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Abstract—Vocal strain can have a profound effect on a person’s
life and livelihood. However, methods to identify and quantify
vocal strain presumed to originate in the laryngeal muscles
severely lack. We aim to address this shortcoming. Using motion
capture with consumer RGBD cameras, we track skin deforma-
tion of perilaryngeal anterior neck regions in participants with
and without vocal strain. Neck movement variability differences
between the two groups provides insight into extrinsic laryngeal
vocal muscles that may underlie symptoms of vocal strain.

Index Terms—Vocal strain, motion capture, key-point tracking,
skin deformation, laryngeal muscle

I. INTRODUCTION

Vocal strain in the neck muscles that connect the jaw,
larynx, and sternum during voice productions occurs in 40
percent of occupational voice users and results in difficulties
speaking and loss of income [32], [36], [37]. Considering
25-35 percent of the US population is dependent on their
voice for their career, the high prevalence of vocal strain has
profound impact on both individual and societal levels [3], [5],
[9], [21]. Although vocal strain has significant consequences,
there are no well-vetted, validated physiologic metrics to
identify strain in the vocal muscles; there are also no objective
metrics to monitor treatment progress. This gap has resulted in
ineffective trial-and-error therapies, which require significantly
more voice therapy sessions, time off work, and increased
allocation of medical staff and resources. This project aims
to address these gaps.

Using motion capture (MoCap) technology, we developed
objective metrics for the study and identification of vocal
muscle strain thought to originate in the extrinsic laryngeal
muscles [22]. Currently, there are no motion capture systems
designed for tracking skin deformations on a small scale.
Optical motion capture systems are either marker-less or
marker-based systems. Marker-less systems typically capture
the entire body or the face. These systems are able to lever-
age a large number of features around joints and on faces
to track movement [2]. Our system tracks small-scale skin
deformations associated with neck movement using consumer
level RGBD cameras to record short sequences. Because of
the lack of features or textural differences on necks we mark
key-points with green stickers. The stickers enable a marker-
based motion capture that can be done quickly and easily.
Once recorded, the sequences can then be directly compared
against other sequences to study the neck movement.

II. RELATED WORKS

Although the presumption that the extrinsic laryngeal mus-
cles are involved in vocal strain is ubiquitous, there are
currently no objective metrics to identify musculoskeletal
pathophysiology of vocal strain. The majority of methods to
assess vocal strain involve acoustic vocal output. But these
methods do little to elucidate how movements in and around
the laryngeal muscles needed for voice and speech result in
aberrant acoustic vocal output. Methods that focus on the vocal
production process are needed.

MoCap has previously been used in the limb muscles to
study gait and locomotion and inform muscle overuse and
strain injuries in athletes [7], [10], [35]. However it has not
been applied to the vocal muscles.

The use of RGBD cameras has become wide-spread with the
introduction of consumer level cameras. These cameras enable
methods that once required expensive setups. Single-camera
and multi-camera methods for working with RGBD datasets
reach across many different fields and problems. These RGBD
cameras enable accessible motion capture in many forms.

Reconstruction of the human body for the creation of 3D
human avatars is one such method. Deriving from KinectFu-
sion [24], then DynamicFusion [25], many methods have been
developed to take RGBD video as input to recreate full body
human avatars [11], [42], [43]. These methods leverage both
the color and depth information to track a subject throughout
a sequence.

Similarly, the capture of exclusively the face and head has
been used to create retargetable talking heads [15], [19], [39].
These face tracking methods utilize RGBD cameras to track
the face with marker-less motion capture.

Motion capture has also seen applications such as operating
room assistance [6], [13], physical therapy and rehabilitation
[8], [18], [29], [33], and detecting of falls [20], [26], [38],
[44].

