 8701 150917
Pearson 3279 3581 1450 1188 4247 7221 3227 1690
Gower 6586 8630 26215 967307 7434 12027 27992 967809
Michael 1993 3713 2504 4502 2864 7283 4281 5004
Pierce 8072 11782 24065 322033 15299 23387 46753 1018725
Baroni-Urbani/Buser 3547 3189 1428 4693 4404 6605 3205 5195
Tarwid 2453 3399 3110 5964 3321 7883 5032 9935

D* is clearly
the most
effective

Jump to Slide 119

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 111

Results – EXAM Score (Siemens suite)

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 111

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80%
Percentage of Code Examined

Pe
rce

nta
ge

 of
 Fa

ult
y V

ers
ion

s w
he

re
Fa

ult
 is

 Lo
cat

ed

D* Best Case
D* Worst Case
Mountford Best Case
Mountford Worst Case

D* is clearly
the most
effective

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 112Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 112

Results – EXAM Score (Unix suite)

112

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of Code Examined

Pe
rce

nta
ge

 of
 Fa

ult
y V

ers
ion

s w
he

re
Fa

ult
 is

 Lo
cat

ed

D* Best Case
D* Worst Case
Mountford Best Case
Mountford Worst Case

D* is clearly
the most
effective

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 113

Results – EXAM Score (Gzip)

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 113

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 5% 10% 15% 20% 25% 30% 35%
Percentage of Code Examined

Pe
rce

nta
ge

 of
 Fa

ult
y V

ers
ion

s w
her

e F
aul

t is
 Lo

cat
ed

D* Best Case
D* Worst Case
Mountford Best Case
Mountford Worst Case

D* is clearly
the most
effective

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 114

Results – EXAM Score (Ant)

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 114

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00% 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% 2.25% 2.50%
Percentage of Code Examined

Pe
rce

nta
ge

 of
 Fa

ult
y V

ers
ion

s w
he

re
Fa

ult
 is

 Lo
cat

ed

D* Best Case
D* Worst Case
Mountford Best Case
Mountford Worst Case
Pearson Best Case
Pearson Worst Case

D* is clearly
the most
effective

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 115

Results – Wilcoxon Signed-Rank Test (1)

 Generally the confidence with which we can claim that D* is more
effective than the other techniques is very high (easily over 99%).
 But there are a few exceptions.
Why? Perhaps this has something to do with the way our hypothesis was

constructed.
Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 115

Fault Localization
Technique

Best Case Worst Case
Siemens Unix gzip Ant Siemens Unix gzip Ant

Kulcynzki 99.99% 99.99% 93.75% 98.43% 99.99% 99.99% 93.75% 98.43%
Simple-Matching 100% 100% 99.80% 99.90% 100% 100% 97.60% 99.80%
BraunBanquet 99.99% 100% 99.80% 99.80% 99.99% 99.99% 71.43% 99.21%
Dennis 99.99% 100% 99.99% 99.80% 99.99% 100% 94.20% 99.21%
Mountford 99.99% 99.99% 99.21% 99.90% 99.99% 99.99% 73.82% 99.80%
Fossum 100% 99.99% 99.21% 99.21% 100% 99.99% 99.62% 96.87%
Pearson 100% 99.99% 99.21% 99.21% 100% 99.99% 70.87% 96.87%
Gower 100% 100% 99.99% 99.99% 100% 100% 99.99% 99.99%
Michael 99.68% 99.99% 99.99% 99.97% 99.54% 99.99% 99.99% 99.97%
Pierce 100% 100% 99.99% 99.99% 100% 100% 99.99% 99.99%
Baroni-Urbani/Buser 99.99% 100% 99.80% 99.80% 99.99% 100% 74.42% 98.82%
Tarwid 99.99% 99.99% 99.99% 99.99% 99.99% 100% 99.99% 99.99%

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 116

Results – Wilcoxon Signed-Rank Test (2)
 Let us modify our alternative hypothesis to consider equalities.

– We now evaluate to see if D* is more effective than, or at least as effective as,
the other techniques.

– Which is to say D* requires the examination of a number of statements that is
less than or equal to that required by the other techniques.

