
Computer-Aided Design 45 (2013) 463–472
Contents lists available at SciVerse ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

GPU-based computation of discrete periodic centroidal Voronoi tessellation in
hyperbolic space
Liang Shuai a, Xiaohu Guo a,∗, Miao Jin b

a University of Texas at Dallas, United States
b University of Louisiana at Lafayette, United States

a r t i c l e i n f o

Keywords:
Centroidal Voronoi tessellation
Universal covering space
Hyperbolic space
GPU algorithm

a b s t r a c t

Periodic centroidal Voronoi tessellation (CVT) in hyperbolic space provides a nice theoretical framework
for computing the constrained CVT on high-genus (genus > 1) surfaces. This paper addresses two com-
putational issues related to such a hyperbolic CVT framework: (1) efficient reduction of unnecessary site
copies in neighbor domains on the universal covering space, based on two special rules; (2) GPU-based
parallel algorithms to compute a discrete version of the hyperbolic CVT. Our experiments show that with
the dramatically reduced number of unnecessary site copies in neighbor domains and the GPU-based par-
allel algorithms, we significantly speed up the computation of CVT for high-genus surfaces. The proposed
discrete hyperbolic CVT guarantees to converge and produces high-quality results.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The centroidal Voronoi tessellation (CVT) [1] is a special type
of Voronoi diagram, where every site coincides exactly with the
centroid of its Voronoi cell. The celebrating Gersho’s conjecture [2]
in 2D, proved by Tóth [3], states that the shape of the Voronoi cells
converges to uniform regular hexagons when the CVT is optimized
globally. This property inspired many researchers to compute the
constrained CVT [4] on surfaces, for applications where a uniform
sampling or remeshing of the surface is desired.

Different methods of computing constrained CVT on surfaces
can be roughly categorized into two classes: ‘‘extrinsic’’ and
‘‘intrinsic’’ approaches. Extrinsic approaches [4–6] compute an
Euclidean Voronoi diagram in the ambient 3D space and its inter-
section of a surface, with sites constrained on the surface. If two
regions of the surface are close in the 3D space but far away along
the surface, the computed constrained CVT on surface tends to be
incorrect [7,8].

Intrinsic approaches [9,7,8], which overcome the above limi-
tations of their extrinsic counterparts, compute the CVT in a 2D
parameter domain of a surface, with a density function applied to
compensate the introduced area distortion of surface parametriza-
tion. To allow sites move freely across artificially cut open surface
boundaries on its parameter domain for non-topological disk sur-
faces, Rong et al. [8] proposed to compute the CVT in a 2D pe-
riodic parameter domain, called the Universal Covering Spaces of

∗ Corresponding author.
E-mail address: xguo@utdallas.edu (X. Guo).

0010-4485/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2012.10.029
surfaces, which are 2D spaces with constant curvatures — spher-
ical, Euclidean, and hyperbolic spaces.

Computing a CVT in a 2D periodic parameter domain is
equivalent to computing a periodic CVT in its corresponding space.
Computing a periodic CVT in spherical and Euclidean spaces has
been well studied in previous literatures [4,10,11]. Thus the main
challenge resides in the efficient computation of the periodic CVT
in hyperbolic space. In this paper we propose several strategies
to speed up the computation of periodic CVT in hyperbolic space,
including two special rules to efficiently reduce the number of site
copies, and a GPU-based parallel computation framework of the
discrete hyperbolic CVT.

1.1. Preliminaries

We first introduce briefly the concept of universal covering
space, and then present two definitions related to periodic CVT in
hyperbolic space.

A covering map is a surjective continuous map π from a
topological space Ū to another topological space U such that any
point p in U has a neighborhood N(p) satisfying π−1(N(p)) is a
collection of disjoint sets, and each set can be homeomorphically
mapped onto U by π . (Ū, π) is called the covering space of
U , and sometimes people simply denote it as Ū . (Ū, π) is the
universal covering space (UCS) of U if Ū is simply connected. A deck
transformation φ : Ū → Ū keeps the covering map π unchanged:
π = π ◦φ. All deck transformations form a so called Fuchsian group
G. A fundamental domain F of the UCS is a subset of Ū such that
Ū = ∪φ∈G φ(F). The UCS of a high-genus (genus > 1) surface can
be conformally embedded into a 2D hyperbolic space [12]. Fig. 1

http://dx.doi.org/10.1016/j.cad.2012.10.029
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:xguo@utdallas.edu
http://dx.doi.org/10.1016/j.cad.2012.10.029

464 L. Shuai et al. / Computer-Aided Design 45 (2013) 463–472
Fig. 1. Left: a point p on the surface is mapped to p̄ in the center domain by the
inverse coveringmapπ−10 , and p̄ can bemapped toπ−1j (p) in the neighbor domain j
by the deck transformationφj; Right: we can get the CVT result on a genus-2 surface
by computing a periodic CVT in the hyperbolic UCS.

shows a double-torus surface and its UCS embedded on hyperbolic
plane. We refer readers to Munkres’s book [13] for more details.

Definition 1. Let U be a surface and (Ū, π) be its UCS. Given a
point set S = {si ∈ U | i = 1, . . . , n} on U , the Voronoi diagram
in universal covering space of U induced by S can be defined as the
subdivision of Ū into Voronoi cells Ωucs

i :

Ωucs
i = {p ∈ Ū | dŪ(p, s̄i) < dŪ(p, s̄j),

∃ s̄i ∈ π−1(si),∀ s̄j ∈ π−1(sj),∀ j ≠ i}, (1)

where dŪ(·, ·) is the distance in space Ū .

Note that in the definition each point (or site) si is duplicated into
infinite number of copies via π−1. The fundamental domain is
periodically repeated in UCS, so a Voronoi diagram in UCS is also
a periodic Voronoi diagram (PVD).

Due to its periodicity, the PVD defined in (1) only needs to be
computed in one fundamental domain (referred as center domain
Ū0 later). Define the neighbor domains of Ū0 be the fundamental
domains which share at least one vertex with Ū0, denoted by Ūj,
j = 1, . . . , h, where h = 16g2

− 8g is the number of neighbor
domains for a genus-g surface. Useπ−1j (s) to denote the preimages
of site s in different fundamental domains (j = 0 for the center
domain and j = 1, . . . , h for neighbor domains). Let φj be such
a deck transformation that φj(s̄) = π−1j (s), where s̄ = π−10 (s)
(Fig. 1). Then we can refer to φj(s̄i), j = 1, . . . , h as the site copies
of site s̄i = π−10 (si) later for convenience.

This paper focuses on PVD in 2D hyperbolic space. There are
different models of 2D hyperbolic space, such as Poincaré disk,
Klein disk, Poincaré half-plane, and Minkowski model. All these
models are equivalent. In this paper we use the Poincaré disk
model to visualize the hyperbolic Voronoi diagram (see Fig. 1)
and the Minkowski model to define the centroid of a hyperbolic
region [8].

