
__
Jonsson School of Engineering and Computer Science

Dr. Mark C. Paulk
Mark.Paulk@utdallas.edu, Mark.Paulk@ieee.org

Software Measurement,
Complexity, & Defect Prediction

Measurement & Complexity Topics

 Goal-driven measurement

 Operational definitions

 Driving behavior

 What is complexity?

 Possible software complexity measures

 Using software complexity measures

 Evaluating software complexity measures
2

Two Key Measurement Questions

 Are we measuring the right thing?
• Goal / Question / Metric (GQM)
• business objectives ⇔⇔⇔⇔ data

- cost (dollars, effort)
- schedule (duration, effort)
- functionality (size)
- quality (defects)

 Are we measuring it right?
• operational definitions

3

Goal-Driven Measurement

 Goal / Question / Metric (GQM) paradigm
- V.R. Basili and D.M. Weiss, "A Methodology for

Collecting Valid Software Engineering Data,” IEEE
Transactions on Software Engineering, November
1984.

 SEI variant: goal-driven measurement
- R.E. Park, W.B. Goethert, and W.A. Florac, “Goal-

Driven Software Measurement – A Guidebook,”
CMU/SEI-96-HB-002, August 1996.

 ISO 15939 and PSM variant: measurement
information model

- J. McGarry, D. Card, et al., Practical Software
Measurement: Objective Information for Decision
Makers , Addison-Wesley, Boston, MA, 2002.

4

5

Goal-Driven
Measurement

SLOC Staff-Hours Trouble Reports Milest one dates

Business => Sub-goals => Measurement

Goals

• How large is our backlog of customer
change requests?

• Is the response time for fixing bugs compatible
with customer constraints?

Questions

GOAL(s)

Questions

Indicators

Measures

Indicator Template
Objective
Question

80

20
40
60

100

Inputs
Algorithm
Assumptions

Action
Plans

Analysis &
Diagnosis

Infrastructure
Assessment

Indicators

Handbook
Measures

4

Definition
Checklist

4
4

_____ 4

_____ 4

Measurement & Complexity Topics

 Goal-driven measurement

 Operational definitions

 Driving behavior

 What is complexity?

 Possible software complexity measures

 Using software complexity measures

 Evaluating software complexity measures
6

Operational Definitions

 The rules and procedures used to capture and
record data

 What the reported values include and exclude

 Operational definitions should meet two criteria
• Communication – will others know what has

been measured and what has been included
and excluded?

• Repeatability – would others be able to repeat
the measurements and get the same results?

7

SEI Core Measures

 Dovetails with SEI’s adaptation of goal-driven
software measurement

 Checklist-based approach with strong emphasis
on operational definitions

 Measurement areas where checklists have
already been developed include:
• effort
• size
• schedule
• quality

 See http://www.sei.cmu.edu/measurement/index.cfm
8

SLOC Definition Considerations

 Whether to include or exclude
• executable and/or non-executable code statements
• code produced by programming, copying without

change, automatic generation, and/or translation
• newly developed code and/or previously existing

code
• product-only statements or also include support

code
• counts of delivered and/or non-delivered code
• counts of operative code or include dead code
• replicated code

 When the code gets counted
• at estimation, at design, at coding, at unit testin g,

at integration, at test readiness review, at system
test complete

9

10

Common Software Information
Categories (McGarry 2002)

 Schedule and progress – achievement of milestones,
completion of work units

 Resources and cost – balance between work to be
performed and personnel resources assigned

 Product size and stability – stability of functionality

 Product quality – ability of product to support user’s
needs without failure

 Process performance – capability of the supplier
relative to the project needs

 Technical effectiveness – viability of proposed
technical approach

Putnam and Myers’ Five Core Metrics

 Size
- quantity of function, usually in SLOC or function p oints

 Productivity
- functionality produced for the time and effort expe nded

 Time
- duration of the project in calendar months

 Effort
- amount of work expended in person-months

 Reliability
- defect rate (or mean time to defect)

11

Measurement & Complexity Topics

 Goal-driven measurement

 Operational definitions

 Driving behavior

 What is complexity?