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 116

Fault Localization Technique Best Case Worst Case
gzip Ant gzip Ant

Kulcynzki 100% 100% 100% 100%
Simple-Matching 100% 100% 99.94% 99.90%
BraunBanquet 100% 100% 99.14% 99.61%
Dennis 100% 100% 99.43% 99.61%
Mountford 100% 100% 95.78% 99.90%
Fossum 100% 100% 99.67% 99.44%
Pearson 100% 100% 92.19% 98.44%
Baroni-Urbani/Buser 100% 100% 95.42% 99.22%

Confidence levels have gone up significantly. All entries but one are greater than 95%.

D* is clearly
the most
effective

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 117

More Discussion on D*
 D* with a higher value for the *
 Compare D* with other fault localization techniques

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 117

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 118

Effectiveness of D*
 The effectiveness of D* for the make program increases until it levels off

as the value of * increases.
 A similar observation also applies to other programs.

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

2 8 14 20 26 32 38 44 50

Tot
al n

um
ber

 of
stat

em
ent

s ex
am

ine
d

Star

DBest
DWorst

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 119

Effectiveness of Other Fault Localization Techniques
 The best- and worst-case effectiveness of 18 fault localization techniques

(excluding D*) on 21 different programs.
Best Case Worst Case

Unix Simens grep gzip make Ant Unix Simens grep gzip make Ant
H3c 1655 1396 2702 1535 8553 1320 5026 2292 4435 3312 14272 1882
H3b 1701 1439 3019 1535 10817 1358 5072 2335 4752 3313 16556 1860
RBF 1302 2114 2075 2966 9188 233 4758 2980 3964 4743 14590 759
Ochiai 1906 1796 3092 1270 10305 887 5322 2692 4825 3047 16044 1389
Crosstab 2524 2005 4005 1314 12403 1076 6094 2873 7443 3091 18142 1578
Tarantula 3394 2453 5793 3110 16890 5964 7704 3311 7812 5032 23468 9935
Kulcynzki 2358 2327 3458 1272 10701 1557 5779 3186 5192 3139 16668 2069
Simple-Matching 5545 6335 23806 9087 41374 250414 8977 7187 25606 10968 48401 253631
BraunBanquet 2767 2438 4114 1358 11734 2196 3296 3296 5847 3135 17986 2698
Dennis 2934 2206 5498 1960 15016 1974 6504 3074 8936 3737 20755 2476
Mountford 2183 1974 3450 1317 11269 3298 5644 2832 5189 3111 17152 3818
Fossum 2468 2230 15952 4547 19567 150415 5843 3126 21193 8701 25036 150917
Pearson 3581 3279 6894 1450 17689 1188 7221 4247 10796 3227 23569 1690
Gower 8630 6586 43428 26215 128318 967307 12027 7434 45262 27992 134057 967809
Michael 3713 1993 5027 2504 14986 4502 7283 2864 8501 4281 20725 5004
Pierce 11782 8072 16646 24065 30568 322033 23387 15299 60437 46753 164856 1018725
Baroni-Urbani/Buser 3189 3547 4902 1428 12130 4693 6605 4404 6635 3205 17689 5195
Tarwid 3399 2453 5793 3110 16890 5964 7883 3321 9517 5032 23468 9935

Jump to Slide 105

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 120

Comparison between D* and Other Techniques
 The effectiveness of D2 is better than the other 12 similarity coefficient-

based fault localization techniques.
 From the following table, we also observe that D* (with an appropriate

value of *) performs better than other fault localization techniques,
regardless of the subject programs, and the best- or worst-case.
– The cell with a black background gives the smallest * such that D*

outperforms others.
Best Case Worst Case

Unix Simens grep gzip make Ant Unix Simens grep gzip make Ant
D2 1805 1754 3023 1220 10287 672 5226 2650 4757 3087 16254 1184
D3 1667 1526 2946 1088 10257 368 5088 2422 4680 2955 16224 880
D4 1594 1460 2833 1087 10022 293 5015 2356 4567 2954 15989 805
D5 1507 1435 2762 1085 10022 228 4928 2331 4496 2952 15989 740
D* 1386 (*=7) 2693 (*=8) 8529 (*=20) 2284 (*=7) 4427 (*=8) 14219 (*=25)

H3b 1701 1439 3019 1535 10817 1358 5072 2335 4752 3313 16556 1860
H3c 1655 1396 2702 1535 8553 1320 5026 2292 4435 3312 14272 1882

Tarantula 3394 2453 5793 3110 16890 5964 7704 3311 7812 5032 23468 9935
Ochiai 1906 1796 3092 1270 10305 887 5322 2692 4825 3047 16044 1389

