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Collision Detection and Deformable Objects

Real-time meshless deformation
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In this paper, we articulate a meshless computational paradigm for the effective modeling,

accurate physical simulation, and real-time animation of point-sampled solid objects. Both

the interior and the boundary geometry of our volumetric object representation only consist

of points, further extending the powerful and popular method of point-sampled surfaces to

the volumetric setting. We build the point-based physical model upon continuummechanics,

which affords to effectively model the dynamic elastic behavior of point-based volumetric

objects. When only surface samples are provided, our prototype system first generates both

interior volumetric points and a volumetric distance field with octree structure. The physics

of these volumetric points in a solid interior are simulated using the Meshless Moving Least

Squares (MLS) shape functions. In sharp contrast to the traditional finite element method

(FEM), the meshless property of our new technique expedites the accurate representation and

precise simulation of the underlying discrete model, without the need of domain meshing. In

order to achieve real-time simulations, we utilize the warped modal analysis method that is

locally linear in nature but globally warped to account for rotational deformation. The

structural simplicity and real-time performance of our meshless simulation framework are

ideal for interactive animation and game/movie production. Copyright# 2005 JohnWiley &

Sons, Ltd.
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Introduction

The rapid technology advancement of scanning devices

has already made large-scale sampled surfaces preva-

lent and popular in the digital processing pipeline.

Developing new algorithms and techniques for point-

centered digital processing has become a common and

long-term mission in the point-based graphics field.

Examining the rich literature of point-centered geo-

metric processing and graphics rendering, the topics

of real-time (or interactive) manipulation and animation

of point-sampled geometry appear to be less explored.

Traditionally in computer animation, meshes are inevi-

table for physical simulations since the finite element

method (FEM) requires an explicit mesh structure. For

point-sampled geometry, however, only local vicinity

information is needed. Meshes require a much stronger

condition that their connectivity should not overlap. The

regularities of the mesh, which are essentially deter-

mined from its connectivity, are crucial for later-on

animation process and numerical computation. In this

paper, our goal is to simplify and streamline the entire

physical simulation and animation process without any

data conversion to meshes in order to further improve

its utility and broaden its access by graphics users.

We present a real-time meshless simulation and ani-

mation paradigm for point-based volumetric objects.

Our system takes any point sampled surfaces as input,

generating a volumetric distance field sampled at

the center of octree cells for point-sampled surface

geometry. The octree decomposition also implicitly de-

fines the geometry of the solid object enclosed by surface

points on its boundary. The surface distance field can be
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utilized to facilitate the embedding of the volumetric

point samples. Besides point geometry (on the boundary

and at the interior), our physical model is based on

continuum mechanics, which enables our system to

simulate the dynamic elastic behavior of the point-based

scanned objects. Using continuum mechanics, the simu-

lation parameters can be obtained from the technical

specification of real materials documented in the typical

scientific references, avoiding the tedious parameter

fine-tuning and ad-hoc parameter selection as in the

case of mass-spring systems (commonly-used in compu-

ter animation). The physics in our system are simulated

on the volumetric points using theMoving Least Squares

(MLS) shape functions, one of themost popular meshless

methods that have been developed extensively in

mechanical engineering and material science. The fast

convergence, ease of adaptive refinement, flexible ad-

justment of the consistency order and the continuity of

derivatives up to any desirable order are some key

features of the meshless methods. Note that, the volu-

metric points employed in our dynamic simulation can

be easily generated based on the octree structure out-

lined above, which necessarily permits the powerful

adaptive modeling capability through the local subdivi-

sion of any regions of interest in a hierarchical fashion.

Traditionally in mechanical engineering, the high com-

putational load associated with most meshless methods

is one severe drawback which plagues its further appli-

cation in computer graphics and animation. In order to

drastically speed up the simulation process, we utilize

the Modal Warping technique,1 in which linear modal

analysis is employed to simulate the elastic model in

each local reference frame of the simulation node, and

the system equations can be globally warped to account

for rotational deformation. Figure 1 shows the general

framework of our real-time meshless simulation system.

Through our extensive experiments, we demonstrate

that modeling and simulating point-sampled scanned

geometry based on the meshless method can streamline

the entire digital animation process, and the integration

of meshless method with modal analysis is both natural

and necessary to significantly improve the animation

performance towards real-time simulation of large-scale

models using desktop computers.