 Possible software complexity measures

 Using software complexity measures

 Evaluating software complexity measures
12

13

Dysfunctional Behavior

 Austin’s Measuring and Managing Performance
in Organizations
• motivational versus information measurement

 Deming strongly opposed performance
measurement, merit ratings, management by
objectives, etc.

 Dysfunctional behavior resulting from
organizational measurement is inevitable unless
• measures are made “perfect”
• motivational use impossible

I Wonder If I’m Motivating the
Right Behavior

14

Measurement & Complexity Topics

 Goal-driven measurement

 Operational definitions

 Driving behavior

 What is complexity?

 Possible software complexity measures

 Using software complexity measures

 Evaluating software complexity measures
15

Complexity from a Business Perspective

 S. Kelly and M.A. Allison, The Complexity
Advantage , 1999.
• nonlinear dynamics
• open and closed systems
• feedback loops
• fractal structures
• co-evolution
• natural elements of human group behavior

- exchange energy (competition to collaboration)
- share information (limited to open and fully)
- align choices for interaction (shallow to deep)
- co-evolve (from on-the-fly to with-coordination)

16

 Nonlinear dynamics ���� small differences at the
start may lead to vastly different results

- the butterfly effect

 Open systems ���� the boundaries permit
interaction with the environment

 Feedback loops ���� a series of actions, each of
which builds on the results of prior action and
loops back in a circle to affect the original state

- amplifying and balancing feedback loops

17

 Fractal structures ���� nested parts of a system are
shaped into the same pattern as the whole

- self-similarity
- software design patterns may contain other

patterns…

 Co-evolution ���� continual interaction among
complex systems; each system forms part of the
environment for all other systems

- system of systems
- simultaneous and continual change
- species survive that are most capable of adapting t o

their environment as it changes over time

18

Software Complexity

 Complexity is everywhere in the software life cycle …
usually an undesired property… makes software
harder to read and understand… harder to change

- I. Herraiz and A.E. Hassan, “Beyond Lines of Code: Do We
Need More Complexity Metrics?” Chapter 8 in Making
Software: What Really Works, and Why We Believe It , A.
Oram and G. Wilson (eds), 2011, pp. 125-141.

 Dependencies between seemingly unrelated parts of
a system … (unplanned) couplings between otherwise
independent system components

- G.J. Holzmann, “Conquering Complexity,” IEEE Compute r,
December 2007.

19

A Vague Concept

 Not always clear what “complexity” is
measuring...

 Characteristics include difficulty of
implementing, testing, understanding, modifying,
or maintaining a program.

 E.J. Weyuker, “Evaluating Software Complexity Measu res,”
September 1988.

20

Measurement & Complexity Topics

 Goal-driven measurement

 Operational definitions

 Driving behavior

 What is complexity?

 Possible software complexity measures

 Using software complexity measures

 Evaluating software complexity measures
21

Potential Software
Complexity Measures

 Lines of code

 Source lines of code

 Number of functions

 McCabe cyclomatic complexity
• maximum of all functions
• average over functions

 Coupling and cohesion

22

 Halstead’s software science
• length
• volume
• level
• mental discriminations

 Oviedo’s data flow complexity

 Chidamber and Kemerer’s object oriented
measures

 Knot measure
- for a structured program, the knot measure is alway s 0

23

 Fan-in, fan-out

 Henry and Kafura’s measure depends on
 procedure size and the flow of information into
procedures and out of procedures.
• length x (fan-in x fan-out)

- S. Henry and D. Kafura, “The Evaluation of Software
Systems’ Structure Using Quantitative Software
Metrics,” Software Practice and Experience, June 198 4.