III. METHOD

The goal of the use of MoCap capabilities is to transform
the participant’s recording into a sequence that is comparable
with a whole collection of data. The recording is processed
by first converting RGBD images into RGB point clouds
and then extracting the points within the markers. These
points are clustered and tracked throughout the sequence and
relabelled for consistency giving a set of key-points for each



Fig. 1. Overview of the data processing pipeline.

frame of the recording. The lengths of the edges between
key-points are then measured for each frame. To compare
different sequences directly we need to ensure they are aligned.
We align the sequences using dynamic time warping on the
audio waveforms. The aligned sequences are then directly
comparable.

A. Data Collection

A total of 13 subjects with and without vocal strain were
recruited for the study. Subjects with vocal strain (defined as
greater than 11 on the Voice Handicap Index-10 [31], greater
than 24 on Part 1 of the Vocal Fatigue index [23], and a clinical
diagnosis of muscle tension dysphonia) are recruited for the
experimental group. Subjects without vocal strain (less than
5 on the Voice Handicap Index-10, less than 24 on Part 1
of the Vocal Handicap Index, and no voice complaints over
the past 6 months) are also recruited for the control group.
16 green neon stickers and headset microphone are placed on
each subject prior to video and audio recordings. All subjects
complete four speech tasks: (1) a repetitive diadochokinetic
articulation rate task for 30 seconds on pataka, (2) standard
reading passage (Rainbow Passage), (3) vocal range task (pitch
glide from lowest to higher note on /a/), and (4) vocal intensity
task (Hey you! as loud as possible).

Data is recorded using a headset microphone and two
Intel Realsense D435 cameras. Cameras are placed in close
proximity to the subject and pointed at an upward slant towards
one half of the front of the subject’s neck. Each camera
captures approximately half of the front of the subject’s neck
with some overlap between views. The cameras record RGBD
images, with a resolution of 640x480, at 30 FPS. Cameras are
mounted on a moving frame and adjustable arms to ensure
sufficient viewpoints for a range of subjects. Subjects have 16
key-points on their neck area marked with green stickers as
shown in Fig. 2. The labelling of these key-points can also be
seen in Fig. 3. Several key-points have specific anchors such
as either clavicle (14, 15), the chin (2), and along either side
of the jaw (0, 1, 3, 4). These key-points are on rigid parts,

(a) (b)
Fig. 2. (a) Positioning of key-point markers on the neck. 0-1 = right jaw,
2 = chin, 3-4 = left jaw, 5, 7 = hyoid, 6 = base of tongue, 9 = thyroid
notch, 8,11 = right sternocleidomastoid, 12 = sternothyroid, 10, 13 = left
sternocleidomastoid, 14, 15 = clavicle, (b) Setup used for recording, cameras
are circled in red.

that is bones, of the neck area. The remaining key-points are
on soft-tissue (cartilagenous laryngeal framework and extrinsic
laryngeal muscle).

B. Key-point Extraction

Given a sequence of RGBD images {I1, I2, ..., In}v , for
each viewpoint v, we create a combined sequence of key-
points {K1,K2, ...,Kn}.

For each frame, Ii = [r, g, b, d], we back-project the depth
values to the camera’s coordinate space to obtain a point cloud
xi = (x, y, z)⊤:

xi(u) = Di(u)K
−1u, (1)

where u = (u, v)⊤ is a pixel of the image Ivi , Di(u) is the
depth of the pixel, and K is the camera’s calibration matrix.

We then reduce the point cloud to include only the points
that are in the marked areas to get Pi. This is done with a
color threshold,

Pi = {xi(u)|Tlower ≤ Ci(xi(u)) ≤ Tupper}, (2)



(a) (b) (c)
Fig. 3. Grouping of edges based on movement, (a) shows the edges with the most movement, (b) the edges with a moderate amount of movement, and (c)
the edges with light movement.

where Ci is the color of the points, and Tlower and Tupper are
the lower and upper thresholds, respectively.

The points in Pi are clustered with distance d. Clusters are
formed for points within distance d of each other. The value of
d is dependent on the subject as the distance between markers
varies; if this distance is smaller than d then two markers
can be clustered together. Averaging the points in each cluster
gives a set of key-points Ki.