Jump to Slide 106

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 121

 Motivation and Background
 Execution Dice-based Fault Localization
 Suspiciousness Ranking-based Fault Localization

– Program Spectra-based Fault Localization
– Code Coverage-based Fault Localization
– Statistical Analysis-based Fault Localization
– Neural Network-based Fault Localization
– Similarity Coefficient-based Fault Localization

 Empirical Evaluation
 Theoretical Comparison: Equivalence
 Mutation-based Automatic Bug Fixing
 Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 121

Outline

121

Theoretical Comparison: Equivalence

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 123

 As discussed earlier the general norm for comparing fault localization
techniques has been to use empirical data.
 If technique is better than technique , then it should lead programmers

to the location of fault(s) faster than .
 Multiple metrics have been proposed to do this such as the ones used in

our research.
 Case studies can be quite expensive and time-consuming to perform.

Often a lot of data has to be analyzed.

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 123

Comparing Fault Localization Techniques (1)

But is empirical comparison always required…especially when
trying to show that two techniques will be equally effective?

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 124Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 124

Comparing Fault Localization Techniques (2)
 Note that the suspiciousness of a statement is irrelevant from an absolute

sense.
– It only matters how the suspiciousness of two (or more) statements compare

with respect to each other (i.e., relative to one another).
 Supposing we have two statements s1 and s2 with suspiciousness values of

5 and 6, respectively. This means that s2 is ranked above s1 as it is more
suspicious.
 However, s2 would still be ranked above s1 if the suspiciousness values

were 6 and 7, or 50 and 60, respectively – the relative ordering of s1 and
s2 is still maintained.
 Thus, subtracting the same constant from (or adding it to) the

suspiciousness of every statement will have no effect on the final ranking.
The same applies for multiplication/division operations.

124

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 125

 Recall the suspiciousness computation of Kulczynski

 It now becomes clear that an identical ranking will be produced by

or

 This is why D* was constructed the way it was
 Any operation that is order-preserving can be safely performed on the

suspiciousness function without changing the ranking.
 If the ranking does not change…then the effectiveness will not change

either. We can exploit this!

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 125

() () 10CF
UF CS

Nsuspiciousness s N N () () 1CF
UF CS

Nsuspiciousness s N N

() CF
UF CS

Nsuspiciousness s N N

Comparing Fault Localization Techniques (3)

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 126Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 126

 Consider a program P with a set of elements M. Let rank(r,s) be a
function that returns the position of statement s in ranking r.
 Two rankings r and r (produced by using two techniques L and L on

the same input data) are equal if
– ∀sM, rank(r,s) = rank(r,s).
– Two rankings are equal if for every statement, the position is the same in both

rankings.
 If two fault localization techniques L and L always produce rankings

that are equal, then the techniques are said to be equivalent, i.e., L Land therefore will always be equally as effective (at fault localization).
 So is the equivalence relation useful?

Certainly! In at least two scenarios it holds great potential
– Eliminating the need for time-consuming case studies.
– Making suspiciousness computations more efficient.

126

Comparing Fault Localization Techniques (4)

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 127Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 127

Eliminating the Need for Case Studies (1)
 Take the example of [Abreu et al. 2009] where

– The authors use of the Ochiai coefficient to compute suspiciousness.
– The coefficient is compared to several other coefficients empirically.
– Among others, it is compared to the Jaccard and Sorensen-Dice coefficients.

We posit that this was unnecessary, as per the equivalence relation.

 Via a set of order-preserving operations, both can be
reduced to:

127

() CF
CF UF CS

Nsuspiciousness s N N N
2() 2

CF
CF UF CS

Nsuspiciousness s N N N

Jaccard Sorensen-Dice

Jaccard Sorensen-Dice

() CF
UF CS

Nsuspiciousness s N N
R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A Practical Evaluation of Spectrum-based
Fault Localization,” Journal of Systems and Software, 82(11):1780-1792, November 2009

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 128

 As it turns out the coefficient Anderberg also evaluates to the same form.
Ochiai was empirically compared to Anderberg.

 In fact the authors also compared Ochiai to the SimpleMatching and
Rogers and Tanimoto coefficients, the both of which are also equivalent
to one another.

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 128

Eliminating the Need for Case Studies (2)

128

Such redundant comparisons could have been avoided by making
use of the fault localization equivalence relation.

