Hyperbolic Centroidal Voronoi Tessellation

Guodong Rong*
University of Texas at Dallas

Abstract

The centroidal Voronoi tessellation (CVT) has found versatile ap-
plications in geometric modeling, computer graphics, and visual-
ization. In this paper, we extend the concept of the CVT from Eu-
clidean space to hyperbolic space. A novel hyperbolic CVT energy
is defined, and the relationship between minimizing this energy and
the hyperbolic CVT is proved. We also show by our experimen-
tal results that the hyperbolic CVT has the similar property as its
Euclidean counterpart where the sites are uniformly distributed ac-
cording to given density values. Two algorithms — Lloyd’s algo-
rithm and the L-BFGS algorithm — are adopted to compute the hy-
perbolic CVT, and the convergence of Lloyd’s algorithm is proved.
As an example of the application, we utilize the hyperbolic CVT to
compute uniform partitions and high-quality remeshing results for
high-genus (genus>1) surfaces.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms

Keywords: Centroidal Voronoi Tessellation, Hyperbolic Geome-
try, Geometric Structure, Universal Covering Space

1 Introduction

The Voronoi diagram is a well studied concept in computational ge-
ometry, and has a wide usage in different areas in geometric mod-
eling, computer graphics, visualization, etc. [Okabe et al. 1999].
The centroidal Voronoi tessellation (CVT) is a special case of the
Voronoi diagram, where every site coincides with the centroid of
its Voronoi cell. The sites in a CVT are uniformly distributed. This
property is conjectured by Gersho in 1979 [Gersho 1979], and has
been proved for 2D cases [Fejes Toth 2001].

In geometric modeling, many applications require a uniform sam-
pling on a surface, or a partition of a surface where every region
covers similar area. These tasks can be achieved simultaneously by
computing a CVT on the surface where all sites are constrained on
the surface. Such a CVT is usually known as the constrained CVT
(CCVT) [Du et al. 2003]. It is natural to use the geodesic distance
to compute the CCVT [Peyré and Cohen 2004], but it is difficult
to compute the geodesic distance accurately. Another alternative is
to use the 3D Euclidean distance as an approximation [Liu et al.
2009; Rong et al. 2010; Yan et al. 2009], but this may lead to dis-
connected Voronoi cells if two regions are very close in 3D space
but are far apart along the surface. A better approach is to compute
the CVT in a 2D parameterization domain of the surface [Alliez
et al. 2005]. By assigning appropriate density values, the computed

*e-mail:guodongrong @utdallas.edu
T e-mail:mjin @cacs.louisiana.edu
te-mail:xguo@utdallas.edu

Miao Jin'
University of Louisiana at Lafayette

Xiaohu Guo*
University of Texas at Dallas

CVT is very close to the CCVT computed using the geodesic dis-
tance. This method overcomes the shortages of both prior methods,
and is more efficient since the computation is performed in a 2D
planar domain.

To parameterize a closed surface to 2D domain, the original surface
has to be cut into a genus-0 surface. This makes the sites unable
to cross the boundaries in the parameterization domain, and leads
to visible artifacts along the cutting edges. In [Alliez et al. 2005], a
great deal of special care and delicate strategies, such as minimizing
the total cutting edge length and matching the cut graph with the
feature skeleton, are required. But if the cut graph does not coincide
much with a set of feature edges, the remeshing results become
unacceptable for high genus surfaces as indicated in [Alliez et al.
2005].

This cutting problem can be solved by computing the CVT directly
on the universe covering space (UCS) [Jin et al. 2006] of the sur-
face. A covering space of surface S is a space S together with a
continuous surjective map h : .S — S, such that for every p € S
there exists an open neighborhood U of p and h~!(U) (the inverse
image of U under h) is a disjoint union of open sets in S, each of
which is mapped homeomorphically onto U by h. A simply con-
nected covering space S is called a universal covering space (UCS).
For closed genus-1 surfaces, their UCS can be embedded in 2D pla-
nar domain, so the computation of the CVT on the UCS is identical
as in [Alliez et al. 2005] except that sites can move freely along
or cross the cutting boundaries. For closed high-genus (genus>1)
surfaces, their UCS can be embedded in 2D hyperbolic plane H?.
So computing the CVT in hyperbolic space is required and can lead
to new geometric modeling techniques for high-genus surfaces. To
the best of our knowledge, the CVT in hyperbolic space has not
been studied before. We will systematically analyze it in this paper.