RelatedWork

In this section we will briefly review some related work

on physically-based animation, modal analysis, point-

based geometry, and meshless methods.

Physically-BasedAnimation and
Modal Analysis

Pioneering work in the field of physically-based anima-

tion was carried out by Terzopoulos and his co-workers.2

Later, a large number of mesh based methods for both

off-line and interactive simulation of deformable objects

have been proposed in the field of computer graphics

based on either the boundary element method3 or the

finite element method.4 In 1994, Belytschko et al. pro-

posed the Element Free Galerkin (EFG) method5 to solve

linear elastic problems, specifically the fracture and

crack growth problems, in which the Moving Least

Squares (MLS) approximation was employed in a

Galerkin procedure. However, later-on research on

meshless methods are mainly restricted to mechanical

analysis field, because the high computational load

makes it impractical for computer animations.

Modal analysis is a well established mathematical

technique, which was introduced to the graphics field

in 1989 by Pentland and Williams6 as a fast method for

approximating deformation. James and Pai7 implemen-

ted a real-time simulation of skin and soft tissues

attached to moving rigid bodies by computing modal

deformation on graphics hardware. Hauser et al.8

addressed the manipulation constraints and combined

modal analysis with rigid body simulation. Most

recently, Choi and Ko1 proposed a technique called

Modal Warping that eliminates the linearization artifacts

while retaining the efficiency of modal analysis.

Point-BasedGeometry and
MeshlessMethods

Research on point-based geometry has received much

attention in the modeling and visualization community

in recent years, following Levoy and Whitted’s pioneer-

ing report.9 Zwicker et al. presented a system called

Pointshop 3D10 for interactive shape and appearance

editing of 3D point-sampled geometry. Alexa et al.11

used the framework of moving least squares (MLS)

projection to approximate a smooth surface defined by

a set of points, and they developed several associated

resampling techniques to generate an adequate repre-

sentation of the surface. Amenta and Kil12 presented a

new explicit definition of the point set surfaces in terms

of the critical points of an energy function on lines

determined by a vector field. Guo et al.13 equipped point

surfaces with level set technique, which can provide

various local and global surface editing operations.
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Later, they embedded point clouds into dynamic volu-

metric implicit models to afford intuitive haptic inter-

action.14

Müller et al.15 presented a method for modeling and

animating elastic, plastic, and melting volumetric ob-

jects based on the MLS approximation of the gradient of

the displacement vector field. In their implementation,

point collocation method was used to achieve computa-

tional efficiency by avoiding numerical integrals at the

expense of the loss of simulation accuracy. Guo and

Qin16 applied the meshless method for simple crack

propagation simulation using the level set approach.

Pauly et al.17 combined the meshless method with a

highly dynamic surface and volume sampling method

that affords complex fracture patterns of interacting and

branching cracks. Bao et al.18 applied the dynamic

meshless simulation method to find a physically mean-

ingful transition path between two homeomorphic

point-sampled surfaces.

MeshlessMethods

Most recently, meshless (mesh-free) methods19 have

been developed in the field of mechanical engineering

to enable solving partial differential equations (PDEs)

numerically, based on a set of scattered nodes without

having to recourse to an additional mesh structure

(which must be put in place for the finite element

methods). The advantages of meshless methods for

computer animations are multifold: (1) there is no

need to generate a mesh of nodes for simulation—the

nodes only need to be scattered within the solid object,

which is much easier to handle in principle; (2) proper-

ties such as spatial adaptivity (node addition or

elimination) and shape function polynomial order

adaptivity (approximation/interpolation types) can

streamline the adaptive model refinement and simula-

tion in both time and space; and (3) data management

overhead can be minimized during simulation. There

are many variants of the meshless methods. In our

simulation we use the Moving Least Squares (MLS)

shape functions, which has been employed in the Ele-

ment Free Galerkin (EFG) method introduced in Refer-

ence [5], mainly because it has been well-developed

with mature techniques, and it has shown a superior

rate of convergence and high efficiency. Other variants

of available meshless methods can also be adopted into

our prototype system in a straightforward way without

theoretical obstacles. To make this paper self-contained,

we present a brief introduction of the MLS approxima-

tion for the definition of shape functions in the following

subsection. More detailed derivation can be found in

Reference [16].

