STRAR Laboratory of Adva on Software Technology

Source Code-based Risk Analysis

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas

ewong@utdallas.edu
http://www.utdallas.edu/~ewong

— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 1

Speaker Biographical Sketch

* Professor & Director of International Outreach
Department of Computer Science
University of Texas at Dallas

* Guest Researcher
Computer Security Division
National Institute of Standards and Technology (NIS

* Vice President, IEEE Reliability Society
» Secretary, ACM SIGAPP (Special Interest Group opliggl Computing)

* Principal Investigator, NSF TUES (Transforming Urgtaduate Education in
Science, Technology, Engineering and MathematiosjeBt
— Incorporating Software Testing into Multiple Computer Science and Software
Engineering Undergraduate Courses

* Founder & Steering Committee co-Chair for the SEREference
(IEEE International Conference on Software Security and Reliability)
(http://paris.utdallas.edu/serel13)

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 2

Outline

* Motivation

* Our Ongoing Effort
* Case Study |

* Case Study I

* Related Studies

* Case Study IlI

* Future Directions

— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 3

Motivation

Motivation

* Not all modules can be extensively reviewed antbtes

* Approximately 20% of a software system is respdeditr
80% of the faults
— Pareto’s principle: 80% of wealth is held by 20%population
— The same principle is applicable to other areas

* Need measurements to identify oalgmall percentage of the modules
in a software system as fault-prone

V. Pareto, “On the Distribution of Wealth and Inaenn Roots of the Italian School of Economics
and Finance: From Ferrara (1857) to Einaudi (1944),Baldassarri and P. Ciocca, eds., vol. 2,
Houndmills: Palgrav, 2001.

— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 5

When to Apply the Measurements (1)

* Can be applied to botiew and existing projectsat different stages
— Design Documentation, SDL, Java, C, C++

* Possible Benefits
— Determine better design when alternative choicést ex
— Assign fault-prone modules to experienced prograrame
— Allow more testing effort for these modules
aUnit testing
oRegression testing

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 6

When to Apply the Measurements (2)

«If the system being considered was already devdlop
we shouldextract the metrics values directly from
the source code rather than from the corresponding
design documentation which may not exist, or if it
does exist, it may be incomplete, difficult to uretand,
or not updated.
= Reverse-engineering the existing code to extract

proper metric values

“This process can lmitomated through the use of a
metric analysis tool.

1

th

Automatic Code Generatio

Manual Implementation

— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 7

Our Ongoing Effort

Risk, Analysis Model (1)

* A risk analysis-based model supported by toolslémiify fault-prone
software modules
—Model Construction®™

o Static metricscan be collected at compile time (e.g., linesaife, McCabe
complexity)

aDynamic metricscannot be collected until run-time (e.g., testarage)

alnternal metricsfocus on the internal structure of a software utede.g.,
number of lines of code)

nExternal metricsemphasize the interactions between a softwarautaod
and the rest of the system

aSpecial metricsunique to multi-threaded embedded software (awgnber
of threads through each module)

aProcess-based metrid®ow a software system is built and operated

— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 9

o — —

y —

—Model Validation and Refinement
nEvaluate the model against real defect data
oRefine it, if necessary, to improve its accuracyfauit-proneness
prediction
aUse open-source applications and software develapedr member
companies, as available

—Model Application

oRepeat the risk analysis at different stages oftlievare development
lifecycle

0Our model iflexible as it uses various data depending on its avaitgbili

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 10

Problems of Current Approaches

* Only static and/or process-based metrics are used

* No dynamic information such as how each modulebleas tested is
considered

* Results of many studies are inconsistent or coitti@y

— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 11
— —
Our Solution
—

* Our solution overcomes existing drawbackshlybrating the static
metrics-based complexity using dynamic metrics, and also incorporating
special metrics unique to software being analyzed.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 12

Case Study I

Case Study I

* A Target Software System from Telcordia (formerigilBore)
—A distributed software system with a client-serasrhitecture
—Three major components: server, clients, and dagba

—Server written in C with embedded SQL statements
035,000 non-blank/non-comment lines of C code