Definition 2. Given a region Ω on the Minkowski model, and
density ρ(p) for any point p ∈ Ω , the centroid of Ω is defined as:

c =
1
η


Ω

ρ(p)p dp, (2)

where

η =


Ω

ρ(p)pdp

M

. (3)
∥ · ∥M is the Minkowski norm which can be defined through its
inner product: ∥ · ∥M =

√
⟨·, ·⟩M .

Here the Minkowski inner product is defined as ⟨p, q⟩M = zpzq −
xpxq − ypyq for two points p = (xp, yp, zp) and q = (xq, yq, zq) on
the Minkowski model. Note that their hyperbolic distance can be
computed by dM(p, q) = cosh−1(⟨p, q⟩M).

Given a set of sites S = {si | i = 1, . . . , n} on the Minkowski
model, and its Voronoi diagram as Ω = ∪Ωi, where Ωi is the
Voronoi cell associated with site si, the hyperbolic CVT energy is
defined as:

E(S, Ω) =


i


Ωi

ρ(p) cosh(dM(p, si)) dp. (4)

With the above defined Voronoi diagram and centroid in
hyperbolic space, the hyperbolic CVT energy is proved to converge
with Lloyd’s algorithm [8].

1.2. Motivation and contribution

Rong et al. [8] proposed a nice periodic CVT framework in
hyperbolic space. However, two computational issues hinder their
algorithms from being practical for general high-genus surfaces.

The first issue is that they compute the part of PVD within a
center domain from a full site copies of the center domain and
its neighbor domains: {π−1j (si) | ∀si ∈ S, j = 0, . . . , h}, and
then the intersection of the resulting Voronoi diagram with the
center domain. Although the shape of periodic Voronoi cells inside
the center domain can be affected by the site copies located in
its neighbor domains, there are 16g2

− 8g neighbor domains for
a genus-g surface and only a small portion of the site copies in
them will affect the Voronoi cells near the boundary of the center
domain. In Section 3, We propose two simple rules, which can
be computed efficiently, to significantly reduce the number of
unnecessary site copies in neighbor domains.

The second issue is that computing a hyperbolic CVT is
extremely time-consuming. For example, computing 1000 sites on
a genus-3 Sculpture surface takes around 55 s for each Lloyd’s
iteration on a desktop computer with a Core 2 Duo 2.93 GHz CPU.
We can utilize the parallel computability of the programmable
GPU to accelerate this process. We first define a discrete version of
the hyperbolic CVT with each triangle represented by its centroid
and the constrained CVT approximated with clusters of triangles.
Our discrete CVT is similar to Valette et al. [14]. However, it is
formulated in a 2D periodic hyperbolic domain, with its discrete
CVT energy proved to converge.We then introduce a parallel mesh
flooding algorithm to efficiently compute the defined discrete
hyperbolic PVD in Section 4.2. We further show that the energy of
the discrete hyperbolic CVT is guaranteed to converge under our
GPU-based computational framework in Section 5.

The contribution of this paper can be summarized as:

1. Two computing efficient rules are introduced to reduce the
unnecessary site copies in neighbor domains for computing
hyperbolic PVD;

2. A GPU-based parallel mesh flooding algorithm is proposed to
compute the discrete hyperbolic Voronoi diagram.

Both of the two aspects serve for speeding up the computation of
hyperbolic CVT.

2. Related work

In this section,wegive a brief reviewof existing research related
to this work.

L. Shuai et al. / Computer-Aided Design 45 (2013) 463–472 465
2.1. CVT algorithms

Before Du et al. [1] introduced the concept of centroidal
Voronoi tessellation, there have been some studies about the
related concepts in different areas. MacQueen [15] proposed one
of the earliest CVT algorithms. However, the probabilistic nature
makes its convergence very slow. Lloyd proposed a simple and
deterministic algorithm [16], whose convergence was proved later
by Du et al. [17]. Liu et al. [5] proposed a quasi-Newton method
to optimize the CVT energy, by proving that the energy is C2

continuous.
In all the above research, the CVT is computed in 2D/3D

Euclidean space. Du et al. [4,10] computed the spherical CVT by
treating it as the constrained CVT on the sphere. Rong et al. [7,8]
extended the concept of CVT from the traditional Euclidean and
spherical spaces into the unexplored Hyperbolic space [7], and
unified the treatment of CVT in the three different spaces, including
the CVT energy functions and their convergence [8].

2.2. CVT on surfaces

CVT has been applied for computing uniform tessellation and
remeshing of surfaces. Compared with traditional CVT on planar
space, such constrained CVT [4] requires all the sites to be
constrained on the surface. Using the 3D Euclidean distance as an
approximation, Yan et al. [6] computed the CVT in 3D space and
then intersected it with the surface. However, this approach can
lead to disconnected Voronoi cells if two regions are close in 3D
space but far apart along the surface, as shown by Rong et al. [7,8].

An alternative approach is to compute the CVT in the 2D
parameter domain of the surface. Surazhsky et al. [18] used a local
parametrization approach by projecting the 1-ring neighbors of
a site onto the tangential plane, and finding the centroid of the
Voronoi cell in the plane. Alliez et al. [9] parameterized a surface
to a planar disk and then computed the CVT on the disk. Since a
non-topological disk surface has to be cut open to a topological
disk along a set of cutting edges, and sites are unable to cross
the boundary of the parameterized disk, visible artifacts are left
on the surface along the cutting edges. This problem was solved
later by Rong et al. [7,8] by computing the CVT on a 2D periodic
hyperbolic parameterizing domain, where sites can move freely
along or across any cutting boundaries.

2.3. Periodic Voronoi diagram

Yan et al. [11] computed the periodic Voronoi diagram in 2D
Euclidean space using a reduced set of periodic copies of the input
sites. A related dual problem, periodic Delauney triangulation, has
been studied by Caroli and Teillaud [19] on the 3D Euclidean space.
The computation of the periodic Voronoi diagram in 2D hyperbolic
space by Rong et al. [7,8] uses full copies of the sites in both the
center domain and its 16g2

− 8g neighbor domains for a genus-g
surface. In this paper, we present two special rules to effectively
reduce the set of unnecessary site copies of neighbor domains.

2.4. GPU-based CVT computation

Vasconcelos et al. [20] proposed to use GPU to compute CVT in
a 2D plane, by using a predefined mask to estimate the Voronoi
cell for each site. Rong et al. [21] presented a GPU-assisted
method to compute the constrained CVT on a surface, based
on its 2D geometry image. The surface is discretized as pixels
on a rectangular domain, and then an efficient Jump Flooding
Algorithm [22] is applied to compute the discrete Voronoi diagram.
Rong et al.’s geometry-image approach [21] suffers from the same
problem as Alliez et al. [9], where the sites cannot move freely
across the boundary of the parametrization domain.
Fig. 2. The (a) non-periodic and (b) periodic Voronoi diagrams in center domain
with same input sites.White dots denote boundary sites andblack dots denote inner
sites.

3. Reduction of site copies

As we discussed earlier, to compute hyperbolic PVD, we only
need to compute the hyperbolic Voronoi diagram in the center
domain, with necessary site copies in neighbor domains. In this
section we introduce two simple rules to effectively improve the
computational efficiency of the hyperbolic Voronoi diagram in the
center domain.