One difficulty for defining the hyperbolic CVT is how to well de-
fine the centroid of a given region in 2D hyperbolic space. In this
paper, we extend the model centroid [Galperin 1993] to define the
centroid of a Voronoi cell in 2D hyperbolic space. Another chal-
lenge is how to effectively and efficiently compute the hyperbolic
CVT. We use two different algorithms — Lloyd’s algorithm and the
L-BFGS algorithm — to compute the hyperbolic CVT, and prove
the convergence of Lloyd’s algorithm. Based on our extensive ex-
periments, we conjecture the sites in the hyperbolic CVT are also
uniformly distributed with respect to the hyperbolic metric. We also
show how to use the hyperbolic CVT to generate uniform partitions
and high quality remeshing results for high-genus (genus>1) sur-
faces. Compared with previous method using parameterization in
2D Euclidean space such as [Alliez et al. 2005], the main advantage
of using the hyperbolic CVT is that it has no cutting edges on the
surface any more.

The main contributions of this paper include:

e We extended the concept of the CVT into hyperbolic space.
We defined a CVT energy function in hyperbolic space, and
proved the relationship between minimizing the energy func-
tion and the hyperbolic CVT. We also demonstrated the uni-
formity of the sites in the hyperbolic CVT through our exper-
iments.

e We applied Lloyd’s algorithm and the L-BFGS algorithm to
compute the hyperbolic CVT. We proved the convergence of

Lloyd’s algorithm, and explained the implementation details
of both algorithms.

e We used the hyperbolic CVT in the hyperbolic universal cov-
ering space to get uniform partitions and high quality remesh-
ing results for high-genus (genus>1) surfaces.

The rest of the paper is organized as follows: Section 2 briefly re-
views some related previous work. The formal definition of the hy-
perbolic CVT is given in Section 3, and two algorithms to compute
it are introduced in Section 4. Section 5 applies the hyperbolic CVT
on geometric modeling applications. Finally, Section 6 concludes
the paper with some possible future work.

2 Related Work

We briefly review some previous work on how to compute the CVT
in Euclidean space. We also list applications of the CVT in geo-
metric modeling.

2.1 Centroidal Voronoi Tessellation

The concept of the centroidal Voronoi tessellation was first intro-
duced by Du et al. [1999], but the similar concepts have been stud-
ied in different areas long before that, e.g. optimal quantization in
signal processing and k-means in pattern recognition.

One of the earliest algorithms to compute the CVT is proposed by
MacQueen [1967] which is a probabilistic algorithm. Although
the almost sure convergence of this algorithm is proved, its con-
vergence is very slow. Lloyd proposed a deterministic method in
1960s which is officially published later in 1982 [Lloyd 1982].
The convergence of Lloyd’s algorithm is later proved by Du et al.
[2006]. Due to its simplicity and robustness, Lloyd’s algorithm is
currently the most widely used algorithm to compute the CVT. Al-
though Lloyd’s algorithm is much faster than MacQueen’s method,
its convergence rate is still linear, and thus is too slow for many
applications.

Most recently, Liu et al. [2009] proved the CVT energy function
(explained in Section 4) is C? continuous, and thus they are able to
apply a quasi-Newton method — L-BFGS algorithm — to compute
the CVT. This method has a super-linear convergence rate and is
the fastest algorithm for the CVT so far.

2.2 Geometric Modeling Applications

Due to the uniformity of the Voronoi cells and sites, the CVT has
been widely used in many applications. We only review previous
work closely related to geometric modeling. For other applications,
please refer to [Du et al. 1999], [Rong et al. 2010] and the refer-
ences therein.