 And so forth…

24

(Source) Lines of Code

 LOC – total number of lines in a source code file,
including comments, blank lines, etc.

- countable using the Unix wc utility

 SLOC – any line of program text that is not a
comment or blank line, regardless of the number
of statements or fragments of statements on the
line
• includes program headers, declarations,

executable and non-executable statements

 I. Herraiz and A.E. Hassan, “Beyond Lines of Code: Do We Need
More Complexity Metrics?” Chapter 8 in Making Softwa re: What
Really Works, and Why We Believe It , A. Oram and G. Wilson
(eds), 2011, pp. 125-141.

25

McCabe Cyclomatic Complexity

 In the control flow graph for a procedure
reachable from the main procedure containing
• N nodes
• E edges
• p connected procedures

- only procedures that are reachable from the main
procedure

 V(G) = E – N + 2p

 T. McCabe, “A Complexity Measure,” IEEE Transactions on
Software Engineering, September 1976.

26

Using p

 Does p allow analysis of a collection of
programs?
• programs with nested functions
• typically only look at a single program rather

than a “library” with many disconnected
routines

 Herraiz and Hassan (2011) use the maximum or
average cyclomatic complexity for all functions
in a file.

27

Recommended Ranges
for Cyclomatic Complexity

 V(G) should be less than 10
• commonly accepted range

 Mathur recommends less than 5

 Some suggest that 10-20 should be classified as
“challenging”

28

Halstead’s Software Science

 M.H. Halstead, Elements of Software Science , 1977.

 N1 number of operators in a program
 N2 number of operands in a program
 ηηηη1 number of unique operators in a program
 ηηηη2 number of unique operands in a program
 ηηηη program vocabulary = ηηηη1 + ηηηη2
 N program length = N 1 + N2

 V program volume = N x log 2ηηηη

 D difficulty = (ηηηη1 / 2) x (N2 / ηηηη2)
 lv level = 1 / D
 E effort (number of mental discriminations) = D x V

 B number of delivered bugs = V / 3000
29

Counting Rules for Halstead

 Do you count ; and , as operators?

 Do you count “paired” reserved words as
distinct operators?

- {}, (), if-then, begin-end, …

 Do you count syntactical markers?
- end if, end loop, …

 Do you count (unary | binary) operators (e.g.,
minus or negative) as a single operator? Or two
distinct operators?

30

Halstead’s E

 Halstead’s E is in terms of discriminations per
second
• Stroud number is 18 discriminations /

second

 To convert Halstead’s E to Schneider’s E, one
correction factor is

 18 discriminations/sec * 60 sec/min * 60 min/hr
* 8 hr/day * 17 day/mon

 = 8,812,800 discriminations/month

31

Oviedo’s Data Flow Complexity

 Given the basic blocks from a control flow
graph…

 A block’s data flow complexity is the count of all
prior definitions of locally exposed variables in
block i which reach block i.

 Data flow complexity of a program is the sum of
the data flow complexities of each block in the
program body.
• only interblock data flow contributes to the

complexity of a program body
• closely related to the all-uses test adequacy

criterion
32

Lack of Cohesion of Methods (LCOM)
(Chidamber and Kemerer, 1994)

 Take each pair of methods in a class. If they acces s
disjoint sets of instance variables, increase P by one. If
they share at least one variable access, increase Q by
one.

 LCOM = P – Q if P > Q
 LCOM = 0 otherwise

- LCOM = 0 indicates a cohesive class.
- LCOM > 0 indicates that the class needs or can be s plit into

two or more classes, since its variables belong in disjoint sets.
- Classes with a high LCOM have been found to be faul t-prone.
- A high LCOM value indicates disparateness in the fu nctionality

provided by the class.

33

Tight and Loose Class Cohesion
(Bieman and Kang, 1995)

 Methods a and b are related if
• they both access the same class-level variable
• the call trees starting at a and b access the

same class-level variable.
- if a call goes outside the class, we stop following that

call branch

 When two methods are related this way, we call
them directly connected .