The key idea is that we want to keep only sites of the center
domain and the necessary site copies in its neighbor domains
for the computation since the time complexity of computing
hyperbolic Voronoi diagram is O(n log n) where n is the number of
sites [23,7]. The challenge is that the exactly necessary site copies
– the site copies of neighbor domains with their periodic Voronoi
cells intersecting with the center domain – cannot be determined
unless the hyperbolic PVD is computed.

Yan et al. [11] show some simple and effective rules to
achieve similar goals for Euclidean PVD. Rules for hyperbolic PVD,
compared with its Euclidean counterpart, are more demanding
because the number of site copies in neighbor domains increases
quadratically with the genus of the surface, and are also more
challenging because the deck transformation in 2D hyperbolic
space (i.e. Möbius transformation) is less intuitive than rigid
transformation in the Euclidean plane. Basically, we want to
answer the following two questions: (1) which site in the center
domain needs to be copied into neighbor domains; and (2) which
neighbor domain copy of the site is necessary.

Let’s refer to the set of sites in center domain whose Voronoi
cells intersect with the boundary of the center domain as boundary
sites, denoted by Sbdy. Since the Voronoi cells of non-boundary sites
(or inner sites) in a PVD do not touch the boundary of the center
domain, their copies are not needed. Fig. 2 shows the fact that
all the inner sites of a non-periodic VD are still inner sites of the
corresponding PVD. So all the inner sites of the non-periodic VD do
not need to be copied. Then we have the following rule to answer
the first question, which is similar to the conclusion in Yan et al.’s
2D Euclidean PVD [11].

First rule: when we compute a non-periodic Voronoi diagram
with sites of the center domain, only the boundary sites need to be
copied to neighbor domains for computing the hyperbolic PVD.

For the second question, we answer it with the following rule.
Second rule: whenwe compute a non-periodic Voronoi diagram

for the boundary sites and their copies in neighbor domains: Sbdy∪
Scopy, where Scopy = {φj(s̄i)|s̄i ∈ Sbdy, j = 1, . . . , h}, sites in Scopy
with their Voronoi cells having intersection of the center domain
are necessary.

The second rule is straightforward, but the computation of a
non-periodic Voronoi cell for each site copy in Scopy is expensive.
So we develop an alternative method to apply the second rule.

466 L. Shuai et al. / Computer-Aided Design 45 (2013) 463–472
Fig. 3. Site reduction with the second rule. (a) Site s̄i is killed by s̄j; (b) Site s̄i can
be killed by the combination of s̄j and s̄k , but it cannot be killed by either s̄j or s̄k
individually. The red arcs are the bisectors between sites. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Consider a hyperbolic Voronoi diagram on Poincaré disk D, the
bisector between two sites s̄i and s̄j divides the hyperbolic space
into two halves, denoted by H(s̄i, s̄j) and H(s̄j, s̄i), where

H(s̄i, s̄j) = {p ∈ D | dP(s̄i, p) ≤ dP(s̄j, p)}.

Here dP(·, ·) denotes the hyperbolic distance in Poincaré disk. Then
the Voronoi cell of s̄i is ∩∀s̄j≠s̄i H(s̄i, s̄j). If there exists a site s̄j,
and H(s̄i, s̄j) does not intersect with the center domain, then the
Voronoi cell of s̄i does not intersect with the center domain either.
In this case it is said that s̄j kills s̄i (see Fig. 3(a)). By testing the
copies of boundary sites and removing the killed ones, we can
dramatically reduce the number of unnecessary site copies.

To test if a half planeH(s̄i, s̄j) intersectswith the center domain,
we have the following theorem:

Theorem 1. Given a hyperbolic polygon and two points p and q
outside the polygon, if p has shorter distances to all corners of the
polygon than q, then p has shorter distances to all points inside the
polygon than q.

The proof of Theorem1 is given in Appendix A. According to this
theorem, the distances from the two sites s̄i and s̄j to all the corners
{pk|k = 1, . . . , 4g} of the center domain can determine whether
the half plane H(s̄i, s̄j) intersects with the center domain or not.
If dP(s̄i, pk) > dP(s̄j, pk) for all corners pk, then H(s̄i, s̄j) does not
intersectwith the center domain. Thus the time complexity of such
a simple pair-wise test is O(g).

Note that the simplified pair-wise test can miss some unneces-
sary site copies, when a site s̄i can be killed by a combination of
a group of other sites {s̄i1 . . . s̄ik} instead of any individual one in
this group. Fig. 3(b) shows an example where s̄i can be killed by
the combination of s̄j and s̄k, but it cannot be killed by either s̄j or
s̄k individually.

In order to simplify the computation of site-copy-reduction
for parallel computation (in Section 4.2.2), we only perform such
pair-wise test. We propose the following two different options for
applying the second rule.

Option 1: For any copy of the boundary sites s̄i ∈ Scopy, we test it
against all the other sites s̄j ∈ Sbdy ∪ Scopy, s̄j ≠ s̄i. If s̄i can be killed
by s̄j, we can eliminate s̄i from the set of necessary site copies.

Suppose the sites are uniformly distributed, then the average
size of |Sbdy| becomes

√
m. Thus the size of |Scopy| is

√
m(16g2

−8g).
The total work of computation in option 1 is O(m · g5). It will not
be efficient even with parallel computation.

So we proposed the second option as follows. Since the
boundary of the center domain is a closed loop, and the Voronoi
cell of each boundary site s̄i ∈ Sbdy will intersectwith this boundary
loop, we can sort the boundary sites in Sbdy according to the order
of intersection. Two boundary sites are next to each other if their
intersections with the boundary loop are adjacent. Suppose Sordbdy is
Fig. 4. The number of site copies before and after reduction, with 2000 sites in the
center domain of different surfaces. Note that the heights of the bars are scaled by
logarithm.

Fig. 5. The number of site copies before and after reduction, with varying number
of sites in the center domain of the Sculpture surface. Note that the heights of the
bars are scaled by logarithm.

the list of such ordered boundary sites. Then we can simply test
each copy of boundary sites against its neighbors in the ordered
list.

Option 2: For any boundary site s̄i ∈ Sordbdy, we check if its copy
φj(s̄i) in neighbor domain j is necessary, by testingφj(s̄i) against the
set of 5 other sites: {s̄i, φj(s̄i−1), φj(s̄i+1), φj−1(s̄i), φj+1(s̄i)}, where
s̄i−1 and s̄i+1 are two neighbors of s̄i in the ordered list Sordbdy, and
the neighbor domains (j+ 1) and (j− 1) ‘‘sandwich’’ the neighbor
domain j. If φj(s̄i) can be killed by any one of them, we eliminate it
from the set of necessary site copies.

We can see that the total work of computation in Option 2 is
only O(

√
mg3). Although Option 2 cannot achieve as many reduc-

tions as Option 1, such a simple test can be efficiently computed
with parallel implementation (Algorithm 2 in Section 4.2.2).