Many researches on geometric modeling utilize the dual of the
CCVT to achieve high quality remeshing results. Surazhsky et al.
[2003] computed the CCVT by projecting the 1-ring neighbors of
a site in the dual triangle mesh onto the tangential plane, and then
finding the centroid of its Voronoi cell in the plane. Contrast to this
local parameterization approach, Alliez et al. [2005] used a global
parameterization by cutting the surface into a disk-like topology,
and computing a 2D CVT in the Euclidean parameterization do-
main. Valette et al. [2008] directly computed an approximation of
the CCVT as clusters of triangles. Yan et al. [2009] first computed
a 3D CVT and then found the intersection between the surface and
the 3D CVT.

Cohen-Steiner et al. [2004] extended the concept of centroids to
planar proxies, and use a flooding scheme to compute the CCVT as

a good shape approximation. Lu et al. [2009] computed the CVT
for line segments and graphs, and use it to get meaningful segmen-
tations of 3D models.

The CVT in all the above work is computed in 2D or 3D Euclidean
space. In this paper, we study the CVT in hyperbolic space, and
demonstrate its application for geometric modeling.

3 Centroidal Voronoi Tessellation in Hyper-
bolic Space

In this section we first give the formal definition of the CVT in
Euclidean space, and then extend it into hyperbolic space. We only
study the CVT in 2D hyperbolic space in this paper. We use the
superscripts F/ and H to represent notions in Euclidean space and
hyperbolic space respectively.

3.1 Notions in Euclidean Space
Given n points (called sites) si, s2,..., Sn in a Euclidean domain

OF C R?, the Voronoi diagram is the union of n. Voronoi cells QF
which contains all points nearer to site s; than to other sites:

QF ={p e Q®d®(p,si) <d®(ps)) i #4}, (D

where d” (a,b) = |la — b|| = /(za — Tb)2 + (Ya — yb)? is the
distance in Euclidean space.

The centroidal Voronoi tessellation (CVT) is a special Voronoi di-
agram where every site s; locates exactly at the centroid c; of its
Voronoi cell. In Euclidean space, the centroid of the Voronoi cell
Q; is defined as:

B Jor p(P)Pdo
N fglE p(p) dO’ '

where p(p) > 0 is a given density function.

E
C;

(@3

3.2 Voronoi Diagram in Hyperbolic Space

Similar to the Voronoi diagram in Euclidean space, we can also
define the Voronoi diagram in a 2D hyperbolic domain Q¥ C H?
using the hyperbolic distance d* (-, -) to replace d” (-,) in (1). A
hyperbolic Voronoi cell QF is thus:

Qf ={peQd(p,si) <d(ps;),i £j}. ()

The hyperbolic Voronoi diagram of n sites in Q¥ is the union of
hyperbolic Voronoi cells of them.

There are several different models for the hyperbolic geometry.
They are all equivalent, but provide different views. Among
these models, the Voronoi diagram has been studied in the Upper
Half-plane model [Onishi and Takayama 1996], the Poincaré disk
model [Nilforoushan and Mohades 2006], and the Klein disk model
[Nielsen and Nock 2009]. In this paper, we compute the Voronoi
diagram in the Klein disk, a unit disk where any geodesic is a chord.
The distance between two points p and q in the Klein disk is

1-<p,q>

VA=IplH0 -]al?)

where < -, - > and ||-|| are inner product and vector norm computed
in Euclidean space. Using this distance, it can be proved that, for a
set of sites s; in the Klein disk, the Voronoi diagram in hyperbolic
space is a power diagram [Aurenhammer 1987] in Euclidean space.

di (p.q) = cosh™

(@ (b)

Figure 1: (a) Voronoi diagram of 100 random initial sites (red dots)
in a hexagon in the Klein disk. Blue dots are hyperbolic centroids of
corresponding Voronoi cells. (b) Hyperbolic CVT generated from
(a). p(p) = 1 in this example.

