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Animating Geometrical Models

Physically based morphing of point-sampled
surfaces
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This paper presents an innovative method for naturally and smoothly morphing point-

sampled surfaces via dynamic meshless simulation on point-sampled surfaces. While most

existing literature on shape morphing emphasizes the issue of finding a good correspondence

map between two object representations, this research primarily investigates the

challenging problem of how to find a smooth, physically-meaningful transition path

between two homeomorphic point-set surfaces. We analyze the deformation of surface

involved in the morphing process using concepts in differential geometry and continuum

mechanics. The morphing paths can be determined by optimizing an energy functional, which

characterizes the intrinsic deformation of the surface away from its rest shape. As

demonstrated in the examples, our method automatically produces a series of natural and

physically-plausible in-between shapes, which greatly alleviates the shrinking, stretching,

and self-intersection problems that often occur when linear interpolation is employed for the

morphing of two objects. We envision that our new technique will continue to broaden the

application scope of point-set surfaces and their dynamic animation. Copyright# 2005 John

Wiley & Sons, Ltd.
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Introduction

Point-based representation for surfaces has gained

strength and become an attractive, powerful modeling,

and rendering alternative in computer graphics in re-

cent years. The rapid development of the 3D scanning

devices has greatly facilitated the acquisition of the

point samples from real-world physical objects. Since

point-sampled geometry can be represented by a set of

discrete points, no explicit connectivity information

needs to be maintained. This leads to a more compact

and flexible representation of geometry in terms of data

storage and transfer. Many researchers have devoted

considerable amount of effort to the accurate represen-

tation, efficient processing, and rendering of point-

sampled geometry. However, rapid and accurate ani-

mation/simulation of point-sampled geometry is still a

challenging area that demands a great deal of research

endeavor within point-based graphics.

As a popular animation technique in digital entertain-

ment, shape morphing (or blending) has been a very

active research topic in computer graphics. Given a

source object and a target object, morphing techniques

can be employed to create a series of in-between shapes

that transform the source object into the target one.

In this paper, we systematically develop a physically

based meshless method to morph two objects repre-

sented only by points. To our best knowledge, this is a

first attempt to conduct a dynamic, physically-

meaningful shape morphing between two point-

sampled surfaces. In contrast, most existing morphing

techniques nowadays are based on the polygonal mesh

representation, owing to the popularity and long history
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of mesh geometry (as the dominant shape representa-

tion) in Graphics. Despite the widespread use of mesh-

based shape morphing techniques, certain drawbacks

persist. For example, the map overlay algorithm needed

to generate any intermediate mesh with consistent con-

nectivity from source and target surface meshes are

notoriously difficult to implement. This remeshing pro-

cess can be circumvented by using point sampled sur-

faces since no connectivity information is necessary

during shape morphing.

Given two shapes, there are infinite possible morph-

ing paths. Our method focuses on finding an ideal

transformation via physics-based energy optimization.

We approach the morphing path problem from the

viewpoint of both differential geometry and continuum

mechanics. Our method is completely mesh free and

only the vicinity information of the point set is utilized

in the morphing procedure. In our framework, the

point-sampled geometry is modeled as a meshless thin

shell surface. The energy functional is defined using the

intrinsic measurement of surface deformation derived

from differential geometry. The morphing path is then

automatically derived by minimizing the energy func-

tional. One key benefit of our method is that it mini-

mizes unnecessary distortion such as shrinking,

stretching, and self-intersection of the surface as demon-

strated in Figure 1, which often exists in linear-

interpolation-based methods. Furthermore, surface

crack problem associated with point-based morphing1

can be avoided in our physically based system. There-

fore, the intermediate shapes generated by our method

are both physically plausible and visually natural as

shown in Figure 2.

RelatedWork

ShapeMorphing

Shape morphing is an active and interesting research

area in computer animation. A complete survey is

beyond the scope of this paper and we shall only briefly

review several literatures that are most relevant to our

work here. The readers are referred to References [2,3]

for more details. The key to mesh-based morphing is to

establish a good mapping between the source object and

the target object, which is known as the correspondence

problem. Defining such a mapping is far from trivial,

since it usually involves parameterization4 of surfaces of

arbitrary genus and the problem becomes much more

challenging when the two surfaces have different topol-

ogy. After the parameterization step, a map overlay

algorithm is used to generate the common connectivity.

