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Abstract In this paper we present a novel feature-
based RGB-D camera pose optimization algorithm
for real-time 3D reconstruction systems. During
camera pose estimation, current methods in online
systems suffer from fast-scanned RGB-D data, or
generate inaccurate relative transformations between
consecutive frames. Our approach improves current
methods by utilizing matched features across all frames
and is robust for RGB-D data with large shifts in
consecutive frames. We directly estimate camera
pose for each frame by efficiently solving a quadratic
minimization problem to maximize the consistency of
3D points in global space across frames corresponding
to matched feature points. We have implemented
our method within two state-of-the-art online 3D
reconstruction platforms. Experimental results testify
that our method is efficient and reliable in estimating
camera poses for RGB-D data with large shifts.

Keywords camera pose optimization; feature
matching; real-time 3D reconstruction;
feature correspondence

1 Introduction

Real-time 3D scanning and reconstruction
techniques have been applied to many areas in
recent years with the prevalence of inexpensive
depth cameras for consumers. The sale of millions
of such devices makes it desirable for users to scan
and reconstruct dense models of the surrounding
environment by themselves. Online reconstruction
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techniques have various popular applications, e.g.,
in augmented reality (AR) to fuse supplemented
elements with the real-world environment, in
virtual reality (VR) to provide users with reliable
environment perception and feedback, and in
simultaneous localization and mapping (SLAM)
for robots to automatically navigate in complex
environments [1–3].

One of the earliest and most notable methods
among RGB-D based online 3D reconstruction
techniques is KinectFusion [4], which enables a
user holding and moving a standard depth camera
such as Microsoft Kinect to rapidly create detailed
3D reconstructions of a static scene. However, a
major limitation of KinectFusion is that camera
pose estimation is performed by frame-to-model
registration using an iterative closest point (ICP)
algorithm based on geometric data, which is only
reliable for RGB-D data with small shifts between
consecutive frames acquired by high-frame-rate
depth cameras [4, 5].

To solve the aforementioned limitation, a common
strategy adopted by most subsequent online
reconstruction methods is to introduce photometric
data into the ICP-based framework to estimate
camera poses by maximizing the consistency of
geometric information as well as color information
between two adjacent frames [2, 5–11]. However,
even though an ICP-based framework can effectively
deal with RGB-D data with small shifts, it solves
a non-linear minimization problem and always
converges to a local minimum near the initial
input because of the small angle assumption [4].
This indicates that pose estimation accuracy relies
strongly on a good initial guess, which is unlikely to
be satisfied if the camera moves rapidly or is shifted
suddenly by the user. For the same reason, ICP-

1



2 C. Wang, X. Guo

based online reconstruction methods always generate
results with drifts and distortion for scenes with large
planar regions such as walls, ceilings, and floors, even
if consecutive frames only contain small shifts. Figure
1 illustrates this shortcoming for several current
online methods using an ICP-based framework, and
also shows the advantage of our method on RGB-D
data with large shifts on a planar region.

Another strategy to improve the robustness of
camera tracking is to introduce RGB features
into camera pose estimation by maximizing the
3D position consistency of corresponding feature
points between frames [12–14]. These feature-based
methods are better than ICP-based ones in handling
RGB-D data with large shifts, since they simply
run a quadratic minimization problem to directly
compute the relative transformation between two
consecutive frames [13, 14]. However, unlike ICP-
based methods using frame-to-model registration,
current feature-based methods estimate camera
pose only based on pairs of consecutive frames,
which usually brings in errors and accumulates
drifts in reconstruction on RGB-D data with
sudden change. Moreover, current feature-based
methods always inaccurately estimate camera
pose because of unreliable feature extractors and
matching. Practically, the inaccurate camera poses
are not utilized directly in reconstruction, but
pushed into an offline backend post-process to
improve their reliability, such as global pose graph
optimization [12, 15] or bundle adjustment [13,
14]. For this reason, most current feature-based
reconstruction methods are strictly offline.