020% of them converted from the embedded SQL statme
097 files/530 functions

W. E. Wong, J. R. Horgan, M. Syring, W. M. Zaged & M. Zage, “Applying Design Metrics

to Predict Fault-Proneness: A Case Study on a L3ogde Software SystemSbftware-Practice
and Experience, 30(14):1587-1608, November 2000

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

14

Case Study I: Metrics My, M,, and M,

* Five metrics were used
- 9 an internal complexity metric which incorporatastors related to
a function’s internal structure
- M, an external complexity metric which focuses daretion’s
external relationships to the rest of the softveigtem
- M,,: a composite complexity metric which is a lineambination ofy; and v,
o Other combinations should also be considered
— The union ofM;, M, anda,
a Do not care how a function gets selected (whetiewba,, or #,), just
that it is
— The intersection ofi;, M, and,

W. Zage and D. Zage, “Evaluating Design Metrics ande-Scale Software,” IEEE Software,
10(4):75-81, July 1993.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 15

Case Study I: Metrics M, M., and M, (cont'd)

* 9: =i, (functions calls) +, (Data Structure Manipulations)i#(l/O)
— Possible locations for the majority of faults
a the point of a function call
o statement with complex data structure manipulations
0 input/output statements
— A function has a highu, if it has complex code
— Examples of functions with higiw,
a A function which has many pointer and array accesse
a A print function which does a great deal of /0
a A function which calls a few functions (low fan-Quiut calls them many times
— Question: Is a function with a high;, also fault-prone?

* M, = e, (inflows * outflows) +e, (fan-in * fan-out)
— inflows and outflows: amount of data flow
— fan-in: number of functions that call the targetdtions
— fan-out: number of functions that the target fumctcalls
— A function has a highw, if it has many interactions with other parts of ffiregram
— Examples of functions with higi,
a a high level control function responsible for aadlimany other functions
a A utility function called by many other functions
— Question: Is a function with a high, also fault-prone?

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 16

Case Study I: Tool el Results

» Automatically collects and analyzes metrics values
— A metric analysis toolyMetrics) was implemented

— Built on top of ATAC (an Automatic Testing and Agsis tool for C by
Bellcore)

— Code to be analyzed must be syntactically correct

* |dentify functions with high metrics values
— Functions identified by top 5% of;, s, ands,
057 functions identified
ol by all three
020 by, and 3,
06 by M, and .
010 by only
020 by, only
a2 by ¢, only

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 17

Case Study I: Results

* Validate fault-prone functions by real defect da¢éween two major
releases for their fault-proneness

* Assume there ama functions identified afault-prone; of thesd are
fault-laden. Assumen functions contain at least one fault based on the
real defect data

» precision = JJv) 100%, where 0% precison< 10(
m

e recall = é) 100%, where 0% recall < 10C
n

° Our experiment results suggest that
— Metrics s, and 9, can be good indicators of fault prone functions

— No particular metric has a clear advantage oveothers in determining
which function is fault-laden

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 18

I'mpact of Function Size

* Function size may be related to the metrics values

* Do we need to do the normalization?

— Dividing metrics values by function size determirgdnon-comment and non-blank
lines of code

* Normalized metrics identifyery different functions than non-normalized metrics.

* Validation using real defect data to determine Wtdoe is better?
— Non-normalized metrics are better than the norredlinetrics

¢ Function size is a factor that should be considered

— Ostrand, Weyuker and BellREE Transactions on Software Engineering, 31(4):340-
355, April 2005)

— Our data indicate that in no case does the sizedbsalection catch all the functions
selected byw,, M,,0r M.

— This suggests that function size cannot replaceotlye metrics.

— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 19
A T LR

Case Study 11

Possible Improvement

* Questions

—Why do we need a different set of complexity msfic
alf not, what kind of metrics can be used?

—Is it easy to collect these metrics values?

0“Data Structure Manipulations” is not only ill-deéd but also
difficult to collect

W. E. Wong, J. R. Horgan, J. C. Maldonado, and.laGrange, “Integrating Testing and Design
Metrics to Predict Fault-Prone Software Modules,Pioceedings of the 11th International
Conference on Software Engineering & its Applications, Paris, France, December, 1998.

— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 21
C— —
Case Study II: Motivation
— —

* Many studies explore the fault detection capabdityest sets adequate
with respect to

— controlflow-based criteria (statement, block, dieciy
— dataflow-based criteria (all-uses, potential aks)s
— mutation-based criteria (interface mutation)

* No study has used testing metrics such as
—number of all-uses

—number of interface mutants to identify fault-praodtware modules even
before any testing is conducted.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 22

Case Study II: Objective

* Develop a hybrid metric as an integratiorcoitrol fl ow-,
dataflow- andmutation-based testing metrics and some
components of the internal and/or external compjexi
metrics to better predict the fault-prone softwauedules.

— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 23
o— —
Case Study II: Our Method
—

* Replace thelifficult-to-collect and mistake-prone metrics used in
computing the internal complexity; and the external complexity, by
otherbetter defined andmore easily collected ones.

— Replace “Data Structure Manipulations” (number dérences to complex
data types) by DEC (the number of decisions), Al¢ fiumber of all-uses), or
PAU (the number of potential all-uses)

aNone of the decisions, all-uses, and potential all-uses need to be covered

—Use IM (number of interface mutants) as an indextie probability of faults
introduced because of the communications betweersbfiware modules

oNone of the mutants have to be compiled
aNone will be executed on any test case

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 24

Case Study II: Metrics

* M, = the original internal complexity metric
* M,= DEC + AU

* #M,= DEC + AU + Function Calls + 1/O

* M= DEC + PAU

* M,= DEC + PAU + Function Calls + /O

* M= DEC

* M= DEC + Function Calls + 1/O

* M~ AU

* M= AU + Function Calls + I/O

* M= PAU

* M~ PAU + Function Calls + I/O

* M = the original external complexity metric
° e~ M

* M= Mig + Meo

* My= My + My Where 1<k <10

— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 25
— —
DEC - Number of Decisions
—

* A decision is a boolean predicate with two possialeies true andfalse

visfp)
FILE *fjp;

it ¢;

wile ((c = gete(fp)) |= HIF) A
if (isaseii(e) 3& (isprintie)|

o= I P de=""n

putchar(c)é exit
else @

printf" W3’ e

exit(0:
D
A-D,a-e arebasic blocks

———= trueor unconditonal

Simple versus compound decisions

* McCabe’s Cyclomatic complexity = number of decisimdes + 1

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 26

AU — Number of All-Uses

main() {

[0
c=0; =0
i=0;
o puse
c-use (computational use) while (i<10) { / <10
c=c+l;)

i=i+1;
p-use (predicate use) 1 (definition (@
ﬁ print(©); \
N
} . printe)
_ (# of p- and c-uses covered) .
Allises coverags = (Total # of feasible p- and c11ses) exit
— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 27

PAU — Number of Potential All-Uses
* With respect to variable
—one c-use (5) sl read a:
—no p-use s2 x = 0:
—two potential c-uses {ss,) and (s, S, 52 9{-‘:(3;> 0
=1 1 a
—two potential p-uses {ss,,) and then
(88) s5 print x + 1:
—x=0 andy=3 are in the same block else
o No substitution sb print y + 2:
* All-uses: arexplicit use ofx
* Potential all-uses: potential use ofx

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 28

IM — Number of Interface Mutants

* Function parameters replacement

—replacing a parameter by another appropriate one
* Function parameters switch

— permuting the order of parameters in a call stateme
* Function parameters elimination

— deleting one parameter at a time
* Function parameters increment/decrement

—inserting a pre-increment operator (++) or pre-dew@nt operator (--) before a
parameter

* Unary operator insertion

—inserting an arithmetic negation, a logical negatiar a bit negation before a
parameter

* Function call deletion

— deleting the call to a function. If the functiorllda part of an expression, it is
replaced by a value from a pre-defined set.