While the correspondence problem has been exten-

sively studied by researchers, the path problem is

relatively less-explored, hence demanding more re-

search effort towards further improvement. The goal

of the path problem is to find an ideal transition path

between the source and target shapes. However, the

fundamental question of ‘What constitutes an ideal path?’

is rather subjective. A naive choice for most morphing

applications is linear interpolation because of its sim-

plicity. However, a straightforward application of linear

interpolation can somehow lead to displeasing visual

results as shown in Figure 1, especially in cases that

involve dramatic, near-rigid-body transformation be-

tween the end shapes. To address this kind of problems,

Sederberg et al.5 introduced a technique that minimizes

the deformation of the boundaries of 2D shapes. Alexa

et al.6 took the interior of shapes into account and

decomposed an affine transformation to improve the

morphing quality. One similar work to ours is that of

Yan et al.,7 which is based on nonlinear strain field

interpolation derived from physics. While their method

can only morph two planar polygons, our novel

Figure 1. The undesirable artifact caused by linear blending.

(a) Initial shape. (b) 50 % morph. (c) Final shape.

Figure 2. Our method leads to a physically-plausible inter-

mediate shape. (a) Initial shape. (b) 50%morph. (c) Final shape.
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method handles complicated 3D point-sampled sur-

faces. Furthermore, we derive the formulation for mesh-

less, thin-shell dynamics as linear systems, which is then

solved to reconstruct the in-between shapes.

Physically BasedAnimation andMeshless
Methods

Following the pioneering work of Terzopoulos et al.,8 a

large amount of research has been carried out in the

field of physically based animation. For example, many

mesh-based methods for physical simulation of deform-

able objects have been proposed in computer graphics

based on either the boundary element method9 or the

finite element method.10 Cloth, which can bemodeled as

a thin-plate, was recently studied.11,12 Compared with

cloth, thin-shell objects are naturally curved and can not

be modeled using plate formulations.13 Grinspun et al.14

proposed a simple discrete shell model that can be

derived geometrically for triangle meshes. Most of the

existing physical simulation approaches are based on

mesh structures. For point-sampled surfaces, however,

it would be extremely challenging to simulate the con-

tinuum mechanics without the explicit information of

mesh connectivity.

In recent years, considerable research has been de-

voted to the efficient modeling and animation of point-

sampled geometry. In Reference [15], the Pointshop 3D

system was presented for interactive shape and appear-

ance editing of 3D point sampled geometry. Later, Pauly

et al.16 presented a free-form shapemodeling framework

for point-sampled geometry using the implicit surface

definition of the moving least squares (MLS) approx-

imation. More recently, Guo et al.17 developed a frame-

work for local and global editing of point set surfaces

based on level-set method. Mueller et al.18 developed a

method for animating elastic, plastic, and melting point-

based volumetric objects based on the MLS approxima-

tion of the gradient of the displacement field. Xiao et al.1

proposed an approach for interactive morphing of point

surfaces based on Floater’s19 meshless parameteriza-

tion. Most recently, Pauly et al.20 presented a new

meshless animation framework for elastic and plastic

materials that fracture. Guo and Qin21 combined the

meshless method with the modal warping technique to

achieve real-time deformation. In this paper, we will

demonstrate that the meshless method is a natural and

intuitive solution to performing physical simulation

directly on point-sampled surfaces, hence leading to

the automatic, physically-plausible shape morphing of

point-set geometry.

DeformationAnalysis

Deformationof Surface

The deformation of surfaces and solids has been well-

studied in elasticity theory and continuum mechanics.

In this paper, we define the deformation of a surface

using concepts in differential geometry [22]. A surface

in R3 can be defined parametrically as a vector function

Xð�1; �2Þ, where �1 and �2 are the parametric coordinates

of the surface. The quadratic form (in Einstein summa-

tion convention) ds2 ¼ gijd�id�j measures the length of

an arc element on the surface, and is known as the first

fundamental form. The coefficients gij are components

of a covariant tensor which is called the metric tensor or

fundamental tensor:

gijðXÞ ¼ Xi � Xj

where Xi ¼ @X=@�i. Intuitively, the first fundamental

formmeasures the stretching and shearing of the under-

lying surface.

