
11

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas

ewong@utdallas.edu
http://www.utdallas.edu/~ewong

Source Code-based Risk Analysis

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Speaker Biographical SketchSpeaker Biographical SketchSpeaker Biographical SketchSpeaker Biographical Sketch

� Professor & Director of International Outreach
Department of Computer Science
University of Texas at Dallas

� Guest Researcher
Computer Security Division
National Institute of Standards and Technology (NIST)

� Vice President, IEEE Reliability Society

� Secretary, ACM SIGAPP (Special Interest Group on Applied Computing)

� Principal Investigator, NSF TUES (Transforming Undergraduate Education in
Science, Technology, Engineering and Mathematics) Project
– Incorporating Software Testing into Multiple Computer Science and Software

Engineering Undergraduate Courses

� Founder & Steering Committee co-Chair for the SERE conference
(IEEE International Conference on Software Security and Reliability)
(http://paris.utdallas.edu/sere13)

2Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

33

OutlineOutlineOutlineOutline

�Motivation

�Our Ongoing Effort

�Case Study I

�Case Study II

�Related Studies

�Case Study III

�Future Directions

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

444Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Motivation

� Not all modules can be extensively reviewed and tested

� Approximately 20% of a software system is responsible for
80% of the faults
– Pareto’s principle: 80% of wealth is held by 20% of population

– The same principle is applicable to other areas

� Need measurements to identify only a small percentage of the modules
in a software system as fault-prone

V. Pareto, “On the Distribution of Wealth and Income, in Roots of the Italian School of Economics
and Finance: From Ferrara (1857) to Einaudi (1944),”M. Baldassarri and P. Ciocca, eds., vol. 2,
Houndmills: Palgrav, 2001.

55

MotivationMotivationMotivationMotivation

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

66

When to Apply the Measurements When to Apply the Measurements When to Apply the Measurements When to Apply the Measurements (1)
� Can be applied to both new and existing projects at different stages

– Design Documentation, SDL, Java, C, C++

� Possible Benefits
– Determine better design when alternative choices exist

– Assign fault-prone modules to experienced programmers

– Allow more testing effort for these modules

�Unit testing

�Regression testing

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

77

When to Apply the Measurements When to Apply the Measurements When to Apply the Measurements When to Apply the Measurements (2)

Requirements/
Design

SDL
Representation

Code
(Java, C, C++)

Automatic Code Generation

Manual Implementation

UML

EFSM

�If the system being considered was already developed,
we should extract the metrics values directly from
the source code rather than from the corresponding
design documentation which may not exist, or if it
does exist, it may be incomplete, difficult to understand,
or not updated.
� Reverse-engineering the existing code to extract the

proper metric values

�This process can beautomated through the use of a
metric analysis tool.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

888

Our Ongoing Effort

9

Risk Analysis Model Risk Analysis Model Risk Analysis Model Risk Analysis Model (1)
� A risk analysis-based model supported by tools to identify fault-prone

software modules

– Model Construction
�Static metrics: can be collected at compile time (e.g., lines of code, McCabe

complexity)

�Dynamic metrics: cannot be collected until run-time (e.g., test coverage)

�Internal metrics: focus on the internal structure of a software module (e.g.,
number of lines of code)

�External metrics: emphasize the interactions between a software module
and the rest of the system

�Special metrics: unique to multi-threaded embedded software (e.g., number
of threads through each module)

�Process-based metrics: how a software system is built and operated

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

10

– Model Validation and Refinement
�Evaluate the model against real defect data

�Refine it, if necessary, to improve its accuracy on fault-proneness
prediction

�Use open-source applications and software developed at our member
companies, as available

– Model Application
�Repeat the risk analysis at different stages of the software development

lifecycle

�Our model is flexible as it uses various data depending on its availability

Risk Analysis Model Risk Analysis Model Risk Analysis Model Risk Analysis Model (2)