Co— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 29

Co— —
Target Program & Tools Used

Co— —

* The s24CE program which provides a language-oriented userfate
for configuration of antenna arrays.
—about 10K lines of C code in 134 files

— Defect data were obtained from the error-log mamneiz during its testing and
integration phases

e Tools

— ATAC (xSuds): A data-flow coverage measurement tool topzden
DEC and AU

— POKE: another data-flow coverage measurement ¢ocbmpute PAU
— Proteum/IM: a mutation analysis tool to compute IM
— XMetrics: a metrics analysis tool to comptig, M, andi,

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 30

Case Study II: Results

* DEC (number of decisions) by itselfrist a good metric for predicting
fault-proneness

* M, does not provide as good identification as othgs which use either
AU (number of all-uses) or PAU (number of potentiduses)

— The internal complexity of a module can be be@resented by AU or PAU
than DSM (number of references to complex datasype

* The number of interface mutants serves as a bat#ic for identifying
modules with faults due to the external communicatf a module and
the rest of the system.

* Our hybrid metrics cahetter predict fault-prone software modules than
the internal and external complexity metrics use@ase Study I.

— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 31
— —
)
Case Study II: Results (cont’d)
— —

* The purpose of using metrics is to get insight,tnatompare their
absolute values across different projects.

—Relative comparison of metrics values within thenegroject (or
similar projects) is useful

* This is supported by the study conducted by NagapBall, and Zeller
(Mining Metrics to Predict Component FailurespPiroceeding of the
28th International Conference on Software Engineering, pp. 452-461,
Shanghai, China, May 2006.)

—Predictors are accurate only when obtained fronsémee or similar
projects

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 32

Related Studies

Related Studies (1)

* There are many related studies. Here are a few.

— Norman E. Fenton and Niclas Ohlsson “Quantitative Iggia of Faults and Failures in a Complex
Software System,'EEE Transactions on Software Engineering, 26(8):797-814, August 2000.

— A. G. Koru and Jeff Tian, “An Empirical Comparisand Characterization of High Defect and High
Complexity Modules,The Journal of Systems and Software, 67(3):153-163, September 2003

— A.G. Koru and J. Tian, “Comparing High-Change Maxuand Modules with the Highest
Measurement Values in Two Large-Scale Open-Soumc@uets’ |EEE Transactions on Software
Engineering, 31(8):625-642, August 2005

— N. Nagappan, T. Ball, and A. Zeller, “Mining Metsito Predict Component Failures,”Rnoceeding
of the 28th International Conference on Software Engineering, pp. 452-461, Shanghai, China, May
2006.

— T. Ostrand, E. Weyuker, and R. Bell, “Predicting ttocation and Number of Faults in Large
Software SystemsJEEE Transactions on Software Engineering, 31(4):340-355, April 2005

— V. R. Basiliand B.T. Perricone, “Software Errordda@@omplexity: An Empirical Investigation,”
Communications of the ACM, 27(1)42-52, January 1984

— T. Khoshgoftaar, E. B. Allen, K. S. KalaichelvamdaN. Goel, “Early Quality Prediction: A Case
Study in Telecommunications|EEE Software, 13(1):65-71, January 1996

— S. R. Chidamber and C. F. Kemerer, “A Metrics SfoteObject Oriented Design/EEE
Transactions on Software Engineering, 20(6):476-493, June 1994.

— M. Lorenz and J. KiddDbject-Oriented Metrics: Measures of Complexity. Pearson Education,
December 1995.

— L. C. Briand, J. W. Daly, and J. K. Wust, “A Unifide-ramework for Cohesion Measurement in
Object-Oriented SystemsJournal of Empirical Software Engineering, 3(1)65-117, 1998.

— L. C. Briand, J. W. Daly, and J.K. Wust, “A Unifiddtamework for Coupling Measurement in
Object-Oriented Systems|EEE Transactions on Software Engineering, 25(1):91-121,
January/February 1999

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 34

Related Studies (2) -

* Norman E. Fenton and Niclas Ohlsson “Quantitativelysia of Faults
and Failures in a Complex Software SystetBFE Transactions on
Software Engineering, 26(8):797-814, August 2000.

— A small numbeiof modules contain most of the faults discoveregrarelease
testing,anda very small numbesf modules contain most of the faults
discovered iroperation

— Neither of these phenomena can be explained by the size or the complexity of
the modules.