 When two methods are not directly connected,
but they are connected via other methods, we
call them indirectly connected .

34

 NP = maximum number of possible connections
 = N * (N-1) / 2
 where N is the number of methods

 NDC = number of direct connections
- number of edges in the connection graph

 NID = number of indirect connections

 Tight class cohesion (connection density)
• TCC = NDC / NP

 Loose class cohesion (overall connectedness)
• LCC = (NDC + NID) / NP

35

 TCC is in the range 0…1

 LCC is in the range 0…1

 TCC<=LCC

 The higher TCC and LCC, the more cohesive the
class is.

 TCC < 0.5 and LCC < 0.5 are considered non-
cohesive classes.

- LCC = 0.8 is considered “quite cohesive”
- TCC = LCC = 1 is a maximally cohesive class: all

methods are connected

36

Measuring Coupling (Wikipedia)

 For data and control flow coupling
• d i: number of input data parameters
• c i: number of input control parameters
• do: number of output data parameters
• co: number of output control parameters

 For global coupling
• gd: number of global variables used as data
• gc: number of global variables used as control

 For environmental coupling
• w: number of modules called (fan-out)
• r: number of modules calling the module under

consideration (fan-in)
37

 Coupling (C) = 1 –
 1

 d i + 2 c i + do + 2 co + gd + 2 gc + w + r

 Coupling(C) is larger the more coupled the module
is.

- This number ranges from approximately 0.67 (low
coupling) to 1.0 (highly coupled).

38

Measurement & Complexity Topics

 Goal-driven measurement

 Operational definitions

 Driving behavior

 What is complexity?

 Possible software complexity measures

 Using software complexity measures

 Evaluating software complexity measures
39

Defects and Reliability

 Defect prediction models
• predict the number of defects in a module or

system
• predict which modules are defect-prone

 Reliability models
• predict failures (usually mean-time-to-failure

MTTF)

 Be wary of attempts to equate defect densities
with failure rates!

40

Who Uses?

 Defect prediction models are used during
development.
• by project management and the development

team
• to focus effort on the parts of the system that

need the most attention
• to understand the impact of selected

processes, techniques, and tools on quality

 Reliability models can be used during testing to
determine where the software is ready to release.
• to understand the quality of the operational

software

41

Causal Factors for Defects

 Difficulty of the problem

 Complexity of designed solution

 Programmer/analyst skill

 Design methods and procedures used

 N.E. Fenton and M. Neil, “A Critique of Software De fect
Prediction Models,” IEEE Transactions on Software
Engineering, September/October 1999.

42

Explanatory Variables for
Predicting Defects

 Size measures (LOC)

 Complexity measures
- McCabe cyclomatic complexity
- Halstead software science: effort
- count of procedures
- Henry and Kafura’s Information Flow Complexity
- Hall and Preisser’s Combined Network Complexity

 OO structural measures (Chidamber and
Kemerer)

 Code churn measures
- amount of change between releases

43

 Process change and fault measures
- experience
- number of developers making changes
- number of defects in previous releases
- number of LOC added/changed/deleted

44

Limits of Using Size and Complexity
Measures to Predict Defects

 Models using size and complexity metrics are
structurally limited to assuming that defects are
solely caused by the internal organization of the
software design and cannot explain defects
introduced because
• the “problem ” is “hard”
• problem descriptions are inconsistent
• the wrong “solution” is chosen and does not

fulfill the requirements

45

Techniques Used

 Regression models
• multicollinearity is a problem

 Factor analysis / principal component analysis

 Bayesian belief networks

 Artificial neural networks

 Capture-recapture

46

Capture-Recapture

 Uses the overlap between the sets of defects found
by different reviewers to estimate residual defects

 Assumptions
• reviewers work independently of each other
• searching is performed before, and not during,

an inspection meeting

 If the overlap is large, few defects are left to be
detected.

