ArticulatedFusion: Real-time Reconstruction of
Motion, Geometry and Segmentation Using a
Single Depth Camera
—Supplemental Material—

Chao Li, Zheheng Zhao, and Xiaohu Guo

Department of Computer Science,
The University of Texas at Dallas
{Chao.Li2, Zheheng.Zhao, xguo}Qutdallas.edu

1 Formula Derivation

In this section, we first introduce all symbols and then the derivation of related
formula. The list of all symbols is shown in table 1:

Table 1. List of all symbols

Ch the k-th cluster

x the position in canonical frame for a node of cluster Cj

y! the position in live frame ¢ for a node in cluster Cj

Ck the centroid position of cluster C in canonical frame

cfc the centroid position of cluster Cy in live frame ¢

Nk the number of nodes belonging to cluster C in canonical frame

A'(Cy) |the cross covariance matrix of cluster Cy,

(R, t%)[rotation and translation of cluster Cy
(R*,t")|optimal rotation and translation of cluster C}
Okq the g-th singular value of A*(Cy)

Optimal Energy E* for an Arbitary Cluster

The total segmentation energy is as follows:

Esg =3 Y IRix+ti—y'|* (1)

k=1x€eC}

When segmentation is fixed, the segmentation energy term of each cluster is
independent to each other. Therefore, we can parallelly compute the optimal
energy of each cluster E*(C%). In order to calculate E*(C}), we first need to

000
001
002
003
004
005
006
007
008
009

040
041
042
043
044

2 C. Li, Z. Zhao and X. Guo

know how to compute the optimal value of rotation and translation (Rf,t!)
based on the segmentation energy term of an arbitary cluster Cy:

E(Cx) = Y |Rix+t, —y'|* (2)

x€eCl,

According to Sorkine-Hornung and Rabinovich’s technical report [1], the op-
timal (RY,t!) is as follows:

1
R =V| 1 U, (3)
det(VUT)
t* =cl — R*cy, (4)
where
AYC =PQT =UXVT, (5)
P=|x—-cy|, (6)
Q= |y —¢c|, (7)
PQT=> (x—c)y' —cp)T, (8)
xeCl,
cL = ZXEC}c X, (9)
Nk
t
C% = 7Zyt60k Y . (10)
Nk

UXVT is the Singular Value Decomposition (SVD) of matrix A*(Cy).
Replace t!, in Eq.(2) by t* in Eq.(4), we have:

E*(Cr) = Y IR x+t" =y

xeC
=Y IR (x—ck) = (v = cp)I?

S (11)
= > (- x o) + '~)T~ <)

xeCly,

-2 Z (y' —ct)TR*(x — cp).

x€eCl,

045
046
047
048
049
050
051

053
054

056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089

ArticulatedFusion 3

By making p := x — ¢ and q := y’ — ¢}, according to Sorkine-Hornung and
Rabinovich’s technical report [1], we have:
Y)R (x—cp)
xeCl,
_ T px*
- Z q ’'p (12)
x€eC
=tr(Q"R*P) =tr(R*"PQ") = tr(R*USV ")
=tr(ZVTR*U).

According to Eq.(3), Eq.(12) can be re-written as:

Z (y — Ck)TR* — Ck ZO’kq (]_3)

xeCl,

Therefore,

3
E*(Cr)= Y lx—en)T(x—ci) + (' —ef) (v —cp)] =2 ong. (14)
q=1

x€C

Cluster Mergence: (C;, C;) — Cj
By decomposing Eq.(14) into two parts, we have

E{(Cr)= Y [(x—er)T(x—ex) + (v" — i) T(y" — i)l (15)

xeCl,

E3(Cy) = —22% (16)

If we merge a pair of clusters (C;,C;) into a new cluster Cy, E7(Cy) and
E3(Cy) can be updated in constant time.

Firstly,
AlCr) =D (x—c)(y =)’
xeCl,
=Y (x—er)y =)+ > (x—en)y' —cf)’
xeC; x€C; (17)

=ni(e; —cx)(c] — i) " +n;(e; —ex)(ch —cf)’

+ A (C;y) + A (Cy),

where n; is the number of nodes in cluster C;, and so is n; for C;. The new
centroid ¢y of cluster C} can be updated by:
n;C; + ’I’Lj Cj

=2 JI 18
C* n; +n; ()

090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

4 C. Li, Z. Zhao and X. Guo

So is ¢. And oy, can be solved by the SVD decomposition of A*(Cy). Therefore,
E3(C%) can be updated in constant time.
Secondly,

ET(Cy) =E7(Ci) + ET(C;)

+ni(c; —cx) T (e; — ex) + nilcl —cf) " (cl

+n5(c; —cp) (¢ — cx) +n (ch — i) T (ch — c).

Therefore, E;(Cy) can be updated in constant time.