In this paper, we combine the advantages of the

two above strategies and propose a novel feature-
based camera pose optimization algorithm for online
3D reconstruction systems. To solve the limitation
that the ICP-based framework always converges
to a local minimum near the initial input, our
approach estimates the global camera poses directly
by efficiently solving a quadratic minimization
problem to maximize the consistency of matched
feature points across frames, without any initial
guess. This makes our method robust in dealing
with RGB-D data with large shifts. Meanwhile,
unlike current feature-based methods which only
consider pairs of consecutive frames, our method
utilizes matched features from all previous frames to
reduce the impact of bad features and accumulated
error in camera pose during scanning. This is
achieved by keeping track of RGB features’ 3D points
information from all frames in a structure called the
feature correspondence list.

Our algorithm can be directly integrated into
current online reconstruction pipelines. We have
implemented our method within two state-of-the-art
online 3D reconstruction platforms. Experimental
results testify that our approach is efficient and
improves current methods in estimating camera
pose on RGB-D data with large shifts.

2 Related work

Following KinectFusion, many variants and
other brand new methods have been proposed
to overcome its limitations and achieve more
accurate reconstruction results. Here we mainly
consider camera pose estimation methods in online

Fig. 1 Camera pose estimation comparison between methods. Top: four real input point clouds scanned using different views of a white wall
with a painting. Bottom: results of stitching using camera poses provided by the Lucas–Kanade method [6], voxel-hashing [2], ElasticFusion [9],
and our method.
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and offline reconstruction techniques, and briefly
introduce camera pose optimization in some other
relevant areas.

2.1 Online RGB-D reconstruction

A typical online 3D reconstruction process takes
RGB-D data as input and fuses the dense
overlapping depth frames into one reconstructed
model using some specific representation, of which
two most important categories are volume-based
fusion [2, 4, 5, 10, 16, 17] and point/surfel-based
fusion [1, 9]. Volume-based methods are very
common since they can directly generate models
with connected surfaces, and are also efficient
in data retrieval and use of the GPU. While
KinectFusion is limited to a small fixed-size scene,
several subsequent methods introduce different data
processing techniques to extend the original volume
structure, such as moving volume [16, 18], octree-
based volume [17], patch volume [19], or hierarchical
volume [20]. However, these online methods simply
inherit the same ICP framework from KinectFusion
to estimate camera pose.

In order to handle dense depth data and stitch
frames in real time, most online reconstruction
methods prefer an ICP-based framework which
is efficient and reliable if the depth data has
small shifts. While KinectFusion runs a frame-
to-model ICP process with vertex correspondence
obtained by projective data association, Peasley and
Birchfield [6] improved it by providing ICP with
a better initial guess and correspondence based on
a warp transformation between consecutive RGB
images. However, this warp transformation is
only reliable for images with very small shifts,
just like the ICP-based framework. Nießner et
al. [2] introduced voxel-hashing technique into
volumetric fusion to reconstruct scenes at large scale
efficiently and used color-ICP to maintain geometric
as well as color consistency of all corresponding
vertices. Steinbrucker et al. [21] proposed an
octree-based multi-resolution online reconstruction
system which estimates relative camera poses
between frames by stitching their photometric and
geometric data together as closely as possible.
Whelan et al.’s method [10] and a variant [5]
both utilize a volume-shifting fusion technique to
handle large-scale RGB-D data, while Whelan et

al.’s ElasticFusion approach [9] extends it to a surfel-
based fusion framework. They introduce local loop
closure detection to adjust camera poses at any time
during reconstruction. Nonetheless, these methods
still rely on an ICP-based framework to determine
a single joint pose constraint and therefore are still
only reliable on RGB-D data with small shifts.
Figure 1 gives a comparison between our method
and these current methods on a rapidly scanned
wall. In Section 4 we compare voxel-hashing [2],
ElasticFusion [9], and our method on an RGB-D
benchmark [22] and a real scene.