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

11

Problems of Current ApproachesProblems of Current ApproachesProblems of Current ApproachesProblems of Current Approaches

� Only static and/or process-based metrics are used

� No dynamic information such as how each module has been tested is
considered

� Results of many studies are inconsistent or contradictory

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

12

Our SolutionOur SolutionOur SolutionOur Solution

� Our solution overcomes existing drawbacks by calibrating the static
metrics-based complexity using dynamic metrics, and also incorporating
special metrics unique to software being analyzed.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

131313

Case Study I

1414

Case Study ICase Study ICase Study ICase Study I

� A Target Software System from Telcordia (formerly Bellcore)
– A distributed software system with a client-server architecture

– Three major components: server, clients, and database

– Server written in C with embedded SQL statements
�35,000 non-blank/non-comment lines of C code

�20% of them converted from the embedded SQL statements

�97 files/530 functions

W. E. Wong, J. R. Horgan, M. Syring, W. M. Zage, and D. M. Zage, “Applying Design Metrics

to Predict Fault-Proneness: A Case Study on a Large-Scale Software System,”Software-Practice

and Experience, 30(14):1587-1608, November 2000

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

1515

Case Study I: Metrics MCase Study I: Metrics MCase Study I: Metrics MCase Study I: Metrics Mi, MMMMe, and MMMMc

�Five metrics were used
– Mi: an internal complexity metric which incorporates factors related to

a function’s internal structure
– Me: an external complexity metric which focuses on a function’s

external relationships to the rest of the software system
– Mc,: a composite complexity metric which is a linear combination of Mi and Me

� Other combinations should also be considered
– The union of Mi, Me, and Mc

� Do not care how a function gets selected (whether by Mi, Me, or Mc), just
that it is

– The intersection of Mi, Me, and Mc

W. Zage and D. Zage, “Evaluating Design Metrics on Large-Scale Software,” IEEE Software,

10(4):75-81, July 1993.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

1616

Case Study I: Metrics MCase Study I: Metrics MCase Study I: Metrics MCase Study I: Metrics Mi, MMMMe, and MMMMc (cont(cont(cont(cont’’’’d)d)d)d)

� Mi: = i1 (functions calls) + i2 (Data Structure Manipulations) + i3 (I/O)
– Possible locations for the majority of faults

� the point of a function call

� statement with complex data structure manipulations

� input/output statements

– A function has a high Mi if it has complex code

– Examples of functions with high Mi

� A function which has many pointer and array accesses

� A print function which does a great deal of I/O

� A function which calls a few functions (low fan-out) but calls them many times

– Question: Is a function with a high Mi also fault-prone?

� Me = e1 (inflows * outflows) + e2 (fan-in * fan-out)
– inflows and outflows: amount of data flow

– fan-in: number of functions that call the target functions

– fan-out: number of functions that the target function calls
– A function has a high Me if it has many interactions with other parts of the program

– Examples of functions with high Me

� a high level control function responsible for calling many other functions

� A utility function called by many other functions

– Question: Is a function with a high Me also fault-prone?

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

1717

Case Study I: Tool & ResultsCase Study I: Tool & ResultsCase Study I: Tool & ResultsCase Study I: Tool & Results

� Automatically collects and analyzes metrics values
– A metric analysis tool (χMetrics) was implemented

– Built on top of ATAC (an Automatic Testing and Analysis tool for C by
Bellcore)

– Code to be analyzed must be syntactically correct

� Identify functions with high metrics values
– Functions identified by top 5% of Mi, Me, and Mc

�57 functions identified

�1 by all three
�20 by Mi and Mc

�6 by Me and Mc

�10 by Mi only

�20 by Me only

�2 by Mc only

MMMMe MMMMi

MMMMc

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

1818

Case Study I: ResultsCase Study I: ResultsCase Study I: ResultsCase Study I: Results

� Validate fault-prone functions by real defect data between two major
releases for their fault-proneness