Figure 1. The general framework of our real-time meshless simulation system.
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MLSShape Functions

The shape functions in the EFG method are constructed

by using the Moving Least Squares (MLS) approxima-

tion technique, or alternatively on the basis of reprodu-

cibility conditions (note that both approaches can arrive

at the same expressions for the shape functions), and it

can provide continuous and smooth field approxima-

tion throughout the analysis domain with any desirable

order of consistency.

Each node I is associated with a positive weight

function wI of compact support in the analysis domain.

From the support of the weight function wI , we can

define the domain of influence of the node: �I ¼
fx 2 R3 : wIðxÞ ¼ wðx; xIÞ > 0g, where wðx; xIÞ is the

weight function associated with node I evaluated at

position x. The approximation of the field function f at

a position x is only affected by those nodes whose

weights are non-zero at x. We denote the set of such

nodes as the active set AðxÞ.
If we consider a field function fðxÞ defined in the

analysis domain �, we can construct its MLS approx-

imation f̂fðxÞ as:

f̂fðxÞ ¼
Xm
i¼1

piðxÞaiðxÞ ¼ pTðxÞaðxÞ; ð1Þ

where piðxÞ are polynomial basis functions, m is the

number of basis functions in the column vector pðxÞ, and
aiðxÞ are their coefficients, which are functions of the

spatial coordinates x. In our implementation, we utilize

3-D linear basis functions: pTðm¼4Þ ¼ f1; x; y; zg in the

interest of time performance. The coefficients aðxÞ can

be derived by minimizing a weighted L2 norm:

J ¼
X

I2AðxÞ
wðx� xIÞ½pTðxIÞaðxÞ � fI �2; ð2Þ

where fI is the nodal field value associated with the node

I. Then we can derive the shape function �IðxÞ. If we

consider the field function as a function of both space

and time fðx; tÞ, the approximation in the analysis do-

main � can be written as:

fðx; tÞ � f̂fðx; tÞ ¼
X

I2AðxÞ
�IðxÞfIðtÞ; ð3Þ

Figure 2 shows the simulation nodes, the support

domain and the volume-rendered shape-function

values. One key attractive property of MLS approxima-

tions is that their continuity is directly related to the

continuity of the weighting functions. Thus, a lower-

order polynomial basis pðxÞ such as the linear one can

still be used to generate highly continuous approxima-

tions by choosing appropriate weight functions with

certain smoothness requirements. Note that the FEM

equivalents can also be reached if the weight functions

are defined as piecewise-constant entities over each

influence domain.

Computational Techniques

Our system takes any point set surface as input and

utilizes the octree-based hierarchical discretization

Figure 2. The simulation nodes (green balls), one of the support domain (the pink box), and the volume rendered shape function

values.
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method for constructing the implicit surface, generating

volumetric nodes, and assigning the integration points

in order to assemble the system matrices.

Hierarchical Discretization for
Meshless Dynamics

The fundamental idea of general meshless methods is to

create overlapping patches �I comprising a cover f�Ig
of the domain � with shape function �I subordinate to

the cover �I . One way to create the meshless discretiza-

tion is to start from an arbitrarily distributed set of

nodes. No fixed connections between the nodes are

required. The nodes are the centers of the overlapping

patches �i, which can be either parallelepiped or sphe-

rical domains. However, due to the rather unstructured

distribution of nodes over the domain, some algorithmic

issues may arise. First, a discretization without structure

does not allow determination of the patches that con-

tribute to a certain integration point without performing

an expensive global search. Second, the moment matrix

in moving least squares shape function may become

invertible if the patch covering conditions (i.e. 8x 2 �

cardfI : x 2 �Ig > m, see Ref. [16] for more details) are

not satisfied. Last, the effective handling of the interac-

tion between scattered nodes with the geometric bound-

ary (the surface of point clouds in our prototype system)

becomes very difficult. From a pure implementation

point of view, it is very important that the patches are

clearly defined. The interaction between the patches

themselves, and between the patches and the boundary,

has to be well understood and easily accessible during

the runtime of the system execution. These problems

can be solved perfectly with the assistance of octree

discretization.