Fig. 4 shows the number of site copies (1) before reduction;
(2) after first rule; (3) after second rule with Option 1; (4) after
second rule with Option 2; and (5) with optimal reduction. We
experiment with it on four different surfaces with 2000 sites in
their center domain. The result of our site-copy-reduction schema
depends on the shape of center domain and the position of sites.
Fig. 5 shows the result of our site-copy-reduction with varying
number of sites on the genus-3 Sculpture surface. Section 6.2
shows the detailed comparison of running time with these
different options.

4. Discrete hyperbolic PVD

The computation of UCS on triangular mesh surfaces has been
explored by Jin et al. [12]. Thus the concept of PVD in Definition 1
can be directly extended onto triangular meshes. Due to the
discrete nature of triangular mesh it is possible to develop GPU-
based parallel algorithms running on each individual triangle to
speed up the computation of Voronoi diagram. In this section the
discrete Voronoi diagrams are defined first. Then some parallel

L. Shuai et al. / Computer-Aided Design 45 (2013) 463–472 467
Fig. 6. The pipeline of our parallel computing method for DH-PVD.
algorithms for computing discrete hyperbolic PVD are introduced
and analyzed.

4.1. Definitions

Definition 3. Let M̄ = (F̄ , V̄) be a hyperbolic triangular mesh on
Poincaré disk, where F̄ is the set of triangular faces and V̄ is the set
of vertices. The centroid of hyperbolic triangle f ∈ F̄ is denoted by
cf . Given a set of sites S = {s̄i ∈ M̄ | i = 1, . . . , n}, the discrete
hyperbolic Voronoi diagram on M̄ is defined as the union of face
sets Ωdh

i :

Ωdh
i = {f ∈ F̄ | dP(cf , s̄i) < dP(cf , s̄j),∀j ≠ i}. (5)

In the above definition, each triangle of themesh is represented by
its centroid. Aswill be shown in Section 5, the energy of the discrete
hyperbolic CVT is guaranteed to converge whenwe represent each
triangle by its centroid.

Next some notations are given to define the discrete Voronoi
diagram in UCS. Let M = (F , V) be a triangular mesh surface with
genus g (g > 1) embedded in 3D Euclidean space. Let (M̄, π) be its
UCS, where M̄ = (F̄ , V̄) is also a triangular mesh on the Poincaré
disk.

Definition 4. Given a set of sites S = {si | i = 1, . . . , n} on the
surface mesh M = (F , V), the discrete hyperbolic periodic Voronoi
diagram (DH-PVD) on M̄ = (F̄ , V̄) can be defined as the union of
face sets Ω

dhp
i :

Ω
dhp
i = {f ∈ F̄ | dP(cf , s̄i) < dP(cf , s̄j),

∃ s̄i ∈ π−1(si),∀ s̄j ∈ π−1(sj),∀ j ≠ i}. (6)

This definition is the discrete counterpart of the PVD defined in
(1). The method for computing Ω

dhp
i is introduced in the following

section.

4.2. Parallel computing method

The computing of the discrete hyperbolic periodic Voronoi
diagram (or DH-PVD) follows the same idea as the continuous case
(Section 3), i.e. computing the intersection of the center domain
and the non-periodic discrete hyperbolic Voronoi diagram. The
site-copy-reduction schema introduced in Section 3 is also used.
So the computation procedure of DH-PVD consists of 3 steps:
(1) in the first step a discrete hyperbolic Voronoi diagram is
computed on the center domain by the mesh flooding algorithm,
using the sites in the center domain only; (2) in the second step
we make necessary site copies into the neighbor domains, and use
them to update the identification of nearest sites for the boundary
triangles of the center domain; (3) in the third step we continue
mesh flooding in the center domain using the updated results from
Step 2. Eventually we can get DH-PVD after completing Step 3.
Fig. 6 shows the pipeline of these three steps for computing DH-
PVD on the center domain of the genus-2 Amphora surface.

4.2.1. Mesh flooding
In this section a parallel algorithm, mesh flooding, for

computing a discrete hyperbolic Voronoi diagram is introduced.
Assume that the number of mesh triangles is much more than the
number of sites, and each triangle contains at most one site. In the
beginning the triangles that are nearest to the sites are marked as
initial Voronoi cells. Then the Voronoi cells grow concurrently like
‘‘fire spreading’’ until they reach the actual Voronoi cell boundaries.

We use the same notations as in Definition 3. Let Nbr(f) = {f ′ |
f and f ′ share one edge} be the set of neighbor faces of f . Note that
each face has at most three neighbors. Let C ⊆ F be the current
working set of triangles that are at the front of ‘‘fire-spreading’’,
and N ⊆ F be the next working set that are neighbors of C and will
be used for the next round of spreading. C is initialized as:

C = {f ∈ F | f is the nearest face to site si, ∃ si ∈ S}. (7)

The discrete hyperbolic Voronoi diagram can be represented as a
map v : F → S, which is initialized as:

v(f) =

si, if f is the nearest face to si;
null, otherwise. (8)

After initializing v andC , themesh flooding algorithmdescribed
below is executed. When it finishes, v represents the computed
discrete hyperbolic Voronoi diagram.

Algorithm 1. Mesh Flooding
Require: C and v are properly initialized
Ensure: v maps each triangle to its nearest site
01. while C ≠ ∅ do
02. N ← ∅
03. parallelly for each triangle f ∈ C
04. find the site s ∈ {v(f ′) | f ′ ∈ Nbr(f)} ∪ {v(f)}

that minimizes dP(cf , s), while null value in v
is ignored.

05. v(f)← s
06. for each neighbor triangle f ′ ∈ Nbr(f)
07. put f ′ into N if v(f ′) = null or

dP(cf ′ , s) < dP(cf ′ , v(f ′))
08. end for
09. end for (parallelly)
10. exchange C and N
11. end while

In Definition 3, eachmesh triangle is represented by its centroid
and the Voronoi cell is a set of triangles. Such a Voronoi cell cannot
be guaranteed to be well-connected, which means any triangle
shares at least an edge with others in the same Voronoi cell.

468 L. Shuai et al. / Computer-Aided Design 45 (2013) 463–472
Fig. 7. Left: the accurate discrete Voronoi diagram; Right: themesh flooding result.
Two disconnected triangles are marked by circles.

Actually some triangles in a Voronoi cell may only connect via
one single vertex, or are even disconnected. We call a discrete
hyperbolic Voronoi diagram perfect if all of its Voronoi cells are
well-connected. In a non-perfect case, the triangle that does not
share at least one edge with its Voronoi cell is called a disconnected
triangle (see Fig. 7). Concerning the correctness of the mesh
flooding algorithm, we have the following theorem.

Theorem 2. Suppose C and v are initialized as in (7) and (8). Let
v′ represent the discrete hyperbolic Voronoi diagram on mesh M̄ =
(F̄ , V̄) induced by site set {v(f) | f ∈ C}. If v′ is perfect, then
Algorithm 1 can guarantee v = v′.

This theorem is proved in Appendix B, which means for a
perfect discrete hyperbolic Voronoi diagram the algorithm can get
a correct result. If the Voronoi diagram is not perfect, there is
no guarantee about the correctness of the result on disconnected
triangles (see Fig. 7). But in practice the ratio of disconnected
triangles is rather small. The results in Section 6.1 show that our
mesh flooding keeps a low error rate, and the error rate decreases
significantly along with CVT iterations.