� Assume there are m functions identified as fault-prone; of these l are
fault-laden. Assume n functions contain at least one fault based on the
real defect data

�

�

� Our experiment results suggest that
– Metrics Me and Mi can be good indicators of fault prone functions

– No particular metric has a clear advantage over the others in determining
which function is fault-laden

precision = () 100%, where 0% 100%
l

precision
m

≤ ≤

recall = () 100%, where 0% 100%
l

recall
n

≤ ≤

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

1919

Impact of Function SizeImpact of Function SizeImpact of Function SizeImpact of Function Size

� Function size may be related to the metrics values

� Do we need to do the normalization?
– Dividing metrics values by function size determined by non-comment and non-blank

lines of code

� Normalized metrics identify very different functions than non-normalized metrics.

� Validation using real defect data to determine which one is better?
– Non-normalized metrics are better than the normalized metrics

� Function size is a factor that should be considered

– Ostrand, Weyuker and Bell (IEEE Transactions on Software Engineering, 31(4):340-
355, April 2005)

– Our data indicate that in no case does the size-based selection catch all the functions
selected by Mi, Me,or Mc.

– This suggests that function size cannot replace any of the metrics.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

202020

Case Study II

2121

Possible ImprovementPossible ImprovementPossible ImprovementPossible Improvement

� Questions

– Why do we need a different set of complexity metrics?

�If not, what kind of metrics can be used?

– Is it easy to collect these metrics values?

�“Data Structure Manipulations” is not only ill-defined but also
difficult to collect

W. E. Wong, J. R. Horgan, J. C. Maldonado, and J. V. LaGrange, “Integrating Testing and Design
Metrics to Predict Fault-Prone Software Modules,” in Proceedings of the 11th International
Conference on Software Engineering & its Applications, Paris, France, December, 1998.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

2222

Case Study II: MotivationCase Study II: MotivationCase Study II: MotivationCase Study II: Motivation

� Many studies explore the fault detection capability of test sets adequate
with respect to
– controlflow-based criteria (statement, block, decision)

– dataflow-based criteria (all-uses, potential all-uses)

– mutation-based criteria (interface mutation)

� No study has used testing metrics such as
– number of all-uses

– number of interface mutants to identify fault-prone software modules even
before any testing is conducted.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

2323

Case Study II: ObjectiveCase Study II: ObjectiveCase Study II: ObjectiveCase Study II: Objective

�Develop a hybrid metric as an integration of controlflow-,
dataflow- andmutation-based testing metrics and some
components of the internal and/or external complexity
metrics to better predict the fault-prone software modules.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

2424

Case Study II: Our MethodCase Study II: Our MethodCase Study II: Our MethodCase Study II: Our Method

� Replace the difficult-to-collect and mistake-prone metrics used in
computing the internal complexity Mi and the external complexity Me by
other better defined and more easily collected ones.
– Replace “Data Structure Manipulations” (number of references to complex

data types) by DEC (the number of decisions), AU (the number of all-uses), or
PAU (the number of potential all-uses)

�None of the decisions, all-uses, and potential all-uses need to be covered

– Use IM (number of interface mutants) as an index for the probability of faults
introduced because of the communications between two software modules

�None of the mutants have to be compiled

�None will be executed on any test case

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

2525

Case Study II: MetricsCase Study II: MetricsCase Study II: MetricsCase Study II: Metrics

� Mi0 = the original internal complexity metric
� Mi1= DEC + AU
� Mi2= DEC + AU + Function Calls + I/O
� Mi3= DEC + PAU
� Mi4= DEC + PAU + Function Calls + I/O
� Mi5= DEC
� Mi6= DEC + Function Calls + I/O
� Mi7= AU
� Mi8= AU + Function Calls + I/O
� Mi9= PAU
� Mi10= PAU + Function Calls + I/O
� Me0 = the original external complexity metric
� Me1= IM
� Mc0= Mi0 + Me0