Feature-based online reconstruction methods are
much rarer than ICP-based ones, since camera
poses estimated only using features are usually
unreliable due to the noisy RGB-D data, and must
be subsequently post-processed. Huang et al. [13]
proposed one of the earliest SLAM systems which
estimates an initial camera pose in real time for
each frame by utilizing FAST feature correspondence
between consecutive frames, and sending all poses
to a post-process for global bundle adjustment
before reconstruction, which makes this method less
efficient and not strictly an online reconstruction
technique. Endres et al. [12] considered different
feature extractors and estimated camera pose
by simply computing the transformation between
consecutive frames using an RANSAC algorithm
based on feature correspondences. Xiao et al. [14]
provided an RGB-D database with full 3D space
views and used SIFT features to construct
the transformation between consecutive frames,
followed by bundle adjustment to globally improve
pose estimates. In summary, current feature-
based methods utilize feature correspondences only
between pairs of consecutive frames to estimate the
relative transformation between them. Unlike such
methods, our method utilizes the feature-matching
information from all previous frames by keeping
track of the information in a feature correspondence
list. Section 4.4 compares our method and current
feature-based frameworks utilizing only pairs of
consecutive frames.

2.2 Offline RGB-D reconstruction
The typical and most common scheme for offline
reconstruction methods is to take advantage of
some global optimization technique to determine
consistent camera poses for all frames, such as bundle
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adjustment [13, 14], pose graph optimization [5, 14,
23], and deformation graph optimization with loop
closure detection [9]. Some offline works utilize
similar strategies to online methods [2, 5, 9] by
introducing feature correspondences into an ICP-
based framework. They maximize the consistency
of both dense geometric data and sparse image
features, such as one of the first reconstruction
systems proposed by Henry et al. [7] using SIFT
features.

Other work introduces various special points of
interest into camera pose estimation and RGB-D
reconstruction. Zhou and Koltun [24] proposed an
impressive offline 3D reconstruction method which
focuses on preserving details of points of interest
with high density values across RGB-D frames, and
runs pose graph optimization to obtain globally
consistent pose estimations for these points. Two
other works by Zhou et al. [25] and Choi et al. [26]
both detect smooth fragments as point of interest
zones and attempt to maximize the consistency
of corresponding points in fragments across frames
using global optimization.

2.3 Camera pose optimization in other areas
Camera pose optimization is also very common in
many other areas besides RGB-D reconstruction.
Zhou and Koltun [3] presented a color mapping
optimization algorithm for 3D reconstruction which
optimizes camera poses by maximizing the color
agreement of 3D points’ 2D projections in all
RGB images. Huang et al. [13] proposed an
autonomous flight control and navigation method
utilizing feature correspondence to estimate relative
transformation between consecutive frames in real
time. Steinbrücker et al. [27] presented a real-time
visual odometry method which estimates camera
poses by maximizing photo-consistency between
consecutive images.

3 Camera pose estimation

Our camera pose optimization method attempts to
maximize the consistency of matched features’

corresponding 3D points in global space across
frames. In this section we start with a brief overview
of the algorithmic framework, and then describe the
details of each step.

3.1 Overall scheme

The pipeline is illustrated in Fig. 2. For each
input RGB-D frame, we extract the RGB features
in the first step (see Section 3.2), and then generate
a good feature match with correspondence-check
(see Section 3.3). Next, we maintain and update
a data structure called the feature correspondence
list to store matched features and corresponding
3D points in the camera’s local coordinate space
across frames (see Section 3.4). Finally, we estimate
camera pose by minimizing the difference between
matched features’ 3D positions in global space (see
Section 3.5).

3.2 Feature extraction

2D feature points can be utilized to reduce the
amount of data needed to evaluate the similarity
between two RGB images while preserving the
accuracy of the result. In order to estimate camera
pose efficiently in real time while guaranteeing the
reconstruction reliability, we need to select a feature
extraction method with a good balance between
feature accuracy and speed. We ignore corner-based
feature detectors such as BRIEF and FAST, since
the depth data from consumer depth cameras always
contains much noise around object contours due
to the cameras’ working principles [28]. Instead,
we simply use an SURF detector to extract and
describe RGB features, for two main reasons. Firstly,
SURF is robust, stable, and scale and rotation
invariant [29], which is important for establishing
reliable feature correspondences between images.
Secondly, existing methods can efficiently compute
SURF in parallel on the GPU [30].