More specifically, for every site s; in the Klein disk, a correspond-
ing weighted point wp; =< t;,w? > can be created in Euclidean
s; llsill? 1
2¢/1= 5,2 A=llsall® /112"
The power diagram of weighted points wp; in Euclidean space is
same to the Voronoi diagram of the sites s; in the Klein disk. More
derivation details can be found in [Nielsen and Nock 2009]. Fig-
ure 1(a) shows a Voronoi diagram of 100 random sampled sites in

a hexagon in the Klein disk.

space, where t; = and w? =3

3.3 Centroid in Hyperbolic Space

We define the centroid in hyperbolic space following the idea of
model centroid proposed by Galperin [1993], and extend it from
discrete points to a continuous region. The model centroid unified
the definition of the centroid in spaces with constant curvature —
Euclidean space, hyperbolic space, and spherical space.

Given n discrete points in a k-dimensional space, and n mass values
m,; corresponding to these points, the position of the centroid of
these points can be located as follows: We find a “model” of the
k-dimensional space in (k + 1)-dimensional Euclidean space. For
every point p;, a vector is built from the origin pointing to the point.
The vectors are first scaled by the corresponding mass values, and
then are added up. The intersection between the sum vector and the
model of the k-dimensional space is defined as the position of the
centroid of these points. This definition is proved to be well-defined
for any number of discrete points and satisfied the axioms given in
[Galperin 1993].

For 2D Euclidean space, the model is the plane z = 1 in 3D Eu-
clidean space. When we replace the summation of the n vectors
with the integral over a continuous region, it is easy to verify that
the model centroid defined in this way is same to the centroid c”
defined in Equation (2).

For 2D hyperbolic space, the model is the Minkowski model, which
is the upper sheet of a two-sheeted hyperboloid —z:2 — y? 422 = 1
in 3D Euclidean space. Figure 2 shows the side view of the compu-
tation for the centroid of two discrete points.

Since the Voronoi diagram is computed in the Klein disk and the
computation of centroids is performed in the Minkowski model, we
need to convert positions between these two models. From now on,
we will use normal letters to represent points in the Klein disk, and
letters with bars for points in the Minkowski model. Furthermore,
we use letters with primes to represent points on the plane z = 0.

When embed in the plane z = 1 with the center on z-axis, the Klein

/[p1tmap;
\

7/

Figure 2: Side view of the computation for the centroid of two dis-
crete points.

z

Minkowski model

Figure 3: lllustration of mapping functions @ and 1.

disk is the central projection of the Minkowski model with respect
to the origin. The correspondence between a point p(zp, yp) in the
Klein disk and a point B(Zp, ¥y, Zp) in the Minkowski model is
given by the following formulas:

{ Tp f?p/fp)

Tp = 2p/+/1 — (m?,—i—y}%)
Up = Yp/\/1 — (z +uyd) - ®)
Zp = 1/3/1— (23 + yp)

Formula (5) define a mapping function ¢ from the Klein disk to
the Minkowski model, where ¢(p) = p. We also define another
mapping function 1) which orthogonally projects a point p in the
Minkowski model to the plane z = 0 to get the point p’, i.e.
¥(p) = p’. Note that these two mapping functions can be natu-
rally extended to Voronoi cells:

e = o) =" w@) = |J vm) =97

peql peal
Figure 3 illustrates these two mapping functions.

We now extend the definition of the hyperbolic centroid from dis-
crete points to a continuous region in 2D hyperbolic space. We
can compute a surface integral over the corresponding region in the
Minkowski model and find the intersection between the result and
the hyperboloid as the centroid of the region. Particularly, for a

.. =H. . . .
Voronoi region €2; in the Minkowski model, we compute its cen-

(@ (b)

Figure 5: Hexagonal (unshaded) Voronoi cells in (a) the Voronoi
diagram of 1,000 random initial sites in a hexagon in the Klein disk,
and (b) the hyperbolic CVT generated from (a). p(p) = 1 in this
example.

troid as: o
u Jaup(®@)v(p)do

i = — > 6
“ T g o(B)v (D) ol ©)

where ||p|[ar = \/—Tp — Uy + Zp is the norm in the Minkowski
model. Figure 1(a) shows the hyperbolic centroids of all Voronoi
cells marked as blue dots.