� Mck= Mik + Me1 where 1 ≤ k ≤ 10

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

2626

DEC DEC DEC DEC ---- Number of DecisionsNumber of DecisionsNumber of DecisionsNumber of Decisions

� A decision is a boolean predicate with two possible values, true and false

� McCabe’s Cyclomatic complexity = number of decision nodes + 1

Simple versus compound decisions

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

2727

AU AU AU AU –––– Number of AllNumber of AllNumber of AllNumber of All----UsesUsesUsesUses

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

28

� With respect to variable x
– one c-use (s2, s5)

– no p-use

– two potential c-uses (s2, s5) and (s2, s6)

– two potential p-uses (s2, s4, s5) and
(s2, s4, s6)

– x=0 and y=3 are in the same block
� No substitution

� All-uses: an explicit use of x

� Potential all-uses: a potential use of x

PAU PAU PAU PAU –––– Number of Potential AllNumber of Potential AllNumber of Potential AllNumber of Potential All----UsesUsesUsesUses

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

2929

IM IM IM IM –––– Number of Interface MutantsNumber of Interface MutantsNumber of Interface MutantsNumber of Interface Mutants

� Function parameters replacement
– replacing a parameter by another appropriate one

� Function parameters switch
– permuting the order of parameters in a call statement

� Function parameters elimination
– deleting one parameter at a time

� Function parameters increment/decrement
– inserting a pre-increment operator (++) or pre-decrement operator (--) before a

parameter

� Unary operator insertion
– inserting an arithmetic negation, a logical negation, or a bit negation before a

parameter

� Function call deletion
– deleting the call to a function. If the function call is part of an expression, it is

replaced by a value from a pre-defined set.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

3030

Target Program & Tools UsedTarget Program & Tools UsedTarget Program & Tools UsedTarget Program & Tools Used

� The SPACE program which provides a language-oriented user interface
for configuration of antenna arrays.
– about 10K lines of C code in 134 files

– Defect data were obtained from the error-log maintained during its testing and
integration phases

� Tools
– ATAC (χSuds): A data-flow coverage measurement tool to compute

DEC and AU

– POKE: another data-flow coverage measurement tool to compute PAU

– Proteum/IM: a mutation analysis tool to compute IM

– χMetrics: a metrics analysis tool to compute Mi0, Me0, and Mc0

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

3131

Case Study II: ResultsCase Study II: ResultsCase Study II: ResultsCase Study II: Results

� DEC (number of decisions) by itself isnot a good metric for predicting
fault-proneness

� Mi0 does not provide as good identification as other Mi’s which use either
AU (number of all-uses) or PAU (number of potential all-uses)
– The internal complexity of a module can be better represented by AU or PAU

than DSM (number of references to complex data types).

� The number of interface mutants serves as a better metric for identifying
modules with faults due to the external communication of a module and
the rest of the system.

� Our hybrid metrics can better predict fault-prone software modules than
the internal and external complexity metrics used in Case Study I.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

3232

Case Study II: Results (contCase Study II: Results (contCase Study II: Results (contCase Study II: Results (cont’’’’d)d)d)d)

� The purpose of using metrics is to get insight, not to compare their
absolute values across different projects.

– Relative comparison of metrics values within the same project (or
similar projects) is useful

� This is supported by the study conducted by Nagappan, Ball, and Zeller
(Mining Metrics to Predict Component Failures, in Proceeding of the
28th International Conference on Software Engineering, pp. 452-461,
Shanghai, China, May 2006.)

– Predictors are accurate only when obtained from the same or similar
projects

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

333333

Related Studies

3434

Related Studies Related Studies Related Studies Related Studies (1)
� There are many related studies. Here are a few.

– Norman E. Fenton and Niclas Ohlsson “Quantitative Analysis of Faults and Failures in a Complex
Software System,”IEEE Transactions on Software Engineering, 26(8):797-814, August 2000.