Following the notations in Definition 4, the center domain of
UCS M̄ is denoted by M̄0 = (F̄0, V̄0), and its neighbor domains
are denoted by M̄i = (F̄i, V̄i), i = 1, . . . , h, h = 16g2

− 8g . Our
goal is to compute the DH-PVD on M̄ . In Step 1 the mesh flooding
algorithm described above is applied to compute a discrete
hyperbolic Voronoi diagram on the center domain M̄0. The sites
used here are the preimages of S in the center domain under the
covering map π0, denoted by S̄0:

S̄0 = {s̄i ∈ M̄0 | π0(s̄i) = si, si ∈ S}.

In the following step the necessary site copies in neighbor domains
are added to make the Voronoi diagram periodic.

4.2.2. Updating boundary triangles
In Step 2, the sites that need to be copied, i.e. boundary sites,

are identified first. Secondly, the site copies with the possibility of
having their Voronoi cells intersecting with the center domain are
selected using the two rules in Section 3. Finally the selected site
copies are used to update the v value for all boundary triangles of
the center domain.

Let us denote B = {f ∈ F̄0 | f has a vertex on boundary
of M̄0} as the set of boundary triangles of the center domain.
Define Abdy to be a list of length |S| indicating if a site is on the
boundary of the center domain or not: each item will store the
site if the corresponding site is on the boundary, otherwise it will
store null. Note that Sbdy and Scopy are the two lists storing those
boundary sites and their copies in neighbor domains. Let Anec be
a list of length |Scopy| indicating if a site copy is killed or not:
each item will store the site copy if the corresponding site copy
is not killed, otherwise it will store null. Let Snec be the list of
necessary site copies in neighbor domains. Note that Sbdy can be
computed from Abdy by removing items with null values. We call
such operation ‘‘compacting’’, which can be computed parallelly
with time complexity O(log(k)) where k is the size of original list.
Similarly Snec can be computed from Anec by parallel compacting.
The reason that we introduce Abdy and Anec is that we want to
compute each site parallelly, and each site can independentlywrite
its own result into the corresponding item in these lists.

Let C be the current working set as in Step 1. The algorithm for
making necessary site copies and updating v at boundary triangles
in Step 2 is described below.

Algorithm 2. Updating Boundary Triangles
Require: v is the output of Step 1
Ensure: v is DH-PVD for the boundary triangles in B, and C

contains the neighbors of the updated triangles
01. C ← ∅, and initialize Abdy with all nulls
02. parallelly for each boundary face f ∈ B
03. Abdy[v(f)] ← v(f)
04. end for (parallelly)
05. parallelly compact the array Abdy into Sbdy
06. make the neighbor copies of Sbdy into Scopy

and initialize the array Anec[s̄i] ← s̄i, ∀s̄i ∈ Scopy
07. parallelly for each site s̄i ∈ Sbdy
08. parallelly for each neighbor domain j
09. if φj(s̄i) can be killed using Option 2 (2nd Rule)
10. Anec[φj(s̄i)] ← null
11. end if
12. end for (parallelly)
13. end for (parallelly)
14. parallelly compact the array Anec into Snec
15. parallelly for each boundary face f ∈ B
16. find site s̄ in {v(f)} ∪ Snec that minimize dP(cf , s̄)
17. if v(f) ≠ s̄
18. v(f)← s̄
19. for each neighbor triangle f ′ ∈ Nbr(f)
20. put f ′ into C if dP(cf ′ , s̄) < dP(cf ′ , v(f ′))
21. end for
22. end if
23. end for (parallelly)

Algorithm 2 consists of two phases. In the first phase the
necessary site copies are selected using the first rule (lines 2–5) and
second rule (lines 6–14) described in Section 3. The second phase
(lines 15–23) updates the boundary triangles with the reduced set
of site copies.

In Step 3 themesh flooding algorithm is applied again using the
updated values of v and C from Step 2. From the above analysis we
know that the result of Step 3 is equal to that of running the mesh
flooding algorithm with both the sites on the center domain and
their copies in neighbor domains, which is exactly the DH-PVD.

4.3. Complexity analysis of parallel algorithms

For Algorithm 1, it is easy to see that its flooding time is related
to the maximal radius of the Voronoi cell. Suppose |F | = n, |S| =
m, then the average time complexity of this algorithm is O(


n
m),

if there are enough GPU cores to achieve full parallelism. The total
work of this algorithm is O(n).

For Algorithm 2, without applying the second rule, the upper
bound of |Snec | is

√
m ·(16g2

−8g). For applying the first rule: lines
2–4 run in parallel, using constant time and having O(

√
n) total

work; and line 5 runs in O(log(m)) time, with O(m log(m)) total
work. For applying the second rule: lines 7–13 run in parallel, using
O(g) time (pair-wise testing) and having O(

√
mg3) total work;

and line 14 runs in O(log(
√
mg2)) time, with O(

√
mg2 log(

√
mg2))

total work. For updating the boundary triangles (lines 15–23), the
time complexity is determined by line 16 — finding the nearest

L. Shuai et al. / Computer-Aided Design 45 (2013) 463–472 469
Fig. 8. The discrete CVT energy of the genus-3 Sculpture surface running with
Lloyd’s algorithm.

site, which can be achieved in O(log(
√
mg2)) time. Thus the total

time complexity of Algorithm 2 is O(log(m)+ g + log(
√
mg2)), by

assuming full parallelism.

5. Discrete hyperbolic CVT

From the above mentioned results of DH-PVD, we can have the
discrete hyperbolic (periodic) CVT, by using Lloyd’s algorithm [16].
It has been proved that the hyperbolic CVT minimizes the CVT
energy in 2D hyperbolic space in continuous case [8]. The problem
we need to discuss is how to extend the hyperbolic CVT energy to
the discrete case, andwhat the relationship is between the defined
energy and the discrete hyperbolic CVT.

The discrete hyperbolic CVT energy can be defined by changing
the region of integration into the discrete one Ωd = ∪Ωdh

i
(Definition 3):

Ed(S, Ωd) =


i


Ωdh

i

ρ(p) cosh(dM(p, si)) dp

=


i


fj∈Ωdh

i


fj
ρ(p) cosh(dM(p, si)) dp. (9)

Note the point p and site si in (9) are both in theMinkowski model.
The integral now is defined on each triangle fj of the mesh, and it
can be further simplified if we represent the whole triangle by its
centroid cfj (Definition 2):

fj
ρ(p) cosh(dM(p, si)) dp = ηfj ⟨si, cfj⟩M , (10)

whereηfj is theMinkowski norm:ηfj = ∥

fj
ρ(p)pdp∥M , as defined

in (3) when computing the centroid of each triangle. Eq. (10) is
proved in Appendix C.