3.3 Feature matching

Using the feature descriptors, a feature match can
be obtained easily but it usually contains many

Extract 

keypoints

Construct feature 

correspondence list

Estimate 

camera pose

Input RGB
Feature 

matching

Input depth

Fig. 2 Algorithm overview.
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mismatched pairs. To remove as many outliers as
possible, we run an RANSAC-based correspondence-
check based on 2D homography and relative
transformation between pairs of frames.

For two consecutive frames i − 1 and i with
RGB images and corresponding 3D points in the
camera’s local coordinate space, we first obtain an
initial feature match between 2D features based
on their descriptors. Next, we run a number of
iterations, and in each iteration we randomly select
4 feature pairs to estimate the 2D homography H z

using the direct linear transformation algorithm [31]
and the 3D relative transformation Tz between the
corresponding 3D points. H z and Tz with lowest
re-projection errors amongst all feature pairs are
selected as the final ones to determine the outliers.
After iterations, feature pairs with a 2D re-projection
error larger than a threshold σH or a 3D re-projection
error larger than a threshold σT are treated as
outliers, and are removed from the initial feature
match.

During the correspondence-check, we only select
feature pairs with valid depth values. Meanwhile,
in order to reduce noise in the depth data, we
pre-smooth the depth image with a bilateral filter
before computing 3D points from 2D features. After
the correspondence-check, if the number of valid
matched features is too small, the estimated camera
pose obtained based on them will be unreliable.
Therefore, we abandon all subsequent steps after
feature matching and use a traditional ICP-based
framework if the number of validly matched features
is smaller than a threshold σF . In our experiment, we
empirically choose σH = 3, σT = 0.05, and σF = 10.

Figure 3 shows a feature matching comparison
before and after the correspondence-check for two
consecutive images captured by a fast-moving
camera. The blue circles are feature points, while
the green circles and lines are matched feature pairs.
Note that almost all poorly matched correspondence
pairs are removed.

3.4 Feature correspondence list construction

In order to estimate the camera pose by maximizing
the consistency of the global positions of matched
features in all frames, we establish and update a
feature correspondence list (FCL) to keep track of
matched features in both the spatial and temporal

Fig. 3 Two original images (top), feature matching before (middle)
and after (bottom) correspondence checking.

domain. The FCL is composed of 3D point sets, each
of which denotes a series of 3D points in the camera’s
local coordinate space, whose corresponding 2D
pixels are matched features across frames. Thus,
the FCL in frame i is denoted by L = {Sj |j = 0,
. . . ,mi−1}, where each Sj contains 3D points whose
corresponding 2D points are matched features, j is
the point set index, and mi is the number of point
sets in the FCL in frame i. The FCL can be simply
constructed: Fig. 4 illustrates the process used to
construct FCL for two consecutive frames.

By keeping track of all RGB features’ 3D
positions in each camera’s local space, we
can estimate camera poses by maximizing the
consistency of all these 3D points’ global positions.
By utilizing feature information from all frames
instead of just two consecutive frames, we aim to
reduce the impact of possible bad features, such
as incorrectly matched features or features from
ill-scanned RGB-D frames. Moreover, this also
avoids the accumulation of error in camera pose
from previous frames.

3.5 Camera pose optimization

For the 3D points in each point set in FCL, their
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Fig. 4 Feature correspondence lists for frame 1 (left) and frame 2
(right). To construct the FCL for frame 2, we remove point sets with
unmatched features (green), add matched points whose corresponding
features are in the previous frame’s FCL into the corresponding
point sets (red), and add new point sets for matched features whose
corresponding features are not in the previous frame’s FCL (blue).
Finally we re-index all points in the FCL. The number of point sets
in the two FCLs is the same; here m1 = m2 = 2.

corresponding RGB features can be regarded as 2D
projections from one 3D point in the real world on
the RGB images in a continuous series of frames. For
these 3D points in the camera coordinate space, we
aim to ensure that their corresponding 3D points in
the world space are as close as possible.