Arbitrary labelling from clustering can differ for each
frame in the sequence, so key-points are tracked throughout
a sequence. Tracking is done by finding smallest pairwise
distances between Ki and Ki+1 and labels of Ki+1 are
updated to match labels of Ki.

Image noise and the color of subject’s clothing can cause
spurious key-points or clusters that are split. Additionally, the
automatic and arbitrary labelling contribute to key-point labels
that differ between views of the same sequence and between
sequences. To ensure a consistent labelling, remove spurious
key-points, and combine split clusters, the first frame of each
sequence is labelled manually and then propagated throughout
the entire sequence. Manual labelling can be done for frames
where tracking is lost, which usually happens because of quick
motions by the subject.

The key-points are extracted and labelled for each viewpoint
separately and need to be combined. Camera calibration done
during the data recording gives the transformation, T, between
cameras and can be used to combine the views. However, this
calibration has some significant and visible error. We reduce
this error by using the iterative closest point (ICP) algorithm
[4]. The entire sequence of key-points from each view are
matched and used to do this correction. The positioning of
the cameras discussed in section III-A is important here as
the overlap of certain key-points is crucial for the correction.
Key-points 2, 6, 9, 11, 14, 15 are the minimal needed overlap
for good correction to occur.

The updated transform, T′ is used to transform the clusters
of each view and combine them to get new key-points. Because
some clusters are only partially captured, we average the points
of each cluster from each view rather than their key-points to
prevent skewing the key-point heavily towards one view.

C. Measurement

Once the views are merged and labelling of key-points is
consistent between sequences, we produce measurements for
each of the sequences that are then comparable. We take a
subset of the edges produced by pairwise connections of each
key-point, as shown in Fig. 3. The lengths of these edges
are then normalized to the lengths of a canonical frame for
the sequence, giving a sequence of normalized edge length
changes for each edge. This canonical frame represents an at
rest frame for the subject.

Differences in the speed of speech, timings of breaths, and
other natural speech variations cause each sequence to be
of different lengths and misaligned and create a meaningless
direct comparison between sequences. To rectify these dif-
ferences, the sequences are aligned to a template sequence
using dynamic time warping on the audio waveform [34].
After audio alignment, we warp the measurement sequences
using linear interpolation. Specifically, using the timestamps
of the audio frames and image frames as an audio-to-image
alignment, we sample the measurements at each audio frame.
The sampling is done by linearly interpolating between the
measurements:

fresampled
i = (1− w) ∗ fj + w ∗ fj+1, (3)

where fj is the measurements at frame j, fresampled
i corre-

sponds to the measurements warped to the audio frame, i, and
w is the weight calculated as w = (taudioi − tfj )/(tfj+1

− tfj ).
Here taudioi is the audio frame’s timestamp and tfj is the
measurement’s timestamp.

The aligned sequences are directly comparable. We compare
sequences pairwise using the Euclidean distance of each
normalized edge length.

D. Implementation

The data collection system is implemented using the
Robotic Operating System (ROS) [28], Intel’s ROS Wrapper
for Intel RealSense Devices for the cameras [16], and ROS
audio capture package for the microphone [17]. The wrapper
handles aligning depth and color images from the RGBD
cameras. Because there are two cameras we utilize the the
ApproximateTime policy from the message filters package of
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Fig. 4. Direct distance comparison matrices, (a) Hey you!, (b) pataka, and (c) the rainbow passage. Each row and column is labelled by a subject ID, with
MC indicating a control and ME indicating an experimental.

ROS to synchronize the cameras in software [12]. The markers
used on the subject are 1/2-inch green circular stickers.

Calibration of camera transforms is done using ARPG’s
Vicalib [1]. We do a correction on this calibration using ICP
with PyTorch3D’s [30] implementation of Umeyama’s method
[41]. We implement this correction as an iterative approach but
in practice only one iteration is necessary. Additionally, while
calibration is done at recording time, the correction is robust
enough to not need this initial calibration.

