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1 Formula Derivation

In this section, we first introduce all symbols and then the derivation of related
formula. The list of all symbols is shown in table 1:

Table 1. List of all symbols

Ch the k-th cluster

x the position in canonical frame for a node of cluster Cj

y! the position in live frame ¢ for a node in cluster Cj

Ck the centroid position of cluster C in canonical frame

cfc the centroid position of cluster Cy in live frame ¢

Nk the number of nodes belonging to cluster C in canonical frame

A'(Cy) |the cross covariance matrix of cluster Cy,

(R, t%)[rotation and translation of cluster Cy
(R*,t")|optimal rotation and translation of cluster C}
Okq the g-th singular value of A*(Cy)

Optimal Energy E* for an Arbitary Cluster

The total segmentation energy is as follows:

Esg =3 Y IRix+ti—y'|* (1)

k=1x€eC}

When segmentation is fixed, the segmentation energy term of each cluster is
independent to each other. Therefore, we can parallelly compute the optimal
energy of each cluster E*(C%). In order to calculate E*(C}), we first need to
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know how to compute the optimal value of rotation and translation (Rf,t!)
based on the segmentation energy term of an arbitary cluster Cy:

E(Cx) = Y |Rix+t, —y'|* (2)

x€eCl,

According to Sorkine-Hornung and Rabinovich’s technical report [1], the op-
timal (RY,t!) is as follows:

1
R =V| 1 U, (3)
det(VUT)
t* =cl — R*cy, (4)
where
AYC =PQT =UXVT, (5)
P=|x—-cy|, (6)
Q= |y —¢c|, (7)
PQT=> (x—c)y' —cp)T, (8)
xeCl,
cL = ZXEC}c X, (9)
Nk
t
C% = 7Zyt60k Y . (10)
Nk

UXVT is the Singular Value Decomposition (SVD) of matrix A*(Cy).
Replace t!, in Eq.(2) by t* in Eq.(4), we have:

E*(Cr) = Y IR x+t" =y

xeC
=Y IR (x—ck) = (v = cp)I?

S (11)
= > (- x o) + '~ )T~ <)

xeCly,

-2 Z (y' —ct)TR*(x — cp).

x€eCl,
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By making p := x — ¢ and q := y’ — ¢}, according to Sorkine-Hornung and
Rabinovich’s technical report [1], we have:
Y )R (x—cp)
xeCl,
_ T px*
- Z q ’'p (12)
x€eC
=tr(Q"R*P) =tr(R*"PQ") = tr(R*USV ")
=tr(ZVTR*U).

According to Eq.(3), Eq.(12) can be re-written as:

Z (y — Ck)TR* — Ck ZO’kq (]_3)

xeCl,

Therefore,

3
E*(Cr)= Y lx—en)T(x—ci) + (' —ef) (v —cp)] =2 ong.  (14)
q=1

x€C

Cluster Mergence: (C;, C;) — Cj
By decomposing Eq.(14) into two parts, we have

E{(Cr)= Y [(x—er)T(x—ex) + (v" — i) T(y" — i)l (15)

xeCl,

E3(Cy) = —22% (16)

If we merge a pair of clusters (C;,C;) into a new cluster Cy, E7(Cy) and
E3(Cy) can be updated in constant time.

Firstly,
AlCr) =D (x—c)(y =)’
xeCl,
=Y (x—er)y =)+ > (x—en)y' —cf)’
xeC; x€C; (17)

=ni(e; —cx)(c] — i) " +n;(e; —ex)(ch —cf)’

+ A (C;y) + A (Cy),

where n; is the number of nodes in cluster C;, and so is n; for C;. The new
centroid ¢y of cluster C} can be updated by:
n;C; + ’I’Lj Cj

=2  JI 18
C* n; +n; ( )
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So is ¢. And oy, can be solved by the SVD decomposition of A*(Cy). Therefore,
E3(C%) can be updated in constant time.
Secondly,

ET(Cy) =E7(Ci) + ET(C;)

+ni(c; —cx) T (e; — ex) + nilcl —cf) " (cl

+n5(c; —cp) (¢ — cx) +n (ch — i) T (ch — c).

Therefore, E;(Cy) can be updated in constant time.