Given the FCL L = {Sj |j = 0, · · · ,mi − 1} in
frame i, for each 3D point pij ∈ Sj , our objective
is to maximize the agreement between pij and its
target position in the world space with respect to a
rigid transformation. Specifically, we seek a rotation
Ri and translation vector ti that minimize the
following energy function:

Ei(Ri, ti) =
mi−1∑
j=0

wj‖Ripij + ti − qj‖2 (1)

where wj is a weight to distinguish the importance
of points, and qj is the target position in the world
space of pij after transformation. In our method we
initially set:

qj = 1
|Sj | − 1

i−1∑
k=nj

(Rkpkj + tk) (2)

which is the average position of the 3D points in the
world frame obtained from all points in Sj except for
pij itself, where nj is the frame index for Sj ’s first
point. Intuitively, the more frequently a 3D global
point appears in frames, the more reliable this point’s
measured data will be for the estimation of camera
pose. Therefore, we use wj = |Sj | to balance the
importance of points. qj in Eq. (2) can be easily
computed from the stored information in frame i’s
FCL.

The energy function Ei(Ri, ti) in Eq. (1) is

a quadratic least-squares objective and can be
minimized by Arun et al.’s method [32]:

Ri = VDUT (3)
ti = q −Ripi (4)

Here D = diag(1, 1,det(VUT)) ensures that Ri is a
rotation matrix without reflection. U, V are both 3×
mi matrices from the singular value decomposition
(SVD) of matrix S = UΣΣΣVT, which is constructed
by S = XWYT where:

X = [pi0 − pi, . . . ,pi(mi−1) − pi] (5)
W = diag(w0, . . . , wmi−1) (6)
Y = [q0 − q, . . . , qmi−1 − q] (7)

pi =
∑

k wkpik∑
k wk

, q =
∑

k wkqk∑
k wk

(8)

Here X and Y are both 3 × mi matrices, W is a
diagonal matrix with weight values, and pi and q
are the mass centers of all pij and qj in frame i

respectively. In general, by minimizing the energy
function in Eq. (1), we seek a rigid transformation
which makes each 3D point’s global position in
the world space as close as possible to the average
position of all its corresponding 3D points from all
previous frames.

After solving Eq. (1) for the current frame i, each
pij ’s target position qj in Eq. (2) can be updated by

q ′j = 1
|Sj |

i∑
k=nj

(Rkpkj + tk) (9)

This is simply done by putting pij and the newly
obtained transformation Ri and ti into Eq. (2), and
estimating qj as the average center of all points in
Sj . Note that we can utilize the new q ′j in Eq. (9)
to further decrease the energy in Eq. (1) and obtain
another new transformation, which can be utilized
again to update q ′j in turn. Therefore, an iterative
optimization process updating q ′j and minimizing
the energy Ei can be repeatedly used to optimize
the transformation until the energy converges.

Furthermore, the aforementioned iterative process
can also be run on previous frames to further
maximize the consistency of matched 3D points’
global positions between frames. If an online
reconstruction system contains techniques to update
the previously reconstructed data, then the further
optimized poses in previous frames can be used to
update the reconstruction quality further. Actually,
we only need to optimize poses between frame r to
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i, where r is the earliest frame index of all points
in frame i’s FCL. A common case during online
scanning and reconstruction is that, the camera stays
steady on a same scene for a long time. Then, the
correspondence list will keep too many old redundant
matched features from very early previous frames,
which will greatly increase the computation cost
of optimization. To avoid this, we check the gap
between r and i for every frame i. If i − r is larger
than a threshold δ, we only run optimization between
frame i−δ and i. In the experiments, we use δ = 50.

In particular, minimizing each energy Ek(r 6 k 6
i) is equivalent to minimizing the sum of the energy
between these frames:

E(Er, . . . , Ei) =
i∑

k=r

Ei

=
i∑

k=r

mk−1∑
j=0

wj‖Rkpkj + tk−qj‖2 (10)

According to the solutions in Eqs. (5)–(8), the
computation of each transformation Rk and tk in
Eq. (10) is independent of that in other frames. The
total energy E is estimated each time in the iterative
optimization process to determine if the convergence
condition is satisfied or not.

Algorithm 1 describes the entire iterative camera
pose optimization process in our method. In the
experiments we set the energy threshold ε = 0.01.
Our optimization method is very efficient in that it
only takes O(mi) multiplications and additions as
well as a few SVD processes on 3×3 matrices.