The first fundamental form alone does not completely

determine the shape of a surface, because the curvature

can be altered without affecting the metric. Hence the

second fundamental form which takes the form bijd�id�j

needs to be introduced. The second fundamental form

measures the curvature of a surface and the coefficients

bij are components of a tensor called the curvature

tensor:

bijðXÞ ¼ Xij � n ¼ �Xi � nj

where Xij ¼ @2X=@�i@�j, ni ¼ @n=@�i and n is the unit

normal vector. The second fundamental form, together

with the first fundamental form, can entirely determine

the shape of a surface and therefore is an intrinsic

measurement of the shape of the surface.

Deformation Energy

Having defined the metric tensor and the curvature

tensor, the elastic strain energy for a deformable surface

is given by8

� ¼
Z
�

ð�jjgn � g0jj2 þ �jjbn � b0jj2Þd�

where g0, b0 are the metric tensor and curvature tensor

associated with the rest shape of the surface; gn, bn are

corresponding tensors associated with the deformed
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shape of the surface and jj � jj is the Frobenius norm. The

first term in the strain energy formulation is the mem-

brane energy, which resists stretching and shearing, and

the second term is the bending energy, which resists

bending and twisting. The membrane and bending

energy distribution of a deforming torus is shown in

Figure 7.

The above formulation of the deformation energy is

purely motivated by differential geometry and applies

to any surface in R3. For any point-sampled surfaces, if

we assume that one dimension, i.e., the thickness, of the

surface body is significantly smaller than the other two

dimensions, we can consider the point-sampled surface

as a thin shell. The generic configuration of the shell can

be described as

S ¼
�
x 2 R3jx ¼ Xð�1; �2Þ þ �3X3ð�1; �2Þ; �1; �2 2 �

and� h

2
� �3 � h

2

�

where X3 is a unit director vector normal to the middle

surface of the shell both in the reference and deformed

configuration under the Kirchhoff–Love hypothesis. In

the Kirchhoff–Love thin shell framework, the deforma-

tion of the surface body is fully characterized by the

deformation of the middle surface. The Green–Lagrange

strain tensor can therefore be derived from the first and

second fundamental forms of the middle surface of the

shell. The membrane and bending strain tensors are

related to the deformation of the shell surface as follows

�ij ¼ 1

2
Xi � Xj � X0

i � X0
j

� �

�ij ¼ 1

2
Xi � X3j � X0

i � X0
3j

� �

Here, we use the superscript ‘0’ to denote the measure-

ment in the original (reference) configuration. Assum-

ing linearized kinematics, the displacement field of

the middle surface is introduced as uð�1; �2Þ ¼
Xð�1; �2Þ � X0ð�1; �2Þ. Thus, the linearized membrane

and bending strain can be written as

�ij ¼ 1

2
X0

i � uj þ X0
j � ui

� �
ð1Þ

�ij ¼ 1

2
X0

i ��X3j þ X0
j ��X3i þ ui � X0

3j þ uj � X0
3i

� �
ð2Þ

Introducing the Kirchhoff–Love hypothesis explicitly

here, the deformed shell director vector is constrained to

coincide with the unit normal vector to the deformed

middle surface of the shell, i.e.,

X3 ¼ J�1ðX1 � X2Þ

where J ¼ jX1 � X2j. Therefore, the derivatives of the

director vector in the reference configuration are

X0
3i ¼ ðJ0Þ�1

X0
1i � X0

2 þ X0
1 � X0

2i

� � ð3Þ

The increment �X3 ¼ X3 � X0
3 can also be derived

straightforwardly by only keeping linear terms.

�X3 � ðJ0Þ�1
u1 � X0

2 þ X0
1 � u2

� �

Similar to the derivation of Equation (3), we can write

the derivatives of �X3 as follows

�X3i ¼ ðJ0Þ�1
u1i � X0

2 þ X1 � X0
2i þ X0

1i � u2 þ X0
1 � u2i

� �

Finally, the bending strain can be expressed in terms of

the displacement field as

�ij ¼ �uij � X0
3 þ ðJ0Þ�1 u1 � X0

ij � X0
2

� �
þ u2 � X0

1 � X0
ij

� �h i
ð4Þ

Note that the derivation of the membrane strain is

independent of the introduction of the Kirchhoff–Love

hypothesis.