The data processing system is written in Python using
PyTorch [27] for CUDA to speed up the processing. We
use a distance threshold default of 750 mm for point cloud
conversion to exclude background pixels. The default color
thresholding uses an HSV range of [40, 70, 70] to [70, 255,
255]. The standard key-point clustering distance used is 5 mm.
These are default values used for all subjects. Some subjects
required slight modification, for example if markers are placed
too close together, a smaller clustering distance would be
required.

To align the audio sequences the dtw-python package is
used for a dynamic time warping implementation [14]. We
use an open end and open beginning with an asymmetric step
pattern [40]. Before warping, audio is resampled from 16,000
Hz to 160 Hz. Resampling enables the warping algorithm to
run with a reasonable computation time and within memory
constraints.

IV. RESULTS AND EXPERIMENTS

The goal of the experiments performed is to differentiate
between the control and experimental subjects. In all experi-
ments, each sequence is first warped to a template sequence,
and then direct comparisons of the warped sequences are done
as described in Sec. III-C.

A. Direct Comparison by Distance

We first compare sequences of each task directly by taking
the Euclidean distance between two pairs. Following the
alignment of the sequences to a template, the movement of
each corresponding edge should be roughly similar.

Fig. 4 shows, specifically in the pataka sequences, that
the controls have a smaller distance between them than the
experimental sequences and the experimentals have greater
variance in distances among themselves. This does not hold
true in the other tasks.

Greater variance in distance between key-points and edges
in the experimental group compared to the control group
suggests extrinsic laryngeal muscles of vocalization move
differently (i.e., with greater variance) in those with vocal
strain.

B. Comparison by Variability

To gain further insight into how the subjects are moving,
we look at the variability in their movements. This is done
in two ways: variability of movement in each time frame and
variability of each edge across the entire sequence. For both
we use the standard deviation as a measure of variability.

The variability of movement in each time frame compares
the movements of each edge at each point in time. This
shows the range of movement of the participant across the
sequence. The controls exhibit less variance across each frame
as compared to the experimentals, shown for pataka in Fig. 5.
Similarly to the direct distance comparison, this pattern is
present for the pataka sequence but not the others.

Looking at the movement at each time frame gives one look
at how a participant moves across the entire sequence, but fails
to show some of the specifics about how they are moving. To
look at what is moving we can examine the variability of each
edge across the entire sequence. This gives a look at what
edges are moving and which edges are not in each sequence.

C. Edge Grouping and Comparisons

Using the results from the previous experiments, we can
group the edges based on how much they move during a
sequence. We group edges into four different groups, heavy
movement, moderate movement, light movement, and little to
no movement, these groups are shown in Fig. 3. We compare
the direct distance, as in Sec. IV-A and we compare the
variability of movement at each time frame as in Sec. IV-B.
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Fig. 5. (a) Variance at each point in time for the pataka sequence. (b) Variance of edge movement in the light movement group for the pataka sequence.

In the variability of the edges at a point in time we see
no grouping in all tasks and groups except for pataka in the
light movement group. In this group and task, there is similar
grouping of experimentals and controls that is present in the
direct distance comparison and the variability comparison.

The reason for this separation can be seen in the grouping
of edges and the physiology underlying those groupings. As
shown in Fig. 3, high movement areas represented in (a)
consists of edges going down the center of the neck, from
the chin to either clavicle. The movement largely captures the
up and down movement of the chin and the larynx. Moderate
movement areas in Fig. 3(b) represent the jaw, suprahyoid
extrinsic laryngeal muscles, and accessory muscles (scalenes,
sternocleidomastoids). The light movement in Fig. 3(c) repre-
sents muscles that suspend the larynx as well as the accessory
neck muscles. Movement in Fig. 3(c) areas were observed
more consistently and prominently in the experimental group,
suggesting these areas are more active in subjects with vocal
strain.