4 Experimental results

To assess the capabilities of our camera pose
estimation method, we embedded it within two state-
of-the-art platforms: a volume-based method based
on voxel-hashing [2] and a surfel-based method,
ElasticFusion [9]. In the implementation, we first
estimate camera poses using our method, and
then regard them as good initial guesses for the
original ICP-based framework in each platform.
The reason is that the reconstruction quality is
possibly low if the online system does not run a
frame-to-model framework to stitch dense data from
the current frame with the previous model during
reconstruction [5]. Note that for each frame, even
though our method optimizes camera poses from all
relevant frames, we only use the optimized

Algorithm 1 Camera pose optimization
Input: Feature correspondence list for frame i, earliest

frame index r, and energy threshold ε.
Output: Optimized camera poses between frame r and

frame i.
1: Update {qj} via Eq. (2);
2: Compute energy Ei in Eq. (1) with {qj} and obtain Ri

and ti;
3: Compute total energy E in Eq. (10);
4: while (true) do
5: E′ ⇐ E;
6: Update {q′

j} with {Rk, tk|k = r, . . . , i} via Eq. (9);
7: for all (r 6 k 6 i) do
8: Compute energy Ek in Eq. (1) with {q′

j} and obtain
R′

k and t′
k ;

9: end for
10: Compute new energy E in Eq. (10) with {R′

k, t′
k|k =

r, . . . , i};
11: if (|E′ − E| < ε) then
12: break;
13: end if
14: for all (r 6 k 6 i) do
15: Rk ⇐ R′

k, tk ⇐ t′
k;

16: end for
17: end while
18: Return {R′

k, t′
k|k = r, . . . , i}

pose for the current frame for the frame-to-model
framework to update the reconstruction, and the
optimized poses in previous frames are only utilized
to estimate the camera poses in future frames.

4.1 Trajectory estimation

We first compare our method with both voxel-
hashing [2] and ElasticFusion [9], evaluating the
trajectory estimation performance using several
datasets from the RGB-D benchmark [22]. In
order to compare with ElasticFusion [9], we
utilize the same error metric as in their work,
absolute trajectory root-mean-square error (ATE)
which measures the root-mean-square of Euclidean
distances between estimated camera poses and
ground truth ones associated with timestamps [9,
22].

Table 1 shows the results from each method
with and without our improvement. We denote
the smallest error for each dataset in bold. Here
“dif1” and “dif5” denote the frame difference used
for each dataset during reconstruction. In other
words, for “dif5”, we only use the first frame
of every 5 consecutive frames in each original
dataset, and omit the other 4 intermediate frames



8 C. Wang, X. Guo

Table 1 Trajectory estimation comparison of methods using ATE
metric

System fr1/desk fr1/floor fr1/room fr3/ntf
dif1 dif5 dif1 dif5 dif1 dif5 dif1 dif5

Voxel-hashing 1.10 0.74 1.01 0.70 0.61 1.08 1.32 1.30
Ours 0.32 0.32 0.16 0.19 0.34 0.61 0.18 0.08

ElasticFusion 0.03 0.30 0.41 0.54 0.38 0.48 0.08 0.15
Ours 0.04 0.21 0.17 0.22 0.32 0.35 0.08 0.08

in order to estimate the trajectories on RGB-D
data with large shifts, while for “dif1” we just
use the original dataset. Note that our results
are different when embedded in the two platforms
even for the same dataset. This is because,
firstly, the two online platforms utilize different
data processing and representation techniques,
and different frame-to-model frameworks during
reconstruction. Secondly, the voxel-hashing platform
does not contain any optimization technique to
modify previously constructed models and camera
poses, while ElasticFusion utilizes both local
and global loop closure detection in conjunction
with global optimization techniques to optimize
previous data and generate a globally consistent
reconstruction [9]. Results in Table 1 show that
our method improves upon the other two methods
for estimating trajectories, especially on large
planar regions such as fr1/floor and fr3/ntf which
both contain floor with textures. Furthermore, our
method also estimates trajectories better than the
other methods when the shifts between the RGB-D
frames are large.