Now the discrete hyperbolic CVT energy can be written as:

Ed(S, Ωd) =


i


fj∈Ωdh

i

ηfj ⟨si, cfj⟩M . (11)
Notice that in (11) the energy Ed is only related to the sites
and the centroids of triangles, which makes our discrete version of
PVD (in Definition 4) meaningful. Since we are representing each
triangle by its centroid when computing DH-PVD, it is easy to see
that: if the sites are fixed, the discrete hyperbolic CVT energy is
minimizedwhen the tessellation is DH-PVD. Following Rong et al.’s
work [8], it is straightforward to prove that in each iteration of
Lloyd’s algorithm, the discrete hyperbolic CVT energywill decrease
monotonically when all the discrete Voronoi diagrams are perfect.
Fig. 8 shows the decreasing discrete CVT energy of the genus-3
Sculpture surface.

6. Implementation and results

In this paper, we implement the algorithms of DH-PVD with
NVIDIA CUDA 4.0. To compute the centroids of discrete Voronoi
cells, we use the regional reduction algorithm implemented with
NVIDIA Cg 2.0, as suggested by Rong et al. [21]. The hardware
platform for running the experiments consists of an Intel R⃝CoreTM2
X6800 CPU (2.93 GHz), 4G DDR2 RAM and NVIDIA R⃝GeForce R⃝GTX
580 GPU with 1.5G GDDR5 video memory.

A restriction that is common for all cluster-based approaches
[14] is: the number of sites should be smaller than the number
of triangles of the mesh. We can increase the number of trian-
gles by subdividing the input mesh with either linear or Loop
subdivision schemes. The initialization of site locations are con-
trolled in the way so that any two sites will not ‘‘occupy’’ the same
triangle.

In this section some experimental results are given to illustrate
the correctness and effectiveness of our algorithms. Table 1 shows
the statistics of the models used in our experiments (see Fig. 9).
‘‘#Faces Sub.’’ denotes the number of faces after subdivision in pre-
processing.

6.1. Error rate of mesh flooding

In order to evaluate the correctness of our Mesh Flooding
algorithm, a brute force method for computing the accurate
discrete Voronoi diagram is also implemented. The error rate of our
Mesh Flooding result v : F → S is defined as the ratio:

|{f | v(f) ≠ v′(f),∀f ∈ F}|
|F |

, (12)

where v′ : F → S is the accurate discrete Voronoi diagram.
Fig. 10 shows the error rate of mesh flooding on four different
models, with different number of sites sampled randomly. We can
note from Fig. 11 that the error rate decreases along with Lloyd
iterations as the sites become distributed uniformly.

6.2. Running time

We measure the time performance for our mesh flooding
algorithms with various options of site-copy-reduction: (1) No
(a) Amphora. (b) Eight. (c) David. (d) Sculpture.

Fig. 9. Our CVT results and their dual triangular meshes.

470 L. Shuai et al. / Computer-Aided Design 45 (2013) 463–472
Table 1
Statistics of models in our experiment.

Model name #Vertices #Faces Genus #Faces sub.

Amphora 7478 14960 2 239360
Eight 3498 7000 2 448000
David 3002 6013 3 384768
Sculpture 3100 6209 3 397312

Fig. 10. The error rate of mesh flooding on four different models, with different
number of sites sampled randomly.

Fig. 11. The error rate of mesh flooding after Lloyd’s iterations, with 2000 sites on
four different models.

reduction; (2) 1st rule only; (3) 2nd rulewith Option 1; (4) 2nd rule
with Option 2. As can be seen in Fig. 12, when the number of sites
is small, the Algorithm 2 (using the 2nd rule with Option 2) spends
more time on testing the reduction than flooding with full site
copies. However, when the number of sites becomes large (>200),
the advantage of site-copy-reduction becomes evident. In this case,
the running time of mesh flooding even decrease slightly because
the flooding radius of each Voronoi cell decreases. We can also see
that the 2nd rule with Option 1 takes toomuch time on computing
site-copy-reduction, although it can achieve very low numbers of
site copies. Thus we choose the Option 2 for our Algorithm 2.

Comparedwith Rong et al.’s continuous algorithm [8], our GPU-
based algorithm for discrete hyperbolic CVT is over two orders
of magnitude faster for genus-2 surfaces, and over three orders
of magnitude faster for genus-3 surfaces. We also compare our
performance with Yan et al.’s ‘‘extrinsic’’ approach [6]. Fig. 13
shows the comparison of time performance for these three
methods.

6.3. CVT quality

Besides the dramatic improvements in time performance,
our GPU-based discrete algorithm can produce high-quality CVT
results. Table 2 gives the comparison of quality with those of Rong
et al. [8] and Yan et al. [6], given the same initial positions of 2000
sites, and running over the same 100 Lloyd’s iterations. Note that
the method of Yan et al. [6] is an ‘‘extrinsic’’ approach, and may
produce non-manifold vertices for some surfaces, as shown by
Fig. 12. The running time per iteration comparing the mesh flooding algorithms
with different options of site-copy-reduction. Note that the height in vertical axis
is scaled by logarithm.

Fig. 13. The running time per iteration comparing our method with Rong et al.’s
continuous algorithm [8] and Yan et al.’s ‘‘extrinsic’’ approach [6].We use 2000 sites
in these experiments. Note that the heights of the bars are scaled by logarithm.

Rong et al. [8]. In Table 2, we do not include those surfaces that
can potentially cause problems for extrinsic approaches.

We measure the CVT quality by the distance di of a site to its
nearest neighbors: di = minj≠i d(si, sj), where the distance d(·, ·)
is measured in 3D Euclidean space. The smaller variance of di from
all the sites (Var(di) in Table 2) means better uniformity. We also
measure the quality of its dual triangle mesh by the criteria used
by Yan et al. [6]: Qf =

6
√
3

Af
rf ef

, where Af is the area of the triangle
f , rf the in-radius of f and ef the longest edge length of f . Qavg
is the average quality of the triangle mesh. We measure θmin as
the average of minimal angles of all triangles. We can see that our
quality is very close to those of continuous methods [8,6].

6.4. Limitations and future work

First we want to discuss the two effects of poor input trian-
gulation (i.e. triangulation with skinny triangles) to our method.
(1) Our CVT schema is based on hyperbolic parameterization [24],
and poorly triangulated input meshes may cause the parameter-
ization to fail. Specifically, the parameterization procedure uses
Newton’s method to compute the hyperbolic uniformization met-
ric for surfaces, which can be written as a linear equation of the
discrete Laplace–Beltrami operator. Skinny triangles will increase
the condition number of the linear equation, so poor triangulations
do affect the convergence speed and numerical stability of the pa-
rameterization method. (2) The poor triangulation may also lead
to bad VD/CVT quality for our mesh flooding algorithm since the
Voronoi cells cannot be well shaped. This disadvantage can be al-
leviated by simply subdividing the input mesh (Fig. 14). Although
the significant increase of the number of triangles will slow down
the computation speed, our method is still 5 times faster than Yan
et al.’s [6] method for the result shown in Fig. 14. We will continue