Because both Ef(Cy) and E3(Cy) can be updated in constant time, the
energy change aftering merging C;, C; into Cj can be calculated in constant
time as follows:

AET =E{(Cr) — E7(Ch) — E{(C))

=n;(c; — c) ' (c; — cx) + ni(ch — cj) " (ch — cf) (20)

+n;(c; —ck) ' (cj — ck) + nj(ch —cf) ' (ch —cf),
AE; = E3(Cy) — E5(Ci) — E3(Cy), (21)

AE* = AE} + AE}. (22)

In summary, the merge cost AE* can be computed efficiently by keeping
track of the centroid, the number of nodes and the cross covariance matrix of
each cluster: {ck,nx, A'(Ck)}, simple computing operations in constant time
and a SVD decomposition of a 3 x 3 cross covariance matrix.

Cluster Optimization: Swapping C; from C; to C;

Let us suppose swapping a one-node cluster C; from C; to C; (C; only contains
one boundary node x;). After swapping, C; becomes C;» and C; becomes Cj:
ie., Cy = Cy — Cp, Cjv = C; U ). Then we can consider that C; is formed by
a merging operation (Cy,C;) — C; and Cj is formed by a merging operation
(C;,Cy) — Cjr. This can help us treat the swapping operation as a combination
of merging operations, and calculate energy change by using equations from the
previous section.
The decrease of energy Ej3 is:

AE; = E5(Cir) + E5(Cyr) — E5(Gi) — B (C). (23)

E3(Cy) + E3(Cj/) can be calculated by SVD of A*(Cy) and A*(Cyr). AY(Cy)
and A*(Cj) can be updated by proper substitution according to Eq. (17):

AY(Cy) =AY (C)) — A(C)

t T

24
—ng(cy —ci)(ch —ch) T — (x1—¢i)(yj — )7, &9
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AL(Cyr) =AN(C)) + AN ()
e — o Vet ot \T e (ot At T (25)
+n;(c; CJ’)(Cj Cj') + (x1 — ¢jr)(y Cj') .
Then following the same rules in calculation of AE3, the decrease of energy
ET is:
AET =E{(Cy) + E{(Cy) — E7(C) — ET(C))

=n;(c; —cj) " (c; — ;) +nj(ch — b)) T (ch — )

J
+ (x; — Cj')T(Xl —cj) + (v, — Cj')T(YE5 - CE") (26)
—ni(cy — i)' (i — ¢;) — ni(ch — i) " (ch —cf)

—(x; — Cz’)T(Xl —c) — ()’f - Cf T(Yf - Cf)

In summary, the swapping cost can be computed efficiently by keeping track
of the centroid, the number of nodes, and the cross covariance matrix of each
cluster: {cg, ny, A*(Cy)}, simple computing operations in costant time and SVD
decompositions of two 3 x 3 cross covariance matrices.

2 Discussion on Dynamic Clustering

Influence of Different Number of Clusters on Results

Suppose n is the necessary number of clusters for a motion, m is the total number
of nodes, and k is the fixed number of clusters to choose. There are 3 situations:

1. k < n: i.e., insufficient number of clusters. The reconstruction result will be
bad (Fig. 1 (a)). The highlighted right arm part is not well reconstructed.

2. k > n and k < m: the reconstruction result will be good (Fig. 1 (b) and
(©)):

3. Otherwise, the situation becomes similar as “DT 4 DynamicFusion”. The

reconstruction result will be still bad.

NN N NN

!
oy
(a) (b) ()
Fig. 1. (a) Reconstruction result with fixed 2 clusters. (b) Reconstruction result with
fixed 30 clusters. (c) Reconstruction result with dynamic clustering. For each group of

subfigures: the left-hand side image is the reconstructed geometry and the right-hand
side image is current segmentation.

Dynamic clustering mechanism will automatically determine the number of
clusters by setting an energy threshold in the merging step to decide when the
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merging should be stopped. In this way, the number of clusters is related to
the complexity of motions. As Fig. 2 shows, when the motion is changed from
one-arm-raising to two-arm-raising, the number of clusters is increased from 2
to 6 to represent the complex motion.

4%
(a) (b) (c)

Fig. 2. Dynamic Clustering mechanism. From (a) to (b): number of clusters is changed
from 2 to 3 when one arm is raising. From (b) to (c): number of clusters is changed from
3 to 6 when two arms are raising. For each group of subfigures: the left-hand side image
is the reconstructed geometry and the right-hand side image is current segmentation.
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