Octree-BasedDistanceFieldforSurfaceGeome-
try. In our prototype system, the input data is an

unstructured point cloud comprising a closed manifold

surface. If we conduct our later-on processing and

simulation solely on surface points, many difficulties

arise. For example, performing inside/outside tests

based entirely on surface point information is a forbid-

ding task with many ambiguities. To ameliorate, we

compute a volumetric distance field for the input sur-

face points. Such a distance field, which expands to the

entire volumetric domain, will aid in the selection of

volumetric points at the interior of solid objects for the

dynamic simulation. In our implementation, we utilize

multi-level partition of unity (MPU) implicit surface con-

struction method proposed by Ohtake et al.20 The multi-

level approach allows us to construct implicit surface

models from large point sets based on an octree sub-

division method that adapts to variations in the com-

plexity of the local shape. Figure 3 (left) shows the

visualization of distance fields using color contours on

2D slices.

We also observed that the octree discretization of the

volume can provide a structure to construct the patches

which would provide a priori information with respect

to the size and interactions of the patches. The octree

subdivides the volume of an object represented as point

set surface into cubes, giving a non-overlapping discrete

representation of the domain, on which efficient numer-

ical integration schemes can be employed. The octants

serve as the basic unit from which to construct the

Figure 3. Distance field visualization, and volumetric nodes (pink balls) generated based on octree cells (green lines).
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patches and allow the efficient determination of patch

interactions. In the following subsection, we will de-

scribe the use of the octree structure as the basic build-

ing block to help us define our meshless patches and

integration cells.

Octree-Based Volumetric Node Placement. An

octree structure can be defined by enclosing the object

domain of interest � in a cube which represents the root

of the octree, and then subdividing the cube into eight

octants of the root by bisection along all three directions.

The octants are recursively subdivided to whichever

levels are desired. Note that the terminal level used for

our node placement does not need to coincide with the

terminal level of the MPU implicit surface construction.

Actually, in our implementation, the size of the terminal

octant used for our volumetric node placement (for

meshless simulation) is much larger than the terminal

octant used for MPU implicit surface reconstruction

because the surface point density is much larger com-

pared to the volumetric node density. Figure 3 (right)

shows the volumetric nodes generated based on octree-

discretization. We restrict the octree to be a one level

adjusted octree, where the level difference of all term-

inal octants and their face and edge neighbors is no

more than one. This restriction can facilitate the auto-

matic satisfaction of patch covering condition.

Since we already have the implicit surface representa-

tion of the object, we can easily classify each terminal

octants as interior (I) octants OI , exterior (E) octants OE,

and boundary (B) octants OB (see Figure 4). Interior

octants are those that are fully embedded in the interior

of the geometric domain �. Exterior octants are those

that are located totally outside of �, and boundary

octants are those that are intersected by the boundary

of �. The boundary octants are further classified into

interior boundary (IB) OIB and exterior boundary (EB)

OEB octants. The simple rule is that the centroid of an IB

octant is located within the domain, whereas the cen-

troid of an EB octant is located outside the domain. After

the geometric classification, we can place a volumetric

node (for meshless dynamics) at the center of each

interior (I) and boundary (IB, EB) octant. For an EB

octant, the node should be displaced by projecting from

its center onto the implicit surface to ensure that each

node resides in �. Let octant Oi 2 OI [OB and node i

reside in Oi, the open cover (support region) associated

with node i is a cube of size � � sizeðOiÞ centered around

node i (see Figure 5 (left)). Both the volumetric nodes

and their open cover regions are necessary constituents

for meshless dynamics.

The open cover construction based on terminal oc-

tants can provide the structure needed to perform

efficient neighboring search and patch intersection

test. By choosing a suitable size for �, the validity of

the open cover can be guaranteed a priori. For example,

for a linear basis pðxÞTðm¼4Þ ¼ f1; x; y; zg, any point in the

domain will be covered by at least four patches if we

choose � to be 3. The generation of an octree is much

more efficient than a finite element mesh in practice.

Furthermore, the octree allows adaptive refinement of

the discretization in areas where simulation accuracy is

of user’s prime interest. Figure 4 shows two different

octree discretizations for the same object.