– A. G. Koru and Jeff Tian, “An Empirical Comparison and Characterization of High Defect and High
Complexity Modules,”The Journal of Systems and Software, 67(3):153-163, September 2003

– A.G. Koru and J. Tian, “Comparing High-Change Modules and Modules with the Highest
Measurement Values in Two Large-Scale Open-Source Products,” IEEE Transactions on Software
Engineering, 31(8):625-642, August 2005

– N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics to Predict Component Failures,” in Proceeding
of the 28th International Conference on Software Engineering, pp. 452-461, Shanghai, China, May
2006.

– T. Ostrand, E. Weyuker, and R. Bell, “Predicting the Location and Number of Faults in Large
Software Systems,”IEEE Transactions on Software Engineering, 31(4):340-355, April 2005

– V. R. Basili and B.T. Perricone, “Software Errors and Complexity: An Empirical Investigation,”
Communications of the ACM, 27(1)42-52, January 1984

– T. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel, “Early Quality Prediction: A Case
Study in Telecommunications," IEEE Software, 13(1):65-71, January 1996

– S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object Oriented Design,”IEEE
Transactions on Software Engineering, 20(6):476-493, June 1994.

– M. Lorenz and J. Kidd, Object-Oriented Metrics: Measures of Complexity. Pearson Education,
December 1995.

– L. C. Briand, J. W. Daly, and J. K. Wust, “A Unified Framework for Cohesion Measurement in
Object-Oriented Systems,”Journal of Empirical Software Engineering, 3(1)65-117, 1998.

– L. C. Briand, J. W. Daly, and J.K. Wust, “A Unified Framework for Coupling Measurement in
Object-Oriented Systems,”IEEE Transactions on Software Engineering, 25(1):91-121,
January/February 1999

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

35

� Norman E. Fenton and Niclas Ohlsson “Quantitative Analysis of Faults
and Failures in a Complex Software System,”IEEE Transactions on
Software Engineering, 26(8):797-814, August 2000.

– A small numberof modules contain most of the faults discovered in prerelease
testing,and a very small numberof modules contain most of the faults
discovered in operation.

– Neither of these phenomena can be explained by the size or the complexity of
the modules.

– No evidence to support the relationship between module size and fault density

– No evidence that popular complexity metrics are good predictors of either
fault-prone or failure-prone modules

35

Related Studies Related Studies Related Studies Related Studies (2)

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

36

– The number of faults discovered in prerelease testing is an order of magnitude
greater than the number discovered in 12 months of operational use

– Those modules which are the most fault-prone prerelease are among the least
fault-prone post-release.

– Fail to take into account testing effort and operational usage.

36

Related Studies Related Studies Related Studies Related Studies (2) (cont(cont(cont(cont’’’’d)d)d)d)

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

3737

Related Studies Related Studies Related Studies Related Studies (3)
� A. G. Koru and Jeff Tian, “An Empirical Comparison and Characterization

of High Defect and High Complexity Modules,”The Journal of Systems
and Software, 67(3):153-163, September 2003

– Six software products: two from IBM and four from Nortel Networks

– Examine the relationship between high defect modules and high complexity
modules
� positively correlated but not monotonic relationship

– The most complex modules often have an acceptable quality
� Many complex modules are intrinsically complex because of the problem they are

dealing with, and are recognized as such. Consequently, highly skilled personnel and
adequate effort were allocated to such modules, resulting in their relative high quality

– The high defect modules are not typically the most complex ones, but slightly
below the most complex ones
� Those ‘‘not too big (complex) not too small (simple)’’ modules may contain the

highest number of defects.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

3838

Related Studies Related Studies Related Studies Related Studies (4)
� A.G. Koru and J. Tian, “Comparing High-Change Modules and Modules

with the Highest Measurement Values in Two Large-Scale Open-Source
Products,” IEEE Transactions on Software Engineering, 31(8):625-642,
August 2005

– Two large-scale open-source products, Mozilla and OpenOffice

– Identifying change-prone modules can help programmers take preventive
actions to reduce maintenance cost and improve software quality.