V. CONCLUSION AND FUTURE WORK

These finds demonstrate the use of MoCap to identify
physiological areas that underlie symptoms of vocal strain. Our
data suggest neck movement patterns in patients with vocal
strain differ from those without vocal strain during specific
speech tasks (e.g., pataka). Specifically, greater variability of
edge movement throughout a repetitive speech sequence was
observed in the experimental group, with greater movement in
muscles that suspend the larynx and aid in upper body posture.
These findings suggest higher variability in this group, espe-
cially in specific muscle groups, could indicate the presence
of vocal strain.

Increased variability in the pataka task is likely due to the
prolonged, fast, and repetitive nature of the task that taxes
the muscles involved in speech production, creating instability
within the vocal system. Specifically, production of pataka

requires quick and precise movement changes from the middle
of the tongue (pa), to the tongue tip (ta), and back to the
tongue base (ka), over and over again across 30 seconds. These
quick tongue turnovers are not present in the rainbow passage
or brief pitch glide and Hey You! vocal intensity task.

In future research, we hope to refine and identify new
metrics to more precisely identify areas of vocal strain and
identify vocal strain within a subject. We aim to further study
specific edge and edge group movements, as well as movement
not captured by the edges, with a larger group of participants.
We will also determine inter- and intra-rater reliability across
5 additional subjects.
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E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[28] M. Quigley et al., “Ros: an open-source robot operating system,” in Proc.
of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop
on Open Source Robotics, Kobe, Japan, May 2009.

[29] M. A. Rahman, A. M. Qamar, M. A. Ahmed, M. A. Rahman,
and S. Basalamah, “Multimedia interactive therapy environment
for children having physical disabilities,” in Proceedings of the
3rd ACM conference on International conference on multimedia
retrieval - ICMR '13. ACM Press, 2013. [Online]. Available:
https://doi.org/10.1145/2461466.2461522

[30] N. Ravi et al., “Accelerating 3d deep learning with pytorch3d,”
arXiv:2007.08501, 2020.

[31] C. A. Rosen, A. S. Lee, J. Osborne, T. Zullo, and T. Murry,
“Development and validation of the voice handicap index-10,” The
Laryngoscope, vol. 114, no. 9, pp. 1549–1556, Sep. 2004. [Online].
Available: https://doi.org/10.1097/00005537-200409000-00009

[32] A. Russell, J. Oates, and K. M. Greenwood, “Prevalence of voice
problems in teachers,” Journal of Voice, vol. 12, no. 4, pp. 467–479,
Jan. 1998. [Online]. Available: https://doi.org/10.1016/s0892-1997(98)
80056-8

[33] S. Saini, D. R. A. Rambli, S. Sulaiman, M. N. Zakaria, and
S. R. M. Shukri, “A low-cost game framework for a home-based stroke
rehabilitation system,” in 2012 International Conference on Computer
&; Information Science (ICCIS). IEEE, Jun. 2012. [Online]. Available:
https://doi.org/10.1109/iccisci.2012.6297212

[34] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 26, no. 1, pp. 43–49, 1978.

[35] W. S. Selbie and M. J. Brown, “3D dynamic pose estimation from
marker-based optical data,” in Handbook of Human Motion. Cham:
Springer International Publishing, 2017, pp. 1–20.

[36] M. Sliwinska-Kowalska et al., “The prevalence and risk factors
for occupational voice disorders in teachers,” Folia Phoniatrica et
Logopaedica, vol. 58, no. 2, pp. 85–101, 2006. [Online]. Available:
https://doi.org/10.1159/000089610

[37] S. Smolander and K. Huttunen, “Voice problems experienced by finnish
comprehensive school teachers and realization of occupational health
care,” Logopedics Phoniatrics Vocology, vol. 31, no. 4, pp. 166–171, Jan.
2006. [Online]. Available: https://doi.org/10.1080/14015430600576097

[38] E. Stone and M. Skubic, “Passive, in-home gait measurement using
an inexpensive depth camera: Initial results,” in Proceedings of the
6th International Conference on Pervasive Computing Technologies for
Healthcare. IEEE, 2012. [Online]. Available: https://doi.org/10.4108/
icst.pervasivehealth.2012.248731
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