Figure 4. The definition of I, E, IB, and EB octants. We can use octree cells of the same level to place nodes (left); or hierarchically

select octree cells (right).
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Octree-BasedGaussian Integration
forMatrixAssembly

In order to assemble the entries of the system matrices,

such as the mass matrix or stiffness matrix, we need to

integrate over the problem domain. This can be per-

formed through numerical techniques such as Gaussian

quadrature, using the underlying integration cells. The

integration cells can be totally independent of the ar-

rangement of nodes. The integration cells are used

merely for the integration of the system matrices but

not for field value interpolation. In our octree-based

discretization scheme, since the terminal octants do not

overlap (except on their shared boundaries), we can

further subdivide the terminal octants OI and OB into

smaller cells and use them as the integration cells (see

Figure 5 (right)). There may exist some integration cells

that do not entirely belong to the analysis domain. We

can easily separate the portion of the cell which lies

outside of the domain by evaluating the implicit function

(used for representing the surface distance field). The

creation of the open cover and the integration cells, as

described here, eliminates any global searching formem-

bers of the open cover during matrix assembly and time

integration. With the prior knowledge of the value � and

utilizing the direct face neighbor links, all patches cover-

ing a integration point x 2 � can be found in Oð1Þ time.

ModalAnalysis forMeshless Dynamics

In our meshless approximation, the motion parameters

of the material point x, i.e., the displacements u, velocity

_uu, and acceleration €uu, can be approximated by using the

moving least squares shape functions �IðxÞ in similar

formulae as Equation (3). The partial derivatives with

respect to the referencing coordinates xk can be obtained

simply as:

u;kðx; tÞ ¼
X
I

�I;kðxÞuIðtÞ

The system of ordinary differential equations which

results from the application of the Element-free Galerkin

discretization of the spatial domain can either be inte-

grated directly, or analyzed by mode superposition. That

is, the time dependent solution can be expressed as the

superposition of the natural (or resonant) modes of the

system. In the following section, we will briefly intro-

duce some basics of Modal Analysis. More detailed

discussions can be found elsewhere.1,6–8

Basics of Modal Analysis. Consider the discretized

Euler-Lagrange equations for elastic deformation:

M€uuðtÞ þ C _uuðtÞ þKuðtÞ ¼ FðtÞ ð4Þ

whereM, C, and K are the mass, damping, and stiffness

matrices, respectively, F is the external load vector and

uðtÞ is the vector of nodal displacements. Under the

commonly adopted Rayleigh damping assumption, we

can replace the damping matrix with C ¼ �Mþ �K,

where � and � are weighting coefficients. For linear

elasticity models, both M and K are constants. Let the

columns of W be the solution to the generalized eigen-

value problem Kx ¼ �Mx, and K be the diagonal matrix

of eigenvalues, then Equation (4) can be transformed to:

€zzþ ð�Iþ �KÞ _zzþ Kz ¼ WTF ð5Þ

Figure 5. The definition of open cover f�Ig regions based on the octree structure (left); the interaction between open covers and

integration cells (right).
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where z ¼ W�1u is the vector of modal amplitudes, and

W is called modal displacement matrix whose i-th column

represents the i-th mode shape. The decoupled ODEs in

Equation (5) can be computed independently and com-

bined by linear superposition. The computational loads

can be further reduced by removing modes that are too

stiff to be observed (corresponding to higher eigenva-

lues). So we can take only l dominant columns of W, to

reduce the amount of computation significantly.

ModalWarping for Rotational Deformation. Our

Meshless Modal Analysis framework is build upon the

Modal Warping technique proposed by Choi and Ko.1

Their innovative approach tracks the local rotations that

occur during the deformation based on the infinitesimal

rotation tensor, and warps the pre-computed modal

basis in accordance with the local rotations of the

mesh nodes. For the space limit, we only briefly intro-

duce their general ideas here. More specific technical

details and proofs can be found in Reference [1].

Considering an infinitesimal deformation with dis-

placement u, the rotation tensor is defined as:

! ¼ 1

2
ðr � uÞ� ¼ w�; ð6Þ

wherer� u is the curl of the displacement, w� denotes

the standard skew-symmetric matrix of vector w. Here

w ¼ 1
2 ðr � uÞ can be considered as a rotation vector that

causes the rotation by angle kwk around the unit axis

w=kwk. In the Modal Analysis setting, the rotation

vector can be expressed in terms of the modal amplitude

z:

wðxÞ ¼ 1

2
ðr�ÞUðxÞWz ð7Þ

where UðxÞ is the vector of MLS shape functions eval-

uated at position x.