– Top modules in change count rankings and the modules with the highest
values of static metrics are different

� High-change modules have high metrics values but not the highest

� In Mozilla, the top 2%, 5%, and 20% modules in the change rankings include
34.78%, 51.45%, and 82.43% of the total change count

� Similar to the 80/20 principle

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

3939

Related Studies Related Studies Related Studies Related Studies (5)
� N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics to Predict

Component Failures,” in Proceeding of the 28th International Conference
on Software Engineering, pp. 452-461, Shanghai, China, May 2006.
– A study uses five projects from Microsoft

– For each project, we can find a set of complexity metrics that correlates with
post-release defects and the corresponding failures

– There is no single set of metrics that fits all projects

– Predictors obtained from principal component analysis are useful in building
regression models to estimate post-release defects

– Predictors are accurate only when obtained from the same or similar projects

– DO NOT use complexity metrics without validating them for your project
DO use metrics that are validated from historyto identify low-quality
components

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

40

� T. Ostrand, E. Weyuker, and R. Bell, “Predicting the Location and
Number of Faults in Large Software Systems,”IEEE Transactions on
Software Engineering, 31(4):340-355, April 2005

– Develop a model to predict the expected number of faults in each file of the
next release of a system based on the code in the current release, and fault and
modification history of the file from previous releases

– Two projects from AT&T
� one with 17 consecutive quarterly releases over 4 years

� one with 9 releases over 2 years

– The 20% of the files with the highest predicted number of faults contain
between 71% and 92% of the faults that were actually detected, with the
overall average being 83%

� another support for the 80/20 principle

40

Related Studies Related Studies Related Studies Related Studies (6)

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

41

– A simplified version of the predictor (sorting files by their size) selects 20% of
the files that are the largest containing on average, 73% and 74% of the faults
for the two systems.

�Module size is the most significant factor influencing the number of faults

� El Emamet al. also noted that there is a continuous relationship between
size and defects.

41

Related Studies Related Studies Related Studies Related Studies (6) (cont(cont(cont(cont’’’’d)d)d)d)

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

4242

Related Studies Related Studies Related Studies Related Studies (7)
� V. R. Basili and B.T. Perricone, “Software Errors and Complexity: An

Empirical Investigation,” Communications of the ACM, 27(1)42-52,
January 1984

– Larger modules tended to have a lower fault density than smaller ones, where
fault density is the number of faults discovered divided by a measure of
module size (e.g., thousands lines of code)

� T. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel, “Early
Quality Prediction: A Case Study in Telecommunications," IEEE
Software, 13(1):65-71, January 1996

– Measures of early products of development can predict the final product’s
quality.

�We should apply metrics to SDL specifications

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

4343

Related Studies Related Studies Related Studies Related Studies (8)

�Metrics for Object-Oriented Code

– S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object
Oriented Design,”IEEE Transactions on Software Engineering,
20(6):476-493, June 1994.

�Depth of Inheritance Tree (DIT)

�Coupling between object classes (CBO)

�Number of Children (NOC) = number of immediate subclasses
subordinated to a class in the class hierarchy

�Lack of Cohesion in Methods (LCOM)

– M. Lorenz and J. Kidd, Object-Oriented Metrics: Measures of
Complexity. Pearson Education, December 1995.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

4444

Related Studies Related Studies Related Studies Related Studies (8) (cont(cont(cont(cont’’’’d)d)d)d)

– L. C. Briand, J. W. Daly, and J. K. Wust, “A Unified Framework for Cohesion
Measurement in Object-Oriented Systems,”Journal of Empirical Software
Engineering, 3(1)65-117, 1998

– L. C. Briand, J. W. Daly, and J.K. Wust, “A Unified Framework for Coupling
Measurement in Object-Oriented Systems,”IEEE Transactions on Software
Engineering, 25(1):91-121, January/February 1999

�Couplingand inheritancemeasures are strongly related to the probability of
having defects in a class

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

454545

Case Study III

4646

What is next What is next What is next What is next ?