Given two homeomorphic point-set surfaces, we can

measure the metric tensor and curvature tensor

pointwisely on the two surfaces. Through the use of

interpolation, we can obtain the tensor field for any

intermediate time step t 2 ½0; 1�. The difference between

the interpolated tensor field and the tensor field of the

rest configuration gives us the strain field that charac-

terizes the intrinsic deformation of the surface away

from its rest, initial shape. We can then apply the linear

membrane (Equation 1) and bending strain (Equation 4),

which are functions of the displacement to minimize the

following energy

W ¼ 1

2

Z
�

�jj�ðuÞ � �tjj2 þ �jj�ðuÞ � �tjj2
� �

d� ð5Þ

where �t and �t are the membrane and bending strain

obtained by interpolation at time step t. In our examples,

we use simple linear interpolation for the membrane

and bending strain: �t ¼ t� ðgn � g0Þ and �t ¼
t� ðbn � b0Þ. More sophisticated interpolation scheme

can be used for smoother visual quality.
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MeshlessTechniques

Since the invention of the finite element method (FEM)

in the 1950s, FEM has become the most popular and

widely used method in engineering, scientific comput-

ing, and computer animation. In FEM, the individual

elements are connected together by a topological map,

which is usually called a mesh. The finite element

interpolation functions are then built upon the mesh,

which ensures the compatibility of the interpolation.

However, this procedure is not always advantageous,

because the numerical compatibility condition is not the

same as the physical compatibility condition of a con-

tinuum. For instance, in a Lagrangian type of computa-

tions, one may experience mesh distortion, which can

either end the computation altogether or result in drastic

deterioration of accuracy. Therefore, it would be com-

putationally efficacious to discretize a continuum by

only a set of nodal points without mesh constraints. In

this paper, we utilize MLS approximation method

which is used in the Element Free Galerkin (EFG)

method23 to arrive at the numerical discretization.

MLSApproximation

The local approximation uh of a field function uðxÞ
defined in a solution domain of arbitrary dimension,

�, can be expressed as the inner product of a vector of

the polynomial basis, pðxÞ, and a vector of the coeffi-

cients, aðxÞ

uhðxÞ ¼ pTðxÞaðxÞ ¼
Xm
j¼1

pjðxÞajðxÞ ð6Þ

where m is the number of monomials in the polynomial

basis. In our current work on two-manifold surfaces, a

linear basis, pT ¼ ð1; x; yÞ corresponding to m ¼ 3, is

used. If the field values at a set of nodes, xi,

i ¼ 1; . . . ; n, are known a priori, the coefficient vector

aðxÞ can be determined by minimizing a weighted,

discrete L2 error norm defined as:

L ¼
Xn
i¼1

wðx; xiÞ½uhðxiÞ � ui�2 ð7Þ

where wðx; xiÞ is a weighting function defined over a

compact support (also called the domain of influence of

node i), ui is the nodal value at xi, and n the number of

nodes whose domain of influence contains the evalua-

tion point x. The stationary of L with respect to aðxÞ
leads to the solution of aðxÞ. Substitution of aðxÞ into

Equation (6) gives

uhðxÞ ¼
Xn
i¼1

�iðxÞui ð8Þ

with �iðxÞ being the MLS shape function. More details

on the derivation of the shape functions can be found in

Reference [24]. Figure 3 shows the simulation nodes

scattered over a thin plane and their corresponding

support regions.

Meshless Discretization

It now sets the stage for us to address the discretization

issue of the energy defined in Equation (5) that we

attempt to minimize. To make the mathematical formu-

lation concise and consistent, we arrange the elements in

2� 2 symmetric tensors into 3� 1 vectors � and �, for

membrane and bending strain, respectively.

� ¼
�11
�22
2�12

2
4

3
5; � ¼

�11
�22
2�12

2
4

3
5

Using this notation, the energy functional to be mini-

mized can be reformulated as

W ¼
Z
�

f�½�ðuÞ � �t�T½�ðuÞ � �t�

þ �½�ðuÞ � �t�T½�ðuÞ � �t�gd�

Setting the derivative with respect to u to be 0, we obtain

@W

@u
¼

Z
�

�
@�ðuÞ
@u

½�ðuÞ � �t� þ �
@�ðuÞ
@u

½�ðuÞ � �t�
� �

d� ¼ 0

Figure 3. The smaller red balls represent the simulation nodes

and the larger translucent white hemispheres represent the

support radii of two of the simulation nodes.
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Applying Equation (8), the displacement field can be

approximated by the MLS shape functions �Ið�1; �2Þ as

uhð�1; �2Þ ¼
XN
I¼1

�Ið�1; �2ÞuI ð9Þ

where uI are the nodal displacement vectors andN is the

number of simulation nodes.