The basic idea of the Modal Warping approach is to

embed a local coordinate frame at each simulation node

(see Figure 6). The rotation matrix Ri of the local

coordinate frame associated with node i can be com-

puted from its rotation vector wi. For a general non-

linear elastic deformable model, the stiffness matrix

KðuÞ is not a constant. In order to apply the linear Modal

Analysis method, it has been shown in Reference [1] that

the non-linear Euler-Lagrangian equations

M€uuþ C _uuþKðuÞu ¼ F ð8Þ

can be approximated using the displacement uL mea-

sured from each local orientation frame:

M€uuL þ C _uuL þKuL ¼ RTF ð9Þ

where R ¼ ½�ijRi� is the block diagonal rotation matrix

for all the nodes. Actually there are two basic assump-

tions to guarantee the validity of this approximation

(please refer to Reference [1] for the details and proofs).

Figure 6. Top: a solid bar with surface point samples before and after bending under gravity (the red balls are fixed positional

constraints); Bottom: the local coordinate frame associated with each volumetric simulation node.
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And we found that these assumptions can be directly

applied to our meshless setting without influencing its

validity. Using modal decomposition: uLðtÞ ¼ WzLðtÞ,
the linear elastodynamic Equation (9) for uL can be

reduced to a set of decoupled ODEs:

€zzL þ Cz _zz
L þKzz

L ¼ WTðRTFÞ ð10Þ

where Cz ¼ ð�Iþ �KÞ and Kz ¼ K are both diagonal

matrices. We solve the above decoupled ODEs using

implicit time integration. We take an approach similar to

Reference [21] by making a first-order approximation of

the total force at the next time step, to get the following

linear system:

�z ¼ hð _zz0 þ�_zzÞ
�_zz ¼ hðF0 �Kzðz0 þ�zÞ � Czð _zz0 þ�_zzÞÞ

�

where h is the size of the time step, z0 and _zz0 are the

current modal amplitude and velocity, and �z and �_zz

are their expected change in the next time step. By

regrouping, we obtain

Az�_zz ¼ bz ð11Þ

where

Az ¼ Iþ hCz þ h2Kz

and

bz ¼ hðF0 �Kzz0 � ðCz þ hKzÞ _zz0Þ

Note that Az is a diagonal matrix, which makes

Equation (11) to be solved efficiently.

Manipulation Constraints. In order for the users to

interact with the simulated objects, position and orien-

tation constraints are important and must be enforced.

In general, the MLS shape functions lack the Kronecker

delta function property and result in uðxIÞ 6¼ uI . The

position and orientation constraints (Cp and Co, respec-

tively) can be formulated as:

CpðxcÞ ¼ UðxcÞuðtÞ � dcðtÞ ¼ 0

CoðxcÞ ¼ 1

2
ðr�ÞUðxcÞuðtÞ � wcðtÞ ¼ 0

where xc is the constrained position of the object, dcðtÞ
is the desired displacement, and wcðtÞ is the desired

orientation, which are known a priori. If we express

both the position and orientation constraints in terms of

the modal amplitude z, they can be simply written as:

C ¼ Acz� bc ¼ 0 ð12Þ

where Ac is a k� n constraint matrix (k is the number of

constraints), and each row of Ac represents a linear

constraint on z, and the vector bc represents the values

of these constraints. The constraint condition (12) can be

integrated into the system Equation (11) by Lagrange

multipliers. In our implementation, we replace the con-

straint equation C ¼ 0 by the damped second-order

equation €CCþ 2� _CCþ �2C ¼ 0, where � and � are stabili-

zation factors.22 So we can obtain the constrained equa-

tions of motion:

Az AT
c

Ac 0

" #
�_zz

�h

� �
¼ bz

hð�2� _CC� �2CÞ

" #
ð13Þ

Since both the number of selected modes l and the

number of constraints k are typically small (l � 128,

k � 20 in all of our examples), Equation (13) could be

solved in real-time.

Experimental Results

The simulation and rendering parts of our system are

implemented on a Microsoft Windows XP PC with dual

Intel Xeon 2.8GHz CPUs, 2.0GB RAM, and an nVidia

GeForce Fx 5900 Ultra GPU. We have conducted ex-

tensive experiments on various scanned point-surface

data sets. Table 1 shows the statistics of various models

and the corresponding simulation time for each frame.

For most of the data sets, the MLS pre-computation for

the systemmatrices takes less than 10minutes, while the

modal decomposition takes less than 1 minute.