?

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

4747

QuizQuizQuizQuiz

� Given two modules C1 and C2

� C1 has higher metrics values but also is significantly more tested than C2

� Is the probability of C1 containing any faults still higher than that of C2?

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

4848

Case Study III: Our MethodCase Study III: Our MethodCase Study III: Our MethodCase Study III: Our Method

� Combining dynamic testing effort such as code coverage and execution
counts with static complexity computed by using the internal and external
metrics

– Fault-proneness of a module with high static complexity should be
appropriately calibrated based on how much effort has been spent on testing it.

� Fault-proneness of a module =
f (inflows, outflows, fan-in, fan-out, ………

#of decisions, # of def-uses, # of interface mutants, ……

block coverage, decision coverage, execution counts, …...)

internal/external complexity metrics

controlflow-/dataflow-/mutation-based testing metrics

dynamic testing effort

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

4949

Case Study III: Our AdvantageCase Study III: Our AdvantageCase Study III: Our AdvantageCase Study III: Our Advantage

� We have coverage measurement tools for C, C++, Java bytecode, and
SDL
– Code coverage

– Execution counts

� These tools can also be easily modified to collect other metrics values
– χSuds (C and C++)

– eXVantage (C, C++, and Java bytecode)

– χSuds/SDL

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

50

� A risk in a software system can be viewed as a potential problem, and a
problem is a risk that has manifested.

– In order to reduce the risk of software operations, code which has the
potential to cause problems has to be identifiedso that necessary
actions can be taken to prevent any such problems from occurring.

W. E. Wong, Y. Qi, and K. Cooper, “Source Code-Based Software Risk Assessing,” in Proceedings
of The 20th ACM Symposium on Applied Computing (ACM SAC), pp. 1485-1490, Santa Fe,
New Mexico, March 13-17, 2005

50

Case Study III: Source CodeCase Study III: Source CodeCase Study III: Source CodeCase Study III: Source Code----Based Risk AssessmentBased Risk AssessmentBased Risk AssessmentBased Risk Assessment

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

5151

Case Study III: Two Important PrinciplesCase Study III: Two Important PrinciplesCase Study III: Two Important PrinciplesCase Study III: Two Important Principles

� The more complex the static structure of the code, the higher the risk it has.

� The more thoroughly the code is tested, the lower the risk it has.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

52

� We propose two types of risk models: static models and dynamic models
using metrics collected based on the source code

� The computation of the risks of code is automated at different granularity
levels ranging from basic blocks to functions, files, subsystems, etc.

– A basic block, also known as a block, is a sequence of consecutive statements
or expressions containing no transfers of control except at the end, so that if
one element of it is executed, all are.

� This of course assumes that the underlying hardware does not fail during the
execution of a block.

Case Study III: Our Approach Case Study III: Our Approach Case Study III: Our Approach Case Study III: Our Approach (1)

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

5353

Case Study III: Our Approach Case Study III: Our Approach Case Study III: Our Approach Case Study III: Our Approach (2)
� The risks of functions or files or subsystems are built on top of the risks

of their member blocks.
�

– Their risks are the highest risk of their member blocks.

– For example, suppose a function f contains three blocks b1, b2 and b3.

– The risk of these blocks for containing some bug(s) are α, β, and γ,
respectively, where α > β > γ.

– Then, the risk of f containing some bug(s) is the highest risk of its member
blocks, that is, the highest of α, β, and γ which is α.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

5454

Case Study III: Risk Models Case Study III: Risk Models Case Study III: Risk Models Case Study III: Risk Models (1)

�The static modelis constructed by using metrics related to
the static structure of the codesuch as the number of c-uses,
p-uses, definitions, decisions and function calls.