Substituting Equation (9) into Equation (1) and

Equation (4) gives the approximated membrane and

bending strain in matrix form

�ð�1; �2Þ ¼
XN
I¼1

MIð�1; �2ÞuI ð10Þ

�ð�1; �2Þ ¼
XN
I¼1

BIð�1; �2ÞuI ð11Þ

where MI and BI are the membrane and bending strain

matrices associated with simulation node I. Finally,

introducing Equation (10) into Equation (11) yields the

linear equation:

Ku ¼ f ð12Þ

where K is the stiffness matrix, and u is the nodal

displacement vector, and f is the virtual nodal force

vector. The global stiffness matrix K is a block matrix

which can be conveniently assembled by filling in low-

level 3� 3 stiffness matrices defined as

KIJ ¼
Z
�

�ðMIÞTMJ þ �ðBIÞTBJ
h i

d�

And the virtual nodal force vector can be assembled

similarly

fI ¼
Z
�

�ðMIÞT�I þ �ðBIÞT�I
h i

d�

The linear system in Equation (12) can be solved using

the bi-conjugate gradient method.

Local Parameterization

In previous discussion, we have assumed that a com-

mon analysis domain exists for both the source and

target point-set surfaces, however, this may not be true

in general. In fact, in order to obtain such a global

analysis domain, global parameterization of the point-

set surfaces is needed. In this paper, we adopt local

parameterization to bypass the expensive global para-

meterization step, and the physical simulation can be

directly performed on the point-based surfaces using

the vicinity information only.

We proceed by defining, for every surface point pi, a

neighborhood of surface points Ni. The neighborhood

can be obtained by simply taking the K nearest neigh-

boring points. In our implementation, we set K to be

between 20 and 30. The local parameterization is de-

fined on the local tangent space, which can be computed

using principle component analysis (PCA). The two

eigenvectors corresponding to the two largest eigenva-

lues span the tangent space at point pi. The coordinate of

any point in the vicinity of pi is then obtained by

projecting the point onto its local tangent space.

In order to compute the strain matrices, partial deri-

vatives of X up to the second order are needed. We

compute the derivatives by minimizing an MLS error

function. As an example, we consider the x-component

of the position in the neighborhood of a point pi. By

Taylor expansion, we can approximate the x-component

of the surface position on the local parameter domain to

first order as

~xxðXðpiÞ þ�XÞ � xðXðpiÞÞ þ rxjpi ��X

where XðpiÞ is the local parameter value of point pi.

Therefore, we can estimate the derivative rxjpi by

minimizing the following weighted least square error:

~LL ¼
X
j2Ni

wij½~xxðXðpjÞÞ � xðXðpjÞÞ�2

Note that, these partial derivatives are only defined on

the local parameter domain of pi and therefore all

coordinate values must be computed with respect to

the local tangent space of pi. The second order partial

derivatives of pi can be obtained similarly after the first

order partial derivatives for all neighboring points of pi
have been computed.

IncrementalUpdate

Due to the fact that linear membrane and bending

strains are used to minimize the energy functional

Equation (5), large deformation from the rest configura-

tion can lead to distortion artifacts as shown in

Figure 4(a). We correct this problem by incrementally

updating the global stiffness matrix K. Each updating

step only recomputes the partial derivatives and tensors

of the surface with respect to the fixed local parameter

domain. This process of incrementally updating the

stiffness matrix can be considered as using small linear
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steps to approximate the nonlinear deformation in its

limit. The corrected shape is shown in Figure 4(b). The

updating step size can be adaptively controlled by

setting threshold of the residual energy after minimiz-

ing the energy functional W. Once the residual energy

exceeds the threshold, the stiffness matrix is dynami-

cally updated. Our experiment shows that recomputing

the stiffness matrix 10 times with uniform step length

yields satisfactory results for most of our experiments.

Numerical Integration

Assembling the stiffness matrix K and the virtual nodal

force f involves numerical integration over a global

analysis domain. This integration is typically computed

using Gaussian quadrature. Since our computation is

performed on local parameter domain, such integration

is infeasible. Alternatively, we approximate the integra-

tion as

KIJ ¼
XNP

i

wi �ðMIÞTMJ þ �ðBIÞTBJ
h i

fI ¼
XNP

i

wi �ðMIÞT�I þ �ðBIÞT�I
h i

where NP is the number of surface points and wi is the

surface area approximation associated with the surface

point pi.