3.4 Hyperbolic Centroidal Voronoi Tessellation

Once we have definitions of the Voronoi diagram and the centroid
in hyperbolic space, it is straightforward to combine them to define
the centroidal Voronoi tessellation in hyperbolic space (hyperbolic
CVT) where every site locates on the centroid of its Voronoi cell.
Figure 1(b) shows the hyperbolic CVT generated from the 100 ini-
tial sites in Figure 1(a).

Gersho’s conjecture states that the sites in a Euclidean CVT are
evenly distributed in the space. We conjecture that it is also true for
the hyperbolic CVT. Since it is difficult to visually tell the unifor-
mity of the sites in a hyperbolic CVT, we measure the geometrical
uniformity of the sites and Voronoi cells in a hyperbolic CVT. For
every site s;, we define the radius r; of its Voronoi cell, the dis-
tance d; to its nearest neighbors, and the area a; of its Voronoi cell
as follows:

r;{ = max dg(p,si), d; = mind?(si,sj), a; = AreaH(QfI),
pEe QZH J#i

where Area®™ () denotes the area of a polygon in hyperbolic space.
For every quality measure, smaller variance means better unifor-
mity of the sites. Figure 4 compares the three measures computed
for the Voronoi diagram of 100 initial sites (Figure 1(a)) and the
hyperbolic CVT (Figure 1(b)). It is clear that the sites in the hyper-
bolic CVT are very uniformly distributed.

In 2D Euclidean space, it has been proved that most of Voronoi cells
in a CVT are hexagons [Newman 1982]. We have also experimen-
tally confirmed the same conclusion for 2D hyperbolic CVTs. One
example is shown in Figure 5 where we show hexagonal Voronoi
cells as unshaded. It is clear that most of Voronoi cells in the CVT
result are hexagons.

Although the above CVT results are all computed with a constant
density value p(p) = 1, our definition of the hyperbolic CVT is
general for any density values. Figure 6 shows two examples with
non-constant density values generated from the same initial sites as
in Figure 5. As we can see, similar to the behavior in Euclidean

(@ (b)

Figure 6: Hyperbolic CVTs generated from same initial sites
in Figure 5 with (a) p(p) = e~ 25109 gy (b) p(p) =

e=2075=20u5 4 0,05 sin®(mxp) sin’ (ryp).

space, in a hyperbolic CVT, sites tend to cluster near the regions
with higher density values. This property is critical for many appli-
cations in geometric modeling (see Section 5 for details).

4 Computational Algorithms

Lloyd’s algorithm is the most widely used algorithm to compute
the CVT in Euclidean space. We will apply it to compute the hy-
perbolic CVT, and prove its convergence in hyperbolic space. We
also investigate applying the L-BFGS algorithm on computing the
hyperbolic CVT.

4.1 Lloyd’s Algorithm

Lloyd’s algorithm is an iterative algorithm to minimize the CVT
energy (defined below). It starts with an arbitrary set of initial sites.
In every iteration of Lloyd’s algorithm, the Voronoi diagram of cur-
rent sites is first computed. Next, the centroids of Voronoi cells are
computed and used as new sites for next iteration. This procedure is
repeated until certain stopping condition is satisfied (e.g. the mov-
ing distance of every site is smaller than a threshold). Since both the
Voronoi diagram and the centroid have been defined in hyperbolic
space, we can directly apply Lloyd’s algorithm to compute the hy-
perbolic CVT. The only concern is whether Lloyd’s algorithm will
converge in hyperbolic space.

