

Introduction

� Testing is about choosing elements from
input domain.

� The input domain of a program consists
of all possible inputs that could be taken
by the program.
� Easy to get started, based on description of

the inputs

Test Selection Problem

� Ideally, the test selection problem is to
select a subset T of the input domain
such that the execution of T will reveal
all errors.

� In practice, the test selection problem is
to select a subset of T within budget of
the input domain such that the execution
of T will reveal as many error as
possible.

Partitioning

� The input domain partitioned into region that are
contained equally useful values for testing, and
values are selected from each region.

1. The partition must cover the entire domain
(completeness)

2. The blocks must not overlap (disjoint)

Input Domain Modeling (IDM)

Step 1: Identify the input domain
�Read the requirements carefully and identify all input
and output variables, any conditions associated with their
use.

Step 2: Identify equivalence classes
�Partition the set of values of each variable into disjoint
subsets, based on the expected behavior.

Step 3: Combine equivalence classes.
�Use some well-defined strategies to avoid potential explosion

Step 4: Remove infeasible combinations of
equivalence classes

Different Approaches to IDM

� Interface-Based IDM
Strength:
1. Easy to identify characteristics
2. Easy to translate abstract test cases to concrete

test case
Weakness
1. IDM may be incomplete
2. Each parameter analyzed in isolation so that

important sub combination may be missed

Different Approaches to IDM

� functionality-Based IDM
Strength:
1. Use semantics and domain knowledge
2. Requirements are available so test cases

generation can start early
Weakness
1. Hard to identify characteristics
2. Hard to translate abstract test cases to concrete

test cases

Example

public boolean findElement (List list,
Element element)
//If list or element is null throw NullPointerException else returns
true if element is in the list , false otherwise

List Characteristics

Interface-based
Characteristics Blocks and Values

List is null b1 = true

b2 = false

List is empty b1 = true

b2 = false

Functionality-based
Characteristics Blocks and Values

Number of occurrences of element in list b1 = 0

b2 = 1

b3 = more than 1

Element occurs first in list b1 = true

b2 = false

Identify Characteristics

� The interface-based approach develops
characteristics directly from input
parameters

� The functionality-based approach
develops characteristics from functional
or behavioral view

Choosing Block and Values

� Valid values
� Boundaries
� Normal use
� Invalid values
� Special values
� Missing partitions
� Overlapping partitions

Functionality-Based

Geometric partitioning of TriTyp’s inputs

Partition b1 b2 b3 b4

Geometric Classification Scalene Isosceles Equilateral invalid

Geometric partitioning of TriTyp’s inputs

Partition b1 b2 b3 b4

Geometric
Classification

Scalene Isosceles, not
equilateral

Equilatera
l

invalid

Geometric partitioning of TriTyp’s inputs

Partition b1 b2 b3 b4

triangle (4,5,6) (3,3,4) (3,3,3) (3,4,8)

Recommended Approach

Scalene Isosceles Equilateral Valid

true true true true

false false false false

• The fact that choosing Equilateral = true also
means choosing Isosceles = true is then
simply a constraint.

• This approach satisfies the disjointness and
completeness properties.

Combination Strategies Criteria

� The behavior of a software application may
be affected by many factors, e.g., input
parameters, environment configurations,
and state variables.

� Techniques like equivalence partitioning
and boundary-value analysis can be used
to identify the possible values of individual
factors.

� It is impractical to test all possible
combinations of values of all those factors.
(Why?)

Combinatorial Explosion

� Assume that an application has 10
parameters, each of which can take 5
values. How many possible
combinations?

Combinatorial Design

� Instead of testing all possible
combinations, a subset of combinations is
generated to satisfy some well-defined
combination strategies.

� A key observation is that not every factor
contributes to every fault, and it is often the
case that a fault is caused by interactions
among a few factors.

� Combinatorial design can dramatically
reduce the number of combinations to be
covered but remains very effective in terms
of fault detection.