�The dynamic modeluses whatever is selected by the static
model and additional dynamic test coverageof the code such
as decision, c-use and p-use coverage to calibrate the metric
values used in the model.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

5555

Case Study III: Risk Models Case Study III: Risk Models Case Study III: Risk Models Case Study III: Risk Models (2)
� Users can choose all or some of the following metric components with

appropriate weighting factors for model construction.
– number of variable definitions (V),

– number of function calls (F),

– number of decisions (D),

– number of c-uses (C), and

– number of p-uses (P) are selected.

� They can also select from one of the two modeling schemes:
– a summation scheme which constructs a risk model by using the sum of the

selected metrics, or

– a product scheme which uses the product of the selected metrics.

– Suppose also the summation scheme is selected.
The corresponding static risk modelcan be expressed as

V * α + F * β + D * γ + C * ε + P * ω

where α, β, γ, ε, and ω are the weighting factors.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

5656

Case Study III: Static Model versus Dynamic Model Case Study III: Static Model versus Dynamic Model Case Study III: Static Model versus Dynamic Model Case Study III: Static Model versus Dynamic Model

� The major difference between a static and a dynamic model is that the
latter uses test coverage to calibrate the actual value of each metric
component.
– Suppose we want to use the model listed in Equation (1) to compute the risk of

a block B.

– Suppose also block B has 20 c-uses.

– For a static model, the metric component C (number of c-uses) has the value 20.

– For a dynamic model, the actual value of C is the number of c-uses in B which
are not covered (i.e., not executed) by all the successful tests before an
execution failure is observed.

– Assuming eight (8) of them are covered.

– This makes the metric component C have a value 12 (obtained by subtracting 8
from 20) when a dynamic model (assuming the metric component C is selected)
is used to compute the risk of block B.
� A different approach is to make C equal 20 – 8 * ε where 0 < ε ≤ 1

� Disadvantages versus advantages

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

5757

Case Study III: Visualize Risk in CodeCase Study III: Visualize Risk in CodeCase Study III: Visualize Risk in CodeCase Study III: Visualize Risk in Code

� We compute the risk of each block and function, prioritize them in terms
of the risk, and highlight them in different colors

A display at the function level A display at the block level

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

5858

Case Study III: ResultsCase Study III: ResultsCase Study III: ResultsCase Study III: Results

� Our static risk models perform well by identifying a small percentageof
functions and blocks as fault-prone.

� In many cases, the dynamic models perform better than the corresponding
static models.

� How much? This depends on a few factors
– the test coverage of the successful tests

– the nature of the fault

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

5959

Case Study III: Three Important AspectsCase Study III: Three Important AspectsCase Study III: Three Important AspectsCase Study III: Three Important Aspects

� Our models use metrics based on the source code, whereas other risk
assessments rely on the data collected from the process of how a software
system is built, operated, deployed or maintained, and which organization
is responsible for such activities.

– Data collected for the latter would be affected by different interpretations of
the process

– Data collected with respect to the metrics used for constructing our risk
models do not have such a potential inconsistency problem

� Our method allows the risk of code to be computed at a very fine
granularity level such as a basic block.

– This is very different from many other studies which only identify the fault
proneness at the module (or function) level.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

6060

Case Study III: Three Important AspectsCase Study III: Three Important AspectsCase Study III: Three Important AspectsCase Study III: Three Important Aspects (cont(cont(cont(cont’’’’d)d)d)d)

� Our models use either the static, or the static and the dynamic, data
collected from the source code.

– The risk of code can be computed by using only the static data.
However, if the dynamic test coverage is available, it can be used to
calibrate the metric values used for computing the risk.

– This makes our risk model flexible, depending on the available data.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