Lloyd’s algorithm has been proved to be convergent when comput-
ing the CVT in Euclidean space R? [Du et al. 2006]. We now prove
that Lloyd’s algorithm also converges in hyperbolic space H>.

In Euclidean space, the CVT energy of the ordered set of sites S =
(s1,82,...,8n) is defined as:

FES) = Y / , #(B)d"(p,5:)" do

Z/QE p(P)[p = sil|” do %
i=1 7%

As pointed in [Stahl 2007], many formulas in hyperbolic space can
be achieved by replace the distance d” with sinh(d”) in the cor-
responding formulas in Euclidean space. So we define the CVT
energy of S in hyperbolic space as:

F(s)=3" /Q p(p)sinh* (@i (p,s0))do. (®)

0.124

-------Voronoi diagram of initial sites| -------Voronoi diagram of initial sites| Voronoi diagram of initial sites|
0.304 —— CVT after 200 iterations 0.304 —— CVT after 200 iterations —— CVT after 200 iterations
0.10
0.25
0.25
. 0.08
T 0204 .
Z 0204 43 € o064
= o 0.5+ o
kel c (]
£ : : ol 2
0.15 i [L g 0.104 & 0.04
i LN N LA N A
1o [M/‘N \N\\/V\NM/\W/\“AJ \A/‘/\[i LML 0.05. 0.02
‘ 0.004 0.00+
0.05 T T T T T T T T T T T T T T T y T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
sites sites sites
(a) (b) ©

Figure 4: Comparison of geometrical measures of the Voronoi diagram of 100 initial sites shown in Figure 1(a) (blue dotted curve) and the

hyperbolic CVT shown in Figure 1(b) (red solid curve).

We first consider the situation where the sites are fixed and the tes-
sellation varies:

Lemma 1 When the sites are fixed, the CVT energy F* (8) is min-
imized when the tessellation is the Voronoi diagram of the sites.

Next, we study the situation where the tessellation is fixed (as the
Voronoi diagram) and the sites moves:

Lemma 2 When the tessellation is fixed, the CVT energy F™ (S) is
minimized when the sites locate at centroids of their Voronoi cells.

The proofs of the above two lemmas are given in the appendix.
With the results of the above two lemmas, we can use the same
proofs of Theorem 2.3, Corollary 2.4, Theorem 2.5, and Theorem
2.6 in [Du et al. 2006] to prove the convergence of Lloyd’s algo-
rithm for the hyperbolic CVT. Note that same to the case in Eu-
clidean space, the minimum found by Lloyd’s algorithm may be
either a local minimum point or a saddle point of the CVT energy.

4.2 L-BFGS Algorithm

The L-BFGS (Limited memory Broyden-Fletcher-Goldfarb-
Shanno) algorithm is a quasi-Newton algorithm which can quickly
find the minimum of the CVT energy. It has been successfully used
in Euclidean space to compute the CVT, and has faster convergence
speed than Lloyd’s algorithm. We also apply it for the hyperbolic
CVT.

A Newton algorithm to minimize an energy function requires to
compute a full Hessian matrix of the function. This is usually diffi-
cult for the CVT energy. The L-BFGS algorithm only uses the en-
ergy value and its first order partial derivatives computed in (max-
imum) m (a user-given parameter) preceding iterations to approxi-
mate the inverse of Hessian matrix.

More specifically, suppose Sy, and V F},, two vectors in R2™, are the
ordered set of n sites and the gradient of the CVT energy F'7 (Sy)
in k-th iteration, we define x;, = Sy, — Sg_1, and yr = VF} —
V F},_1. The approximated Hessian matrix is computed recursively
as:

H, = VIH,_ 1 Vi + pexixi ,

where pr, = 1/(y,7;xk) and Vi, =1 — pkykxg. This equation
is recursively evaluated for m (or k, if k& < m) previous preced-
ing iterations. After Hy is evaluated, the new sites are updated as
Sk+1 =S; — HyVF}.