— No evidence to support the relationship betweenuigosize and fault density

— No evidence that popular complexity metrics are good predictors of either
fault-prone or failure-prone modules

— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 35
o — —
4)
Related Studies (2) (cont’d)
—

— The number of faults discovered in prereleasertgss an order of magnitude
greater than the number discovered in 12 months of operatiose

— Those modules which are th@st fault-prone prerelease are among the lgast
fault-prone post-release.

— Fail to take into accounesting effort andoperational usage.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 36

Related Studies (3) o

* A. G. Koru and Jeff Tian, “An Empirical Comparisand Characterization

of High Defect and High Complexity Modulesihe Journal of Systems
and Software, 67(3):153-163, September 2003

— Six software products: two from IBM and four fronoitel Networks

— Examine the relationship between high defect madatel high complexity
modules

o positively correlated but not monotonic relatiomshi

— The most complex modules often have an acceptatalkty

o Many complex modules are intrinsically complex hessaof the problem they are
dealing with, and are recognized as such. Conségubighly skilled personnel and
adequate effort were allocated to such modules|tieg in their relative high quality

—The high defect modules are not typically the nooshplex ones, but slightly
below the most complex ones

a Those “not too big (complex) not too small (simplenodules may contain the
highest number of defects.

—
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 37

Related Studies (4) o

* A.G. Koru and J. Tian, “Comparing High-Change Maduand Modules
with the Highest Measurement Values in Two Largal&©pen-Source

Products’ IEEE Transactions on Software Engineering, 31(%:622,
August 2005

— Two large-scale open-source products, Mozilla andr@yfice

— Identifying change-prone modules can help programmers take preventive
actions to reduce maintenance cost and improvesaadtquality.

— Top modules in change count rankings and the msduilta the highest
values of static metrics are different

a High-change modules have high metrics values butheohighest

aIn Mozilla, the top 2%, 5%, and 20% modules in¢hange rankings include
34.78%, 51.45%, and 82.43% of the total changetcoun

> Similar to the 80/20 principle

-
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 38

Related Studies (5)

* N. Nagappan, T. Ball, and A. Zeller, “Mining Metsito Predict
Component Failures,” iRroceeding of the 28th International Conference
on Software Engineering, pp. 452-461, Shanghai, China, May 2006.

— A study uses five projects from Microsoft

— For each project, we can find a set of complexigtrins that correlates with
post-release defects and the corresponding failures

— There isno single set of metrics that fits all projects

— Predictors obtained from principal component anglgse useful in building
regression models to estimate post-release defects

— Predictors are accurate only when obtained frons#imee or similar projects

— DO NOT use complexity metrics without validatingsth for your project
DO use metrics that axalidated from historyo identify low-quality

components
— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 39
— —
Related Studies (6)
—

* T. Ostrand, E. Weyuker, and R. Bell, “Predicting tlocation and
Number of Faults in Large Software Systemi&EE Transactions on
Software Engineering, 31(4):340-355, April 2005

— Develop a model to predict the expected numbeaults in each file of the
next release of a system basedhmcode in the current release, andfault and
modification history of the file from previous releases

— Two projects from AT&T
aone with 17 consecutive quarterly releases ovevatsy
aone with 9 releases over 2 years

— The 20% of the files with the highest predicted benmof faults contain
between 71% and 92% of the faults that were agtdatlected, with the
overall average being 83%

o another support for the 80/20 principle

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 40

Related Studies (6) (cont’d)

— A simplified version of the predictosdrting files by their size) selects 20% of
the files that are the largest containing on aver&8% and 74% of the faults
for the two systems.

oModule size is the most significant factor influgrecthe number of faults

* El Emamet al. also noted that there déscontinuous relationship between
size and defects.