L. Shuai et al. / Computer-Aided Design 45 (2013) 463–472 471
Table 2
Comparison of CVT and dual mesh quality.

Var(di) Qavg θmin Var(di) Qavg θmin

Amphora

Init 0.000122 0.7233 38.81

David

Init 0.000070 0.7145 38.24
Ours 0.000023 0.8752 50.11 Ours 0.000026 0.8476 47.81
Rong 0.000017 0.8977 51.77 Rong 0.000022 0.8684 49.35
Yan 0.000016 0.9140 53.06 Yan 0.000015 0.9057 52.38

Eight

Init 0.000133 0.7145 38.38

Sculpture

Init 0.000098 0.7255 39.07
Ours 0.000015 0.8762 50.17 Ours 0.000018 0.8880 51.09
Rong 0.000009 0.8949 51.54 Rong 0.000038 0.8925 51.43
Yan 0.000008 0.9157 53.18 Yan 0.000010 0.9067 52.45
Fig. 14. Top-left: a part of tractricoid with poor triangulation as input mesh;
Bottom-left: a zoom view of skinny triangles after subdividing the input mesh
(the triangle number is increased by 1024 times); Top-right: the CVT result on the
subdivided model; Bottom-right: the corresponding CVT on hyperbolic plane. We
use tractricoid because it can be isometrically embedded on the hyperbolic plane
without computing the uniformization metric.

towork on the first issue (hyperbolic parameterizationwith skinny
triangles) in the future.

In Table 2 we can see our result is a little worse than Rong
et al.’s [8] due to the approximation brought by discretization.
However, we also notice that the CVT and dual mesh quality of
both intrinsic methods is a little worse than the extrinsic method.
Both Rong et al.’s [8] and ours use the square of conformal factor as
the density function when computing CVT, expecting the density
function to compensate for the distortion of Voronoi cells caused
by conformal parameterization. In the future we would like to
systematically analyze the influence of conformal distortion on the
quality of CVT on surfaces.

Although our current site-copy-reduction schema can signifi-
cantly reduce the number of site copies down to a number that is
very close to optimum, we are still not sure if there is any efficient
algorithm that can directly achieve optimal reduction.Wewill con-
tinue to work on these problems in the future.

7. Conclusion

In this paper, we present a GPU-based parallel algorithm for
computing discrete hyperbolic CVT, equipped with an efficient
site-copy-reduction schema. This makes our algorithm efficient to
compute the constrained CVT on arbitrary high-genus surfaces via
their hyperbolic conformal parameterization. Experiments show
that our new method is at least two orders of magnitude faster
than the previous CPU-based continuous algorithm, while still
maintaining the high quality of the resulting CVT on surfaces.

Acknowledgments

The authors would like to thank the anonymous reviewers and
Dr. Guodong Rong for their valuable comments and suggestions
to improve the paper. Liang Shuai and Xiaohu Guo are partially
supported by the National Science Foundation (NSF) under Grant
Nos. CCF-0727098, CNS-1012975, and IIS-1149737. Miao Jin is
partially supported by NSF under Grant No. CCF-1054996.

Appendix A. Proof of Theorem 1

To prove Theorem 1, the following lemma is needed:

Lemma 1. In the hyperbolic plane, given a triangle and two points p
and q outside the triangle, if p has shorter distances to all vertices of
the triangle than q, then p have shorter distances to all points inside
the triangle than q.

Proof. This lemma can be proved using the Klein disk. According
to Nielsen and Nock [23], the bisector between p and q is a straight
line which partitions the whole Klein disk into two parts. All the
vertices of the triangle are in the half space of point p. Since all the
edges of the triangle are straight line segments in the Klein disk,
they are all in the half space of p. Thus the whole triangle is in the
half space of p. �

Then Theorem 1 is proved as follows.

Proof. Since any polygon can be triangulated in hyperbolic
plane [25], the hyperbolic polygon can be triangulated using its
corners. With Lemma 1, this theorem is proved automatically. �

Appendix B. Proof of Theorem 2

For the convenience of proving Theorem 2, the following
definition is given first:

Definition 5. A pathP (fa, fb) on triangular mesh M̄ = (F̄ , V̄) from
face fa ∈ F̄ to face fb ∈ F̄ is a sequence of faces f1f2 · · · fn, where
f1 = fa, fn = fb, fi ∈ F̄ , i = 1, . . . , n, and any two consecutive faces
in the sequence share one edge. The length of P is n− 1.

Theorem 2 is proved as follows.

Proof. Given the definition of the length of a path, for all the
possible pathsP (fa, fb) on M̄ that connect the two faces fa and fb in
the same discrete Voronoi cell v′(fa) = v′(fb) = s, let us denote
the shortest path as P s

min. Let us consider ∀f ∈ F̄ , and suppose
v′(f) = s, the nearest face to s is fs, and the length of the shortest
path |P s

min(fs, f)| = n. If we can prove that v(f) = s after Algorithm
1 is executed, then Theorem 2 is proved.

Let us prove the above statement bymathematical induction on
the length of shortest path |P s

min(fs, f)|.
Base case:

Prove the statement holds for |P s
min(fs, f)| = 1.

∵ fs is the nearest face to s,
∴ v(fs) = s due to the initialization of v in (8).
∵ |P s

min(fs, f)| = 1,
∴ f is a neighbor of fs on mesh M̄ ,
∴ v(f) = v(fs) = s due to lines 4 and 5 of Algorithm 1.

472 L. Shuai et al. / Computer-Aided Design 45 (2013) 463–472
v(f) will not change any more due to the fact v′(f) = s.
∴ v(f) = s after Algorithm 1 is executed.

Induction hypothesis:
Suppose the statement holds for |P s

min(fs, f)| = n.
Inductive case:

Prove the statement holds for |P s
min(fs, f)| = n+ 1.

∵ |P s
min(fs, f)| = n+ 1,

∴ ∃ f ′ is a neighbor of f s.t. |P s
min(fs, f

′)| = n and
v′(f ′) = s.
By Induction Hypothesis, after Algorithm 1 is executed we have
v(f ′) = s.
∵ v(f ′) = null initially,
∴ there must be a loop iteration assigning s to v(f ′).
∵ f is a neighbor of f ′ and v′(f) = s,
∴ f will be added to the next working set N by line 8 of Algorithm
1 in the same loop iteration, and in next loop iteration v(f) will be
set to s by line 17.
v(f) will not change any more due to the fact v′(f) = s.
∴ v(f) = s after Algorithm 1 is executed. �

Appendix C. Proof of Eq. (10)

Proof. Consider the hyperbolic triangle △cfj sip
formed by vertices

cfj , si, and p, where p ∈ fj. By the hyperbolic law of cosines [25], we
have:

cosh(dM(p, si)) = cosh(dM(p, cfj)) cosh(dM(si, cfj))
− sinh(dM(p, cfj)) sinh(dM(si, cfj)) cosα,

where α is the angle of the triangle△cfj sip
at corner cfj . Let

A =

fj
ρ(p) cosh(dM(p, cfj)) cosh(dM(si, cfj)) dp

and

B =

fj
ρ(p) sinh(dM(p, cfj)) sinh(dM(si, cfj)) cosα dp,

then the l.h.s. of (10) is:
fj
ρ(p) cosh(dM(p, si)) dp = A− B.