So the key point of applying the L-BFGS algorithm in hyperbolic
space is how to evaluate the partial derivatives of F¥(8). F¥(8)
is the sum of n partial energy terms. In its partial derivative

OF(8)/0s;, only the i-th term has non-zero value. So we can
perform the computation only on the Voronoi cell QF . According
to [Okabe et al. 1999], the first order partial derivative of the CVT
energy with respect to the site s; is:

OFH(S) _ aF"(si) _ 2p(p)(si —p)

— d
ds; Bs; /H 1—lp—s?)? "

(C)]

where the later part is computed by setting the origin of the coordi-
nate system at s;.

4.3 Implementation Details

Both Lloyd’s algorithm and the L-BFGS algorithm need to compute
the Voronoi diagram as the first step. As discussed above, this can
be easily accomplished in the Klein disk by computing a power
diagram. In our implementation, we use the CGAL library [Fabri
2001] to compute the power diagram.

For Lloyd’s algorithm, the next step is to compute the centroid for
every Voronoi cell. In hyperbolic space, although the centroid of
a triangle with constant density is proved to be coincident with the
common point of its three medians [Stahl 2007], for a triangle with
non-constant density, it is not known how to get a close-form solu-
tion of its centroid defined by Equation (6). As the result, we cannot
compute the centroid of a Voronoi cell by dividing it into several tri-
angles as we did in Euclidean space. Instead, we use summations
to approximate the integral.

For every Voronoi cell QF, we first apply a Mdbius transforma-
tion, the rigid motion in hyperbolic plane, to move its site s; to
the origin to achieve a relatively small numerical error. Then we
use the mapping functions ¢ and 1 to map the QI from the Klein
disk to the Minkowski model, and then to the plane z = 0, to get
Q' = (¢(QUT)). The plane z = 0 is uniformly sampled using
aregular grid. We perform the summation over all samples located
within Q’f] to approximate the integral in Equation (6).

The integral for the L-BFGS algorithm in Equation (9) is computed
in the Klein disk. For every Voronoi cell QF, we also perform a
rigid transformation to move s; to the origin. We uniformly (in
Euclidean sense) sample the Klein disk, and sum over all samples
located within Q. Note that since the metric in the Klein disk is
different to that in Euclidean space, we need to compute the delta
area for every sample at (x,y) as:

AzxzAy

Ao = ——————
(1—a22 —42)3

; (10)

0.028 —— L-BFGS algorithm
0.026
0.024

@ 0.022

T 4
w 0.020
0.018+

0.016 4

0.014

0.012 T T T T T
0 50 100 150 200

Iteration

Figure 7: CVT energy against the number iterations for Lloyd’s
algorithm (blue dotted curve) and the L-BFGS algorithm (red solid
curve) starting from the 100 initial sites shown in Figure 1(a).

where Az and Ay are sample intervals along - and y-directions.

We plot in Figure 7 the CVT energy F'*(S) against the number
of iterations for both Lloyd’s algorithm and the L-BFGS algorithm
starting from the 100 sites shown in Figure 1(a). Similar to in Eu-
clidean space, the energy decreases dramatically for the first several
iterations, and converges gradually to a local minimum. Also, the
L-BFGS algorithm converges much faster than Lloyd’s algorithm,
which is same to its behavior in Euclidean space. Note although the
CVT energy should monotonically decrease, there is slight pertur-
bation in the curve for Lloyd’s algorithm due to our approximation
of the integral for centroid computation.

5 Application for High-Genus Surfaces

Let S be a surface embedded in R3. ¢ is the Riemannian metric
induced from the Euclidean metric of S. Suppose v : S — Ris a
scalar function defined on S. Then § = e®“g is also a Riemannian
metric on S and is conformal to the original one, which means the
new metric preserves angles and locally only differs a scaling with
the original one. According to the Uniformization theorem [Klin-
genberg 1982], any surface admits a Riemannian metric of constant
Gaussian curvature, which is conformal to the original metric. Such
metric is called uniformization metric. Surfaces with negative Euler
numbers admit hyperbolic uniformization metric with constant —1
Gaussian curvature and their UCS can be isometrically embedded
in 2D hyperbolic plane based on the uniformization metric.