Figure 7 shows an example of the facial deformation

of the Igea model. The facial expression of Igea can be

Model Points Nodes Modes Time

bar 5,634 1,008 64 0.013 s
Igea 134,345 822 64 0.023 s
balljoint 137,062 357 64 0.026 s
rabbit 67,038 1,251 64 0.019 s
Santa 75,781 1,150 128 0.028 s

Table1. The statistics of variousmodels andtheir
simulation time for each frame
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changed by manipulating several positional constraints.

The first and second rows of Figure 8 show the defor-

mation of the ball joint and rabbit models under users’

manipulation with the bottom of themodels fixed. In the

bottom row of Figure 8, the Santa Claus model can be

simulated based on either users’ manipulation, or an

input skeletal motion sequence. Please refer to the

accompanying video for more simulation details.

Figure 7. Real-time facial deformation of the Igea model using several positional constraints. The meshless simulation nodes are

shown in the top left figure.

Figure 8. Top: dragging the balljoint while fixing its bottom; Middle: dragging/twisting the rabbit’s head with its bottom fixed;

Bottom: real-time manipulation of the Santa Claus model.
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Conclusion

We have presented a real-time meshless simulation and

animation paradigm for volumetric objects, whose in-

terior and surface representations only comprise point

samples. The meshless property of our new technique

expedites the accurate representation and precise simu-

lation of the underlying discrete model, without

the strong need of domain meshing. The meshless

dynamics have many unique features, including fast

convergence, ease of adaptive refinement, flexible ad-

justment of the consistency order and the continuity

requirement, etc. We exploit the methodology of Modal

Analysis and adapt theModal Warping technique into our

meshless simulation framework to achieve real-time

manipulation and deformation. Based on our extensive

experiments, we believe that our new paradigm can

significantly advance the current state of the knowledge

in point-based solid modeling and animation of physi-

cal objects. In the near future, the meshless methods and

their engineering principles, augmented by novel com-

putational techniques, are expected to open up new

research directions in computer graphics, modeling,

simulation, and visualization.
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Meshless animation of fracturing solids. ACM Transactions
Graphics 2005; 24(3): 957–964.

18. Bao Y, Guo X, Qin H. Physically-based morphing of point-
sampled surfaces. Computers Animation Virtual Worlds
2005; 16(3–4).

19. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P.
Meshless methods: an overview and recent developments.
Computation Methods Application Mechanical Engineering
1996; 139: 3–47.

20. Ohtake Y, Belyaev A, Alexa M, Turk G, Seidel HP.
Multi-level partition of unity implicits. In SIGGRAPH,
2003, pp. 463–470.

21. Baraff D, Witkin A. Large steps in cloth simulation. In SIG-
GRAPH, 1998, pp. 43–54.

22. Metaxas D, Terzopoulos D. Dynamic deformation of solid
primitives with constraints. In SIGGRAPH, 1992, pp. 309–
312.

Authors’biographies:

Xiaohu Guo is a Ph.D. candidate in the Department of
Computer Science at SUNY Stony Brook. He has a B.S. in
Computer Science from the University of Science and
Technology of China. His research interests include

REAL-TIME MESHLESS DEFORMATION
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2005 John Wiley & Sons, Ltd. 199 Comp. Anim. Virtual Worlds 2005; 16: 189–200



geometric and physics-based modeling, computer ani-
mation and simulation, interactive 3D graphics, scien-
tific visualization, human-computer interaction, and
virtual reality. For more information, please visit
http://www.cs.sunysb.edu/~xguo.

Hong Qin is an associate professor (with tenure) of
Computer Science at SUNY Stony Brook. He received

his Ph.D. (1995) degree in Computer Science from the
University of Toronto. In 1997, Dr Qin was awarded
NSF CAREER Award from the U.S. National Science
Foundation (NSF). In December 2000, Dr Qin received
Honda Initiation Grant Award. In April 2001, Dr Qin
was selected as an Alfred P. Sloan Research Fellow by
the Sloan Foundation. He was the Conference Co-Chair
of Computer Graphics International 2005. At present, he
is Associate Editor of IEEE Transactions on Visualiza-
tion and Computer Graphics and The Visual Computer
(International Journal of Computer Graphics). His
research interests include graphics, geometric and
physics-based modelling, CAD, animation, simulation,
and virtual environments. For future information,
please visit http://www.cs.sunysb.edu/~qin.

X. GUO AND H. QIN
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2005 John Wiley & Sons, Ltd. 200 Comp. Anim. Virtual Worlds 2005; 16: 189–200