A =

fj
ρ(p) cosh(dM(p, cfj)) cosh(dM(si, cfj)) dp

= ⟨si, cfj⟩M ·


fj
ρ(p)p dp, cfj


M

= ηfj ⟨si, cfj⟩M ,

B =

fj
ρ(p) sinh(dM(p, cfj)) sinh(dM(si, cfj)) cosα dp

= sinh(dM(si, cfj))

fj
ρ(p) sinh(dM(p, cfj)) cosα dp.

B remains the same if we re-interpret the integral on Poincaré disk.
Let f ′j , α

′, c′fj , s
′

i and p′ be the corresponding triangle/angle/point
on Poincaré disk w.r.t. fj, α, cfj , si and p. Use dP(·, ·) to denote
the hyperbolic distance on the Poincaré disk. Without loss of
generality, assume c′fj is on the origin of Poincaré disk, then the
coordinate of cfj is (0,0,1) on the Minkowski model. Use ∥ · ∥ to
denote the Euclidean norm. It is easy to prove that:

sinh(dP(p′, c′fj)) =
2 ∥p′∥

1− ∥p′∥2
.

Denote the coordinate of p′ as (xp′ , yp′) on Poincaré disk, and the
coordinate of p as (xp, yp, zp) on the Minkowski model, we have:
xp =
2 xp′

1− x2p′ − y2p′
=

2 ∥p′∥ cosα′

1− ∥p′∥2

= sinh(dP(p′, c′fj)) cosα′

= sinh(dM(p, cfj)) cosα.

So the integral part in B can be re-written as:
fj
ρ(p) sinh(dM(p, cfj)) cosα dp

=


fj
ρ(p)xp dp = ηfj xcfj = 0 (per our assumption),

∴


fj
ρ(p) cosh(dM(p, si)) dp = A = ηfj ⟨si, cfj⟩M .

The Eq. (10) is proved. �

References

[1] Du Q, Faber V, Gunzburger M. Centroidal Voronoi tessellations: applications
and algorithms. SIAM Review 1999;41(4):637–76.

[2] Gersho A. Asymptotically optimal block quantization. IEEE Transactions on
Information Theory 1979;25(4):373–80.

[3] Tóth GF. A stability criterion to the moment theorem. Studia Scientiarum
Mathematicarum Hungarica 2001;38(1-4):209–24.

[4] Du Q, Gunzburger MD, Ju L. Constrained centroidal Voronoi tessellations for
surfaces. SIAM Journal on Scientific Computing 2003;24(5):1488–506.

[5] Liu Y, Wang W, Lévy B, Sun F, Yan D-M, Lu L, Yang C. On centroidal Voronoi
tessellation — energy smoothness and fast computation. ACM Transactions on
Graphics 2009;28(4):1–17.

[6] YanD-M, Lévy B, Liu Y, Sun F,WangW. Isotropic remeshingwith fast and exact
computation of restricted Voronoi diagram. Computer Graphics Forum 2009;
28(5):1445–54.

[7] Rong G, Jin M, Guo X. Hyperbolic centroidal Voronoi tessellation. In:
Proceedings of the 14th ACM symposium on solid and physical modeling.
2010. p. 117–26.

[8] Rong G, Jin M, Shuai L, Guo X. Centroidal Voronoi tessellation in universal
covering space of manifold surfaces. Computer Aided Geometric Design 2011;
28(8):475–96.

[9] Alliez P, de Verdière EC, Devillers O, Isenburg M. Centroidal Voronoi diagrams
for isotropic surface remeshing. Graphical Models 2005;67(3):204–31.

[10] Du Q, Ju L. Finite volumemethods on spheres and spherical centroidal Voronoi
meshes. SIAM Journal on Numerical Analysis 2005;43(4):1673–92.

[11] Yan D-M,Wang K, Lévy B, Alonso L. Computing 2D periodic centroidal Voronoi
tessellation. In: Proceedings of the 2011 international symposium on voronoi
diagrams in science and engineering. 2011. p. 177–84.

[12] Jin M, Luo F, Gu X. Computing surface hyperbolic structure and real projective
structure. In: Proceedings of the 2006 ACM symposium on solid and physical
modeling. 2006. p. 105–16.

[13] Munkres JR. Elements of algebraic topology. Westview Press; 1996.
[14] Valette S, Chassery J-M, Prost R. Generic remeshing of 3D triangular meshes

with metric-dependent discrete Voronoi diagrams. IEEE Transactions on
Visualization and Computer Graphics 2008;14(2):369–81.

[15] MacQueen JB. Some methods for classification and analysis of multivariate
observations. In: Proceedings of the 5th Berkeley symposiumonmathematical
statistics and probability. 1967. p. 281–97.

[16] Lloyd SP. Least squares quantization in PCM. IEEE Transactions on Information
Theory 1982;28(2):129–37.

[17] Du Q, EmelianenkoM, Ju L. Convergence of the Lloyd algorithm for computing
centroidal Voronoi tessellations. SIAM Journal on Numerical Analysis 2006;
44(1):102–19.

[18] Surazhsky V, Alliez P, Gotsman C. Isotropic remeshing of surfaces: A local
parameterization approach. In: Proceedings of the 12th international meshing
roundtable. 2003. p. 215–24.

[19] Caroli M, TeillaudM. Computing 3D periodic triangulations. In: Proceedings of
the 17th European symposium on algorithms. 2009. p. 37–48.

[20] Vasconcelos CN, Sá A, Carvalho PC, Gattass M. Lloyd’s algorithm on GPU. In:
Proceedings of the 4th international symposium on visual computing. 2008.
p. 953–64.

[21] Rong G, Liu Y, Wang W, Yin X, Gu X, Guo X. GPU-assisted computation
of centroidal Voronoi tessellation. IEEE Transactions on Visualization and
Computer Graphics 2011;17(3):345–56.

[22] Rong G, Tan T-S. Jump flooding in GPU with applications to Voronoi diagram
and distance transform. In: Proceedings of the ACM symposium on interactive
3D graphics and games. 2006. p. 109–16.

[23] Nielsen F, Nock R. Hyperbolic Voronoi diagrams made easy. In: Proceedings
of the 2010 international conference on computational science and its
applications. 2010. p. 74–80.

[24] Jin M, Kim J, Gu XD. Discrete surface ricci flow: theory and applications.
Mathematics of Surfaces XII 2007;4647:209–32.

[25] Ramsay A, Richtmyer R. Introduction to hyperbolic geometry. New York:
Springer-Verlag; 1995.

	GPU-based computation of discrete periodic centroidal Voronoi tessellation in hyperbolic space
	Introduction
	Preliminaries
	Motivation and contribution

	Related work
	CVT algorithms
	CVT on surfaces
	Periodic Voronoi diagram
	GPU-based CVT computation

	Reduction of site copies
	Discrete hyperbolic PVD
	Definitions
	Parallel computing method
	Mesh flooding
	Updating boundary triangles

	Complexity analysis of parallel algorithms

	Discrete hyperbolic CVT
	Implementation and results
	Error rate of mesh flooding
	Running time
	CVT quality
	Limitations and future work

	Conclusion
	Acknowledgments
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Eq. (10)
	References