Since conformal metric only introduces area distortion, which can
be easily compensated by modifying the density function expressed
in the embedding domain [Alliez et al. 2005], we use hyperbolic
uniformization metric to parameterize high genus surfaces to hy-
perbolic plane. The usage of the universal covering space allows
sites to move freely everywhere on the surface: a site can cross the
boundary of the center domain, and come into the center domain
from the “opposite” side of the boundary. So there is no artifacts
along the cutting edges any more. This is also the major advantage
of our method over Alliez et al.’s algorithm [Alliez et al. 2005].

For a given closed high genus surface, we use the method intro-
duced in [Jin et al. 2006] to compute its hyperbolic uniformization
metric and construct the embedding of its UCS in the Klein disk.

A double torus model (genus 2) is given in Figure 8(a), with a set
of canonical fundamental group generators (blue loops a1, b1, as,
b2) which cut the surface into a topological disk, the so called fun-
damental domain, with 4g sides: a1, b1, al_l, bl_l, as, ba, a;l,
by'. The fundamental domain is isometrically embedded in the
Klein disk with marked sides as shown in the unshaded region in

(@ (b)

Figure 8: Canonical fundamental group generators on (a) the sur-
face and (b) the Klein disk. Center domain is shown unshaded, and
neighbor domains shaded.

Figure 8(b). A finite copies of the fundamental domain (shaded re-
gions in Figure 8(b)) are glued coherently by applying correspond-
ing Mobius transformations. Note that any two domains in UCS
only differ a rigid motion in hyperbolic plane, the Mobius transfor-
mation, which can be computed quickly as in [Jin et al. 2006].

We adapt Lloyd’s algorithm to compute the CVT of a set of initial
sites S in the center domain (the original embedded fundamental
domain) of the UCS. By applying Mobius transformations on sites
in S, we compute the corresponding points in neighbor domains
(those sharing an edge or a vertex with the center domain) and de-
note the union of them by S’. The Voronoi diagram of S U S’ is
computed, and the centroids of Voronoi cells of sites in S are lo-
cated. If a centroid is outside of the center domain by the side,
say a1 (see Figure 8(b)), by performing a corresponding Mobius
transformation we move it to the “opposite” side a; ' of the center
domain. The adjusted centroids are inside the center domain and
are used as the new sites in the next iteration.

Back to the example of the double torus model and its conformal
embedding of the UCS in the Klein disk, Figure 9(a) shows the
Voronoi diagram of 100 random initial sites marked with red in-
side the center domain and their corresponding points in neighbor
domains in UCS marked with green. The adjusted centroids for
Voronoi cells of sites in S are all inside the center domain, marked
with blue.

Density Value. As discussed before, conformal parametrization
introduces area distortion only, which can be compensated by as-
signing an appropriate density value at each point expressed in the
embedding domain.

The conformal factor cf is defined to measure local scaling of con-
formal mapping. For each vertex v on the surface, cf can be com-
puted as the ratio of the area sum of its incident triangles in 3D

space and in 2D hyperbolic plane, ie. cf(v) = ﬁggm For a
non-vertex point on the surface, cf can be computed by linearly in-
terpolating the computed conformal factors of the three vertices of

the triangle containing that point.

We then define a sizing field where every point p on the surface
has a desired size u(p). For every triangle ¢, its sizing ratio is

computed as sr(t) = %. For a given sizing field, we

say a triangle mesh satisfies it if the sizing ratio of every triangle
is less than or equal to 1. For the ideal case, the sizing ratios of
all triangles should be 1 to minimize the number of triangles used.
So the length of the longest edge of every triangle is approximately
equal to the sizing at its centroid. The area of the triangle is thus
proportional to the square of the sizing at its centroid, i.e. A(t) ~

Figure 9: Voronoi diagram of