Jaccard Sorensen-Dice Anderberg

SimpleMatching Rogers and Tanimoto

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 129

 As shown, if Jaccard were the chosen fault localization technique, using
the suspiciousness function

would give the same results as using

We should go with the simplest computation as it is expected to be faster.

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 129

Making Computations More Efficient (1)

129

() CF
UF CS

Nsuspiciousness s N N

() CF
CF UF CS

Nsuspiciousness s N N N

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 130Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 130

Making Computations More Efficient (2)
We performed an additional case study on the 7 programs of the Siemens

suite
 Observed the relative time saved in computing suspiciousness for all the

statements in a faulty program, by using the simplified form of Jaccard
(J*) as opposed to the original (J).
– The quantity (J–J*) represents the computational time that is saved.
– ((J–J*)/J)×100% represents the relative time saved, i.e., efficiency gained.

 100 trials were performed per faulty version.
 Difference in times was computed to nanosecond precision.

130

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 131Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 131

Making Computations More Efficient (3)

131

Programs
Average

Percentage Time
Saved

print_tokens 35.37%
print_tokens2 39.21%
schedule 44.62%
schedule2 49.74%
replace 41.65%
tcas 52.46%
tot_info 47.68%

 The savings in terms of time are quite significant.
 Using the equivalence relation can thus, help reduce techniques to

simplified forms, thereby greatly increasing efficiency.

Programs with Multiple Faults

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 133Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 133

Programs with Multiple Faults
 One bug at a time
 A good approach is to use “fault-focused” clustering.

– Divide failed test cases into clusters that target different faults
– Failed test cases in each fault-focused cluster are combined with the successful

tests for debugging a single fault.

133

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 134

 Motivation and Background
 Execution Dice-based Fault Localization
 Suspiciousness Ranking-based Fault Localization

– Program Spectra-based Fault Localization
– Code Coverage-based Fault Localization
– Statistical Analysis-based Fault Localization
– Neural Network-based Fault Localization
– Similarity Coefficient-based Fault Localization

 Empirical Evaluation
 Theoretical Comparison: Equivalence
 Mutation-based Automatic Bug Fixing
 Conclusions

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 134

Outline

134

Mutation-based Automatic Bug Fixing
V. Debroy and W. E. Wong, “Using Mutation to Automatically Suggest
Fixes for Faulty Programs,” in Proceedings of the 3rd International
Conference on Software Testing, Verification and Validation (ICST),
Paris, France, April 2010

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 136

 For research experiments, large comprehensive data sets are rarely
available
 Need faulty versions of programs to perform all kinds of experiments on,

but don’t always have a way to get them
 Recently many researchers have relied on mutation

– Mutants generated can represent realistic faults
– Experiments that use these mutants as faulty versions can yield trustworthy

results
– As opposed to seeding faults, mutant generation is automatic

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 136

Mutation as a Fault Generation Aid

136

Jump to Slide 105

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 137

If mutating a correct program can produce a realistic fault, can
mutating an incorrect program produce a realistic fix?
 Supposing we wanted to write program P
 But we ended up writing a faulty program P’

– We know P’ is faulty because at least one test case in our test set results in
failure when executed on P’

 Mutate P’ to get P”
 If P” = P… we automatically fixed the fault in P’

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 137

Mutation as a Fault Fixing Aid?

137

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 138Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 138

Our Solution

138

Mutation
The Good: Can result in
potential fixes for faulty
programs automatically.
The Bad: We have no idea as to
where in a program a fault is, and
so we do not know how to
proceed. Randomly examining
mutants can be prohibitively
expensive.

Fault Localization
The Good: Can potentially
identify the location of a fault
in a program.
The Bad: Even if we locate the
fault, we have no idea as to
how to fix the fault. This is left
solely as the responsibility of
the programmers/debuggers.

So…what if we combined the two?

Conclusion

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 140

 Existing and new fault localization techniques
– Many of them use the same information (statement coverage and execution

results) to identify suspicious code likely to contain program bug(s)

 A strategy to automatically suggest fixes for faults that
– makes as few assumptions as possible about the software being debugged
– is generally applicable to different types of software and programming

languages
– still manages to produce some useful information even when it is unable

to fix faults automatically

Software Fault Localization (© 2017 Professor W. Eric Wong, The University of Texas at Dallas) 140

What We Have Discussed

Present a framework to automate the debugging process.