Fault Model

� A t-way interaction fault is a fault that is
triggered by a certain combination of t
input values

� A simple fault is a t-way fault where t = 1; a
pairwise fault is a t-way fault where t = 2.

� In practice, a majority of software faults
consist of simple and pairwise faults.

Example – Pairwise Fault

begin
int x, y, z;
input (x, y, z);
if (x == x1 and y == y2)

output (f(x, y, z));
else if (x == x2 and y == y1)

output (g(x, y));
else

output (f(x, y, z) + g(x, y))
End

Expected: x = x1 and y = y1 => f(x, y, z) – g(x, y);
x = x2, y = y2 => f(x, y, z) + g(x, y)

Example – 3-way Fault

// assume x, y ! {-1, 1}, and z ! {0, 1}
begin

int x, y, z, p;
input (x, y, z);
p = (x + y) * z // should be p = (x – y) * z

if (p >= 0)
output (f(x, y, z));

else
output (g(x, y));

end

All Combinations Coverage

� Every possible combination of values of
the parameters must be covered

� For example, if we have three
parameters P1 = (A, B), P2 = (1, 2, 3),
and P3 = (x, y), then all combinations
coverage requires 12 tests: {(A, 1, x), (A,
1, y), (A, 2, x), (A, 2, y), (A, 3, x), (A, 3,
y), (B, 1, x), (B, 1, y), (B, 2, x), (B, 2, y),
(B, 3, x), (B, 3, y)}

Each Choice Coverage

� Each parameter value must be covered
in at least one test case.

� Consider the previous example, a test
set that satisfies each choice coverage
is the following: {(A, 1, x), (B, 2, y), (A, 3,
x)}

Pairwise Coverage

� Given any two
parameters, every
combination of values of
these two parameters
are covered in at least
one test case.

� A pairwise test set of the
previous example is:

T-Wise Coverage

� Given any t parameters, every combination
of values of these t parameters must be
covered in at least one test case.

� For example, a 3-wise coverage requires
every triple be covered in at least one test
case.

� Note that all combinations, each choice,
and pairwise coverage can be considered
to be a special case of t-wise coverage.

Base Choice Coverage

� For each parameter, one of
the possible values is
designated as a base
choice of the parameter

� A base test is formed by
using the base choice for
each parameter

� Subsequent tests are
chosen by holding all base
choices constant, except
for one, which is replaced
using a non-base choice of
the corresponding
parameter:

Multiple Base Choices Coverage

� At least one, and possibly more, base
choices are designated for each
parameter.

� The notions of a base test and
subsequent tests are defined in the
same as Base Choice.

Subsumption Relation

Pairwise Test Generation
Why Pairwise?

� Many faults are caused by the interactions
between two parameters
� 92% statement coverage, 85% branch coverage

� Not practical to cover all the parameter
interactions
� Consider a system with n parameter, each with m

values. How many interactions to be covered?

� A trade-off must be made between test effort and
fault detection
� For a system with 20 parameters each with 15 values,

pairwise testing only requires less than 412 tests,
whereas exhaustive testing requires 1520 tests.

Example

Consider a system with the following
parameters and values:
�parameter A has values A1 and A2
�parameter B has values B1 and B2, and
�parameter C has values C1, C2, and C3

Example cont.,

The IPO Strategy

� First generate a pairwise test set for the first
two parameters, then for the first three
parameters, and so on

� A pairwise test set for the first n parameters is
built by extending the test set for the first n – 1
parameters
� Horizontal growth: Extend each existing test case by

adding one value of the new parameter
� Vertical growth: Adds new tests, if necessary

Summary

� Combinatorial testing makes an excellent
trade- off between test effort and test
effectiveness.

� Pairwise testing can often reduce the number
of dramatically, but it can still detect faults
effectively.

� The IPO strategy constructs a pairwise test set
incrementally, one parameter at a time.

� In practice, some combinations may be invalid
from the domain semantics, and must be
excluded, e.g., by means of constraint
processing.