 If the overlap is small, many faults are undetected .

47

History of Capture-Recapture

 First known use of capture–recapture was by
 Laplace (1786), who used it to estimate the
population size of France

 In biology, capture–recapture is used to estimate
the population size of animals in an area

48

Lincoln-Petersen Method

 N = M C / R

 N – estimate of total population size

 M – total number of animals captured and
marked on the first visit

 C – total number of animals captured on the
second visit

 R – number of animals captured on the first visit
that were then recaptured on the second visit

49

Example

 Capture 10 specimens on a first visit and mark
them

 Capture 15 specimens on a second visit
• 5 are marked from the first visit

 N = M C / R = (10) (15) / 5 = 30

50

Chapman Estimator

 A less biased estimator for small samples

 N = [(M + 1) (C + 1) / (R + 1)] – 1

 var(N) = [(M + 1) (C + 1) (M – R) (C – R)] /
 [(R + 1) (R + 1) (R + 2)]

 Example
• N = [(10 + 1) (15 + 1) / (5 + 1)] -1 = 29.3
• var(N) = (11*16*5*10) / (6*6*7) = 34.9
• std(N) = sqrt(34.9) = 5.9

51

Capture-Recapture Models
in Software Engineering

 Basic model (M0) assumes that all faults are
equally probable to be found and that all

 reviewers have equal abilities to find faults

 Mh model – the probabilities of fault detection
vary

 Mt model – abilities of reviewers vary

 Mth model – both the probabilities of fault
detection and the abilities of reviewers vary

52

Capture-Recapture Estimators

 M0
• M0–ML – maximum likelihood (Otis, 1978)

 Mt
• Mt–ML – maximum likelihood (Otis, 1978)
• Mt–Ch – Chao’s estimator (Chao, 1989)

 Mh
• Mh–JK – Jackknife (Burnham, 1978)
• Mh–Ch – Chao’s estimator (Chao, 1987)

 Mth
• Mth–Ch – Chao’s estimator (Chao, 1992)

53

Goodness of Capture-Recapture

 For four reviewers and more, Mh–JK is
preferable

 Mt–Ch is the best estimator for two reviewers

 Most models underestimate, but false positives
inflate the estimate

54

Reinspections

 If a reinspection is made, knowledge grows about th e
artifact

 Biffl and Grossman (2001) approaches to using
additional information
a) first combine the data from the inspections and

then estimate
b) add the number of faults detected in the first

inspection to an estimate of the reinspection
c) estimate the first inspection and the reinspectio n

separately and then add their results

 Best approach is (a), which improved estimators
significantly

55

Bayesian Belief Networks

 Fenton and Neil (1999) concluded that Bayesian
belief nets were the best solution.

- Explicit modeling of “ignorance” and uncertainty in
estimates, as well as cause-effect relationships.

- Makes explicit those assumptions that were previous ly
hidden - hence adds visibility and auditability to t he
decision-making process.

- Intuitive graphical format makes it easier to under stand
chains of complex and seemingly contradictory
reasoning.

- Ability to forecast with missing data.
- Use of “what-if?” analysis and forecasting of effect s of

process changes.
- Use of subjectively or objectively derived probabil ity

distributions.
- Rigorous, mathematical semantics for the model.

56

Performance of
Defect Prediction Models

 Precision – proportion of units predicted as
faulty that were faulty

 Recall – proportion of faulty units correctly
classified

 F-Measure – harmonic mean of precision and
recall

- (2 * recall * precision) / (recall + precision)

 T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Coun sell,
“Developing Fault-Prediction Models,” IEEE Software,
November/December 2011.

57

 Most models peak at about 70% recall.

 Models based on naïve Bayes and logistic
regression seem to work best.

 Models that use a wide range of metrics perform
relatively well.
• source code, change data, data about

developers

 Models using LOC metrics performed
surprisingly well.