— —

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 41
o— —
—

* V. R. Basiliand B.T. Perricone, “Software Errorsla@omplexity: An
Empirical Investigation,” Communications of the ACRIf(1)42-52,
January 1984

— Larger modules tended to have a lower fault dernisan smaller oneshere
fault density is the number of faults discovereddid by a measure of
module size (e.g., thousands lines of code)

* T. Khoshgoftaar, E. B. Allen, K. S. KalaichelvandaN. Goel, “Early
Quality Prediction: A Case Study in Telecommunarag," |EEE
Software, 13(1):65-71, January 1996

— Measures of early products of development can préé final product’s
quality.
aWe should apply metrics to SDL specifications

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 42

Related Studies (8)

* Metrics for Object-Oriented Code

—S. R. Chidamber and C. F. Kemerer, “A Metrics SfoteObject
Oriented Design,TEEE Transactions on Software Engineering,
20(6):476-493, June 1994

aDepth of Inheritance Tree (DIT)
aCoupling between object classes (CBO)

aNumber of Children (NOC) = number of immediate dabses
subordinated to a class in the class hierarchy

alLack of Cohesion in Methods (LCOM)

—M. Lorenz and J. KiddDbject-Oriented Metrics: Measures of
Complexity. Pearson Education, December 1995.

— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 43
— —
4)
Related Studies (8) (cont’d)
—

—L. C. Briand, J. W. Daly, and J. K. Wust, “A Unifid&=ramework for Cohesion
Measurement in Object-Oriented Systendsyirnal of Empirical Software
Engineering, 3(1)65-117, 1998

—L. C. Briand, J. W. Daly, and J.K. Wust, “A Unifiédamework for Coupling
Measurement in Object-Oriented SystemlEEE Transactions on Software
Engineering, 25(1):91-121, January/February 1999

nCouplingandinheritancemeasures are strongly related to the probability
having defects in a class

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 44

0

What is next ?

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 46

Quiz
* Given two module€, andC,
* C, has higher metrics values but also is significantyre tested tha@,

¢ Is the probability ofC, containing any faults still higher than that@f =

— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 47

Case Study I11: Our Method

* Combiningdynamic testing effort such as code coverage and execution

counts withstatic complexity computed by using the internal and externa
metrics

— Fault-proneness of a module with high static coxipleshould be
appropriately calibrated based on how much effort has been spent on testing

* Fault-proneness of a module =
f(inflows, outflows, fan-in, fan-out,

internal/external complexity metrics

#of decisions, # of def-uses, # of interface mant...

controlflow-/dataflow-/mutation-based testing mesri

block coverage, decision coverage, execution counts)

dynamic testing effort

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 48

Case Study III: Our Advantage

* We have coverage measurement tools for C, C++, dgeaode, and
SDL
— Code coverage
— Execution counts

* These tools can also be easily modified to cotitloer metrics values
— XSuds (C and C++)
— eXVantage (C, C++, and Java bytecode)
— XSuds/SDL

— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 49

Case Study I1I: Source Code-Based Q{iséﬂssessm:;

* Arisk in a software system can be viewed as anpialeproblem, and a
problem is a risk that has manifested.

—In order to reduce the risk of software operatiansle which has the
potential to cause problems has to be identg@that necessary
actions can be taken to prevent any such problesns dccurring.

W. E. Wong, Y. Qi, and K. Cooper, “Source Code-BbSeftware Risk Assessing,” Proceedings
of The 20th ACM Symposium on Applied Computing (ACM SAC), pp. 1485-1490, Santa Fe,
New Mexico, March 13-17, 2005

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 50

Case Study III: Two Important Principles

* The more complex the static structure of the ctiwehigher the risk it has.

* The more thoroughly the code is tested, the lohverrisk it has.

— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 51

Case Study I11: Our Approach (1)

* We propose two types of risk modelsatic models andlynamic models
using metrics collectedased on the source code

* The computation of the risks of codesistomated at different granularity
levels ranging from basic blocks to functions,djlsubsystems, etc.

— A basic blockalso known as klock, is a sequence of consecutive statements
or expressions containing no transfers of contxoépt at the end, so that if
one element of it is executed, all are.

o This of course assumes that the underlying harddees not fail during the
execution of a block.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 52

Case Study I11: Our Approach (2)

* The risks of functions or files or subsystems ari lon top of the risks
of their member blocks.

— Their risks are the highest risk of their memberchks.
— For example, suppose a functiorontains three blocks,, b, andb,.

— The risk of these blocks for containing some bug(sj, (3, andy,
respectively, where >3 >y.

—Then, the risk of containing some bug(s) is theghest risk of its member
blocks, that is, the highest af, 3, andy which isa.

— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 53

Case Study III: Risk Models (1)

* The static modedk constructed by using metrics related to
thestatic structure of the codsuch as the number of c-uses,
p-uses, definitions, decisions and function calls.

* The dynamic modalses whatever is selected by the static
model and additionalynamic test coveragef the code such
as decision, c-use and p-use coveragelbrate the metric
values used in the model

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 54

Case Study I1I: Risk Models (2) -

» Users can choos#l or some of the following metric components with
appropriate weighting factors for model construction.
— number of variable definitions (V),
— number of function calls (F),
— number of decisions (D),
— number of c-uses (C), and
—number of p-uses (P) are selected.

* They can also select from one of the two modeloiemes:

—asummation scheme which constructs a risk model by usihsgum of the
selected metrics, or

—aproduct scheme which usdke product of the selected metrics.
— Suppose also the summation scheme is selected.
The correspondingtatic risk modetan be expressed as
V*a+F*B+D*y+C*e+P*w

whereaq, B, y, €, andw are the weighting factors
— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 55

Case Study I11: Static Model versus Dynamic Model

* The major difference between a static and a dynamoidel is thathe
latter uses test coverage to calibrate the acalakwof each metric
component.

— Suppose we want to use the model listed in Equétipto compute the risk of
a blockB.

— Suppose also blodg has 20 c-uses.

— For a static model, the metric componer@ (number of c-uses) has the value 2Q.

— For a dynamic model, the actual value df is the number of c-uses Biwhich

are not covered (i.e., not executed)ahythe successful tests before an
execution failure is observed.

— Assuming eight (8) of them are covered.
— This makes the metric componéhhave a value 12 (obtained by subtracting
from 20) when a dynamic model (assuming the metsimponent is selected)
is used to compute the risk of bloBk
o A different approach is to make C equal 20 —88#there 0 € <1
o Disadvantages versus advantages

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 56

Case Study II1: Visualize Risk in Code

* We compute the risk of each block and functiompritize them in terms
of the risk, and highlight them in different colors

& =lofx| & =i
FleAnalysis File Analysis
[Risk Analysis with respect to each function] [Risk Analysis with respect to each basic block
1 _ 16-22 23-29 30-36
Function Name. File Name Risk Analysis
jportdef. portdef.c 13
mksblock nkstlock o 19
imkshex \mkshex.c 19
|sgrphasr sgrphasr.c 19
(fixgramp fixgramp ¢ 20
readfil3 readfi.c 2
— et 2 gy
|sinelem sinelem. ¢ 22 a1x= (p1xep20/2;
|sgrphaln sgrphaln.c 2
sgramp2n sgrampln.c 2 3
grphacie grphace.c 5 7 gruppo circolare: esagono di elementi cirolari
laddscan | 7 #lze If (group_shape == CIRCUL_SHAPE)
fixsgrid fixsgrid ¢ v
fixsgrelc 37 r=geomnode_pfr;
segrotrg.c 38 [

A display at the function level

A diap at the block level

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Case Study II1: Results

 QOur static risk models perform well by identifyiagmall percentagef
functions and blocks as fault-prone.

* In many cases, the dynamic models perfoatierthan the corresponding

static models.

)

* How much? This depends on a few factors
—the test coverage of the successful tests

—the nature of the fault

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

58

Case Study II1: Three Important Aspects

* Our models use metrics based ondhe ce code, whereas other risk
assessments rely on the data collected frorprtbeess of how a software
system is built, operated, deployed or maintaiaed, which organization
is responsible for such activities.

— Data collected for the latter would b&ected by different interpretations of
the process

— Data collected with respect to the metrics useaddmstructing our risk
models do not have such a potential inconsistenalylem

* Our method allows the risk of code to be computeai\gery fine
granularity level such as a basic block.

— This is very different from many other studies whanly identify the fault
proneness at the module (or function) level.

— —
Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 59

Case Study I1I: Three I mportantEects (cont'd)

* Our models use either the static, or the statictaedlynamic, data
collected from the source code.

—The risk of code can be computed by using onlysthéc data.
However, if the dynamic test coverage is availaiblean be used to
calibrate the metric values used for computingrisie

—This makes our risk model flexible, depending andlailable data.

Source Code-based Risk Analysis (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 60