Implementation andResults

We have implemented our prototype point-based

morphing system on a Microsoft Windows XP PC

with Xeon 2.2GHz CPU, 1.0GB RAM, and an nVidia

Quadro4 700 XGL GPU. The system is written in

VCþþ 6.0 and the renderer is built upon OpenGL.

The algorithmic flow of our system is described

in Figure 5. The computation time for generating

the intermediate morphing frames is documented in

Table 1.

Figure 4. Physically based morphing of a bending bar: (a)

without and (b) with incrementally updating stiffness matrix.

Figure 5. Algorithmic overview and flowchart.

Model Surfels Nodes Frames Time

Bar 4000 512 100 3
Torus 12 000 1024 100 18
Isis 10 000 1024 100 11
Rabbit 16760 1024 85 20
Moai 10 000 2048 100 65
Sphere 10 000 2048 100 70

Table 1. Model statistics and computational cost
(seconds/frame)

Figure 6. Different number of simulation nodes for the same

point-set surface.
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Ideally, we would like to incorporate all the point

samples on the surface as simulation nodes. However,

this becomes numerically prohibitive for densely

sampled point set in terms of both memory storage

and computation time. For extremely dense point sets,

we acquire the simulation nodes by simplifying the

source surface. In our implementation, we use the

adaptive hierarchical clustering method25 to select a

subset of the original surface sample points as the

simulation nodes. The number of simulation nodes

ranges from 500 to 2000 for the examples that we have

demonstrated. Figure 6 shows different number of

simulation nodes for the same point surface. Using the

simplified point set as simulation nodes will undoubt-

edly lose many deformation details since the generated

displacement field is relatively smooth based on MLS

approximation. This problem can be tackled by using

the multiresolution modeling framework of Reference

[26] to capture the deformation details. We can compute

the offset distance � between the original point surface

and the low-pass filtered surface based on simplified

simulation nodes. For the source and target shape, we

can compute their offset distance �0 and �n, respectively.

The offset distance associated with each frame can be

simply calculated via linear interpolation between �0

and �n. See Figures 7–11 for some morphing experi-

ments that we have conducted.

One important characteristic of our system is that

material properties can be associated with the surface

by manipulating the weights associated with the two

energy terms in Equation (5). In our implementation, we

adopt the weights associated with isotropic materials

� ¼ Eh

1� v2
; � ¼ Eh3

12ð1� v2Þ

Figure 7. Temporal change of deformation energy when morphing a standard torus to a squeezed one. Upper row: Stretching

energy. Lower row: Bending energy.

Figure 8. Morphing frames of a bowing isis statue.

Figure 9. Morphing frames of a rabbit model twisting its head.
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where E is Young’s modulus and v is Poisson’s ratio. In

fact, the user can either fine-tune the material property

by setting appropriate values for the Young’s modulus

and the Poisson’s ratio or manipulate the weights di-

rectly. Further extending our system to accommodate

anisotropic properties can be easily achieved by making

both � and � spatially-varying functions across the

entire point-set surface during the morphing process.

Conclusion

In this paper, we have systematically developed an auto-

matic and novel method to apply the dynamic, meshless

thin-shell simulation principle to the physically-plausible

morphing of point-based models. Our innovative fra-

mework is inspired and derived from differential

geometry and continuum mechanics. The physically-

plausible, natural morphing is the direct result of phy-

sics-based energy optimization, thus minimizing user

intervention. Moreover, our method is based on local

parameterization of the underlying point set surface,

and therefore, is computationally efficient. In essence,

our method is equivalent to solving a boundary-value

PDE problem, where all the virtual forces are derived

from the change of the intrinsic geometric measurement

of the surface. Our experiments show that the proposed

point surface morphing technique can generate physi-

cally-meaningful, convincing morphing sequences

while avoiding most of the undesirable, mesh-based

artifacts (such as triangle flip-over or point surface

cracks).

Some immediate future work to further extend our

framework’s functionalities are as follows. First, we

shall consider using the mature technique for multi-

resolution analysis and hierarchical decomposition to

handle extremely complicated, large-scale, point-based

objects. Second, we shall seek a practical solution to the

problem of finding best possible correspondence be-

tween two point-set surfaces.
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