4.2 Pose estimation

To estimate the pose estimation performance, we

compared our methods with the same two methods
on the same benchmark using relative pose error
(RPE) [22], which measures the relative pose
difference between each estimated camera pose and
the corresponding ground truth. Table 2 gives the
results, which show that our method can improve
camera pose estimation on datasets with large shifts,
even though our result is only on a par with the
others on the original datasets with small shifts
between consecutive frames.

4.3 Surface reconstruction

In order to compare the influence of computed
camera poses on the final reconstructed models for
our method and the others, we firstly compute
camera poses by each method on its corresponding
platform, and then use all the poses on the same
voxel-hashing platform to generate reconstructed
models. Here our method runs on the voxel-
hashing platform. Figure 5 gives the reconstruction
results for different methods on the fr1/floor dataset
from the same benchmark, with frame difference
5. The figure shows that our method improves the
reconstructed surface by producing good camera
poses for the RGB-D data with large shifts.

To test our method on a fast-moving camera on
Table 2 Pose estimation comparison of methods using RPE metric

System fr1/desk fr1/floor fr1/room fr3/ntf
dif1 dif5 dif1 dif5 dif1 dif5 dif1 dif5

Voxel-hashing 1.57 1.16 1.25 0.98 1.15 1.49 1.60 1.62
Ours 0.91 0.94 0.80 0.80 0.84 1.14 1.36 1.42

ElasticFusion 0.04 0.41 0.42 0.58 0.51 0.63 0.11 0.11
Ours 0.05 0.29 0.43 0.48 0.54 0.61 0.12 0.11

Voxel-hashing ElasticFusion Ours Ground truth

Fig. 5 Reconstruction results for different methods on fr1/floor from the RGB-D benchmark [22] with frame difference 5.
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a real scene, we fixed an Asus XTion depth camera
on a tripod with a motor to rotate the camera with
controlled speed. With this device, we firstly scanned
a room by rotating the camera only around its axis
(the y-axis in the camera’s local coordinate frame)
for several rotations with a fixed speed, and selected
the RGB-D data for exactly one rotation for the
test. This dataset contains 235 RGB-D frames; most
of the RGB images are blurred, since it took the
camera only about 5 seconds to finish the rotation.
Figure 6 gives an example showing two blurred
images from this RGB-D dataset. Note that our
feature matching method can still match features

Fig. 6 Two blurred images (top) and feature matching result
(bottom) from our scanned RGB-D data from a real scene using a
fast-moving camera.

very well.
Figure 7 gives the reconstruction results produced

by different methods on the dataset. As in Fig. 5,
all reconstruction results here are also obtained
using the voxel-hashing platform with camera
poses pre-computed by different methods on each
corresponding platform; again our method ran on
the voxel-hashing platform. For the ground truth
camera poses, since we scan the scene with fixed
rotation speed, we simply compute the ground truth
camera pose for each frame i (0 � i < 235) as
Ri = Ry(θi) with θi = (360(i− 1)/235)◦ and
ti = 0, where Ry(θi) rotates around the y-axis by
an angle θi. Moreover, note that ElasticFusion [9]
utilizes loop closure detection and deformation graph
optimization to globally optimize camera poses and
global point positions in the final model. To make
the comparison more reasonable, we introduce the
same loop closure detection in ElasticFusion [9] into
our method, and use a pose graph optimization
tool [15] to globally optimize camera poses for all
frames efficiently. Figure 7 shows that our optimized
camera poses can determine the structure of the
reconstructed model very well for the real-scene data
captured by a fast-moving camera.

4.4 Justification of feature correspondence
list

In our method we utilize the FCL in order to

Voxel-hashing ElasticFusion

Ours Ground truth

Fig. 7 Reconstruction results for different methods on room data captured by a speed-controlled fast-moving camera.



10 C. Wang, X. Guo

reduce the impact of bad features on camera
pose estimation, and also to avoid accumulating
error in camera poses during scanning. Current
feature-based methods always estimate the relative
transformation between the current frame and the
previous one using only the matched features in these
two consecutive frames [12–14] and here we call this
strategy consecutive-feature estimation.