 Successful defect prediction models are built or
optimized to specific contexts.

58

Challenges in Using
Defect Prediction Models (Fenton, 1999)

 Difficult to determine in advance the seriousness
of a defect

 Great variability in the way systems are used by
different users, resulting in wide variations of
operational profiles

 Difficult to predict which defects are likely to le ad
to failures (or to commonly occurring failures)

- 33% of defects led to failures with a MTTF greater
than 5,000 years

- proportion of defects which led to a MTTF of less
than 50 years was around 2%

59

Software Reliability
 J.D. Musa, A. Iannino, and K. Okumoto, Software Rel iability:
Measurement, Prediction, Application , 1987.

 Probability of failure-free operation of a computer
program for a specified time in a specified environ ment.

 Reliability is defined with respect to time.
• execution time
• calendar time

 Characterizing failure occurrences in time
• time of failure
• time interval between failures
• cumulative failures experienced up to a given time
• failures experienced in a time interval

60

The Random Nature of Failures

 Mistakes by programmers, and hence the introduction
of defects, is a complex, unpredictable process.

 Conditions of execution of a program are generally
unpredictable.

 Failure behavior is affected by two principal facto rs
• number of defects in the software being executed
• execution environment or operational profile of

execution

61

Nonhomogenous Processes

 A random process whose probability distribution
varies with time is called nonhomogeneous.

 Musa’s basic execution time model and
logarithmic Poisson execution time model
assume that failures occur as a (NHPP)
nonhomogeneous Poisson process.

62

Predicting Reliability

 Stochastic reliability growth models can produce
accurate predictions of the reliability of a
software system providing that a reasonable
amount of failure data can be collected for that
system in representative operational use.

 Unfortunately, this is of little help in those many
circumstances when we need to make
predictions before the software is operational.

 N. Fenton and M. Neil, “Software Metrics: Successes ,
Failures, and New Directions,” The Journal of System s and
Software, July 1999.

63

Measurement & Complexity Topics

 Goal-driven measurement

 Operational definitions

 Driving behavior

 What is complexity?

 Possible software complexity measures

 Using software complexity measures

 Evaluating software complexity measures
64

Properties of Measures (Kearney 1986)

 J.K. Kearney, R.L. Sedlmeyer, W.B. Thompson,
M.A. Gray, and M.A. Adler, “Software Complexity
Measures,” Communications of the ACM,
November 1986.
• Robustness

- not reduce the measure via incidental changes
• Normativeness

- identify an acceptable level of complexity
• Specificity

- identify what contributes to complexity
• Prescriptiveness

- suggest methods to reduce complexity
• Property definition

- determine whether properties are satisfied

65

Weyuker’s Properties

 E.J. Weyuker, “Evaluating Software Complexity
Measures,” IEEE Transactions on Software
Engineering, September 1988.

 Propose properties that permit us to formally
compare software complexity models.
• not an informal discussion of pros and cons
• not an empirical study of correlation

66

Weyuker Property 1

 A measure that rates all programs as equally
complex is not really a measure.

 There exists P, Q, such that |P| ≠≠≠≠ |Q|.

67

Weyuker Property 2

 Let c be a nonnegative number. There are only
finitely many programs of complexity c.

 The measure should not be too “coarse.”

 There should be more than just a few complexity
classes.

 LOC, Halstead fulfill Property 2.

 Cyclomatic complexity, data flow complexity do not.

 Cyclomatic complexity does not distinguish between
prgrams that perform little computation and those t hat do
massive amounts if they have the same control struc ture.

68

Weyuker Property 3

 We do not want too fine a measure – do not
assign to every program a unique complexity
(e.g., a Gödel numbering).

 There are distinct programs P and Q such that
|P| = |Q|.

69

Weyuker Property 4

 Details of a program ’s implementation determine
its complexity.

 There exists P, Q, such that P is equivalent to Q
and |P| ≠≠≠≠ |Q|.