Because both Ef(Cy) and E3(Cy) can be updated in constant time, the
energy change aftering merging C;, C; into Cj can be calculated in constant
time as follows:

AET =E{(Cr) — E7(Ch) — E{(C))

=n;(c; — c) ' (c; — cx) + ni(ch — cj) " (ch — cf) (20)

+n;(c; —ck) ' (cj — ck) + nj(ch —cf) ' (ch —cf),
AE; = E3(Cy) — E5(Ci) — E3(Cy), (21)

AE* = AE} + AE}. (22)

In summary, the merge cost AE* can be computed efficiently by keeping
track of the centroid, the number of nodes and the cross covariance matrix of
each cluster: {ck,nx, A'(Ck)}, simple computing operations in constant time
and a SVD decomposition of a 3 x 3 cross covariance matrix.

Cluster Optimization: Swapping C; from C; to C;

Let us suppose swapping a one-node cluster C; from C; to C; (C; only contains
one boundary node x;). After swapping, C; becomes C;» and C; becomes Cj:
ie., Cy = Cy — Cp, Cjv = C; U). Then we can consider that C; is formed by
a merging operation (Cy,C;) — C; and Cj is formed by a merging operation
(C;,Cy) — Cjr. This can help us treat the swapping operation as a combination
of merging operations, and calculate energy change by using equations from the
previous section.
The decrease of energy Ej3 is:

AE; = E5(Cir) + E5(Cyr) — E5(Gi) — B (C). (23)

E3(Cy) + E3(Cj/) can be calculated by SVD of A*(Cy) and A*(Cyr). AY(Cy)
and A*(Cj) can be updated by proper substitution according to Eq. (17):

AY(Cy) =AY (C)) — A(C)

t T

24
—ng(cy —ci)(ch —ch) T — (x1—¢i)(yj —)7, &9

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

212
213

ArticulatedFusion 5
AL(Cyr) =AN(C)) + AN ()
e — o Vet ot \T e (ot At T (25)
+n;(c; CJ’)(Cj Cj') + (x1 — ¢jr)(y Cj') .
Then following the same rules in calculation of AE3, the decrease of energy
ET is:
AET =E{(Cy) + E{(Cy) — E7(C) — ET(C))

=n;(c; —cj) " (c; — ;) +nj(ch — b)) T (ch —)

J
+ (x; — Cj')T(Xl —cj) + (v, — Cj')T(YE5 - CE") (26)
—ni(cy — i)' (i — ¢;) — ni(ch — i) " (ch —cf)

—(x; — Cz’)T(Xl —c) — ()’f - Cf T(Yf - Cf)

In summary, the swapping cost can be computed efficiently by keeping track
of the centroid, the number of nodes, and the cross covariance matrix of each
cluster: {cg, ny, A*(Cy)}, simple computing operations in costant time and SVD
decompositions of two 3 x 3 cross covariance matrices.

2 Discussion on Dynamic Clustering

Influence of Different Number of Clusters on Results

Suppose n is the necessary number of clusters for a motion, m is the total number
of nodes, and k is the fixed number of clusters to choose. There are 3 situations:

1. k < n: i.e., insufficient number of clusters. The reconstruction result will be
bad (Fig. 1 (a)). The highlighted right arm part is not well reconstructed.

2. k > n and k < m: the reconstruction result will be good (Fig. 1 (b) and
(©)):

3. Otherwise, the situation becomes similar as “DT 4 DynamicFusion”. The

reconstruction result will be still bad.

NN N NN

!
oy
(a) (b) ()
Fig. 1. (a) Reconstruction result with fixed 2 clusters. (b) Reconstruction result with
fixed 30 clusters. (c) Reconstruction result with dynamic clustering. For each group of

subfigures: the left-hand side image is the reconstructed geometry and the right-hand
side image is current segmentation.

Dynamic clustering mechanism will automatically determine the number of
clusters by setting an energy threshold in the merging step to decide when the

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

214

244
245
246
247

249
250
251
252
253
254
255

257
258
259

261
262
263
264

266
267
268

6 C. Li, Z. Zhao and X. Guo

merging should be stopped. In this way, the number of clusters is related to
the complexity of motions. As Fig. 2 shows, when the motion is changed from
one-arm-raising to two-arm-raising, the number of clusters is increased from 2
to 6 to represent the complex motion.

4%
(a) (b) (c)

Fig. 2. Dynamic Clustering mechanism. From (a) to (b): number of clusters is changed
from 2 to 3 when one arm is raising. From (b) to (c): number of clusters is changed from
3 to 6 when two arms are raising. For each group of subfigures: the left-hand side image
is the reconstructed geometry and the right-hand side image is current segmentation.

References

1. Sorkine-Hornung, O., Rabinovich, M.: Least-squares rigid motion using svd. De-
partment of Computer Science, ETH Zurich (2016)

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

252
253
254
255

257
258
259
260
261
262
263
264
265
266
267
268
269