In our framework, the consecutive-feature
estimation can be easily implemented by only using
steps (1) and (2) (lines 1 and 2) in Algorithm 1
for each qj = p(i−1)j , which is pij ’s matched 3D
point in the previous frame. Figure 8 gives the
ATE and RPE errors for our method utilizing FCLs
and the consecutive-feature method on fr1/floor, for
increasing frame differences. Clearly our method
with FCLs outperforms the consecutive-feature
method in determining camera poses for RGB-D
data with large shifts.

4.5 Performance

We have tested our method on the voxel-hashing
platform on a laptop running Microsoft Windows
8.1 with an Intel Core i7-4710HQ CPU at 2.5 GHz,
12 GB RAM, and an NVIDIA GeForce GTX
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Fig. 8 Comparison between our method and the consecutive-feature
method on fr1/floor for varying frame difference.

860M GPU with 4 GB memory. We used the
OpenSURF library and used OpenCL [30] to extract
SURF features on each down-sampled 320 × 240
RGB image. For each frame, our camera pose
optimization pipeline takes about 10 ms to extract
features and finish feature matching, 1–2 ms for
FCL construction, and only 5–8 ms for the camera
pose optimization step, including the iterative
optimization of camera poses for all relevant frames.
Therefore, our method is efficient enough to run
in real time. We also note that the offline pose
graph optimization tool [15] used for the RGB-D
data described in Section 4.3 takes only 10 ms for
global pose optimization of all frames.

5 Conclusions and future work

This paper has proposed a novel feature-based
camera pose optimization algorithm which efficiently
and robustly estimates camera pose in online RGB-
D reconstruction systems. Our approach utilizes
the feature correspondences from all previous frames
and optimizes camera poses across frames. We
have implemented our method within two state-
of-the-art online RGB-D reconstruction platforms.
Experimental results verify that our method
improves current online systems in estimating more
accurate camera poses and generating more reliable
reconstructions for RGB-D data with large shifts
between consecutive frames.

Considering that our camera pose optimization
method is only part of the RGB-D reconstruction
system pipeline, we aim to develop a new RGB-
D reconstruction system with our camera pose
optimization framework in it. Moreover, we will
also explore utilizing our optimized camera poses
in previous frames to update the previously
reconstructed model in the online system.
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[27] Steinbrücker, F.; Sturm, J.; Cremers, D. Real-
time visual odometry from dense RGB-D images. In:
Proceedings of the IEEE International Conference on
Computer Vision Workshops, 719–722, 2011.

[28] Hänsch, R.; Weber, T.; Hellwich, O. Comparison of 3D
interest point detectors and descriptors for point cloud
fusion. ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences Vol. 2, No.
3, 57, 2014.

[29] Juan, L.; Gwun, O. A comparison of SIFT, PCA-SIFT
and SURF. International Journal of Image Processing
Vol. 3, No. 4, 143–152, 2009.



12 C. Wang, X. Guo

[30] Yan, W.; Shi, X.; Yan, X.; Wan, L. Computing
openSURF on openCL and general purpose GPU.
International Journal of Advanced Robotic Systems
Vol. 10, No. 10, 375, 2013.

[31] Hartley, R.; Zisserman, A. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2003.

[32] Arun, K. S.; Huang, T. S.; Blostein, S. D. Least-
squares fitting of two 3-D point sets. IEEE
Transactions on Pattern Analysis and Machine
Intelligence Vol. PAMI-9, No. 5, 698–700, 1987.

Chao Wang is currently a Ph.D.
candidate in the Department of
Computer Science at the University
of Texas at Dallas. Before that, he
received his M.S. degree in computer
science in 2012, and B.S. degree
in automation in 2009, both from
Tsinghua University. His research

interests include geometric modeling, spectral geometric
analysis, and 3D reconstruction of indoor environments.

Xiaohu Guo received his Ph.D. degree
in computer science from Stony Brook
University in 2006. He is currently
an associate professor of computer
science at the University of Texas at
Dallas. His research interests include
computer graphics and animation, with
an emphasis on geometric modeling and

processing, mesh generation, centroidal Voronoi tessellation,
spectral geometric analysis, deformable models, 3D and

4D medical image analysis, etc. He received a prestigious
National Science Foundation CAREER Award in 2012.

Open Access The articles published in this journal
are distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the
original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were
made.

Other papers from this open access journal are available free
of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.