 Since program equivalence is undecidable, no
usable measure can divide programs into
complexity classes based on the equivalence of
computations.

 From a practical perspective, Properties 1 and 4
are equivalent.

70

Weyuker Property 5

 For every P, Q then |P| ≤≤≤≤ |P;Q| and |Q| ≤≤≤≤ |P;Q|.

 Complexity increases monotonically as programs
are composed.

 Property 5 does not hold for data flow complexity o r Halstead
effort.

 Effort ���� It is difficult to imagine an argument that it woul d take
more effort to produce the initial part of a progra m than to
produce the entire program.

71

Weyuker Property 6

 a) There exists P, Q, R such that |P| = |Q| and
 |P;R| ≠≠≠≠ |Q;R|

 b) There exists P, Q, R such that |P| = |Q| and
 |R;P| ≠≠≠≠ |R;Q|

 Does concatenation of programs affect the
complexity of the resulting program in a uniform
way?

 Neither cyclomatic complexity nor LOC satisfy Prope rty 6.

 Property 6 holds for data flow complexity and Halst ead
effort.

72

Weyuker Property 7

 Program complexity should be responsive to
the order of the statements, and hence the
potential interaction among statements.

 There are P and Q such that Q is formed by
permuting the order of the statements of P and
|P| ≠≠≠≠ |Q|.

 Property 7 does not hold for LOC, cyclomatic
complexity, nor Halstead effort.

 It does for data flow complexity.

73

Weyuker Property 8

 If P is a renaming of Q, then |P| = |Q|.

 Property 8 holds for LOC, cyclomatic complexity, Ha lstead,
and data flow complexity.

 It would not hold for a Gödel numbering measure.

74

Weyuker Property 9

 At least in some cases, because of interaction,
the complexity of concatenated programs is
greater than the sum of their complexities.

 There exists P, Q such that |P| + |Q| < |P;Q|.

 Property 9 does not hold for LOC or cyclomatic
complexity.

 Property 9 holds for data flow complexity and Halst ead
effort.

75

An Interesting Question

 Should the complexity of a program be no less
than the sum of the complexities of each of its
parts?

 In general, a measure that views the complexity
of a program as independent of its context will
satisfy this property.

 Would it take twice as much time to implement or
understand P;P as to implement or understand
P?

 Consider this an interesting open question…
76

Summary of Weyuker’s Findings

Property LOC
(statement

count)

Cyclomatic
complexity

Halstead
effort

Data flow
complexity

1 Yes Yes Yes Yes

2 Yes No Yes No

3 Yes Yes Yes Yes

4 Yes Yes Yes Yes

5 Yes Yes No No

6 No No Yes Yes

7 No No No Yes

8 Yes Yes Yes Yes

9 No No Yes Yes

77

Criticisms of Weyuker’s Properties

 Not predicated on a single consistent view of
complexity.

- N.E. Fenton and S.L. Pfleeger, Software Metrics: A
Rigorous & Practical Approach, Second Edition , 1997.

 Not consistent with the principles of scaling.
- H. Zuse, “Properties of Software Measures,” Software

Quality Journal, 1992.

 May only give necessary but not sufficient
conditions for good complexity measures.

- J.C. Cherniavsky and C.H. Smith, “On Weyuker’s Axio ms
for Software Complexity Measures,” IEEE Transactions
on Software Engineering, Vol. 17, 636-638, 1991.

78

Do We Need More Complexity
Measures? (Herraiz 2011)

 All of the complexity measures they examined were
highly correlated with lines of code.

 Header files showed poor correlation between
cyclomatic complexity and the rest of the measures.

 Cyclomatic complexity ���� a great indicator for the
number of paths that need to be tested

 Halstead ���� there are always several ways of doing the
same thing in a program

 Syntactic complexity measures cannot capture the
whole picture of software complexity.

79

80

Questions and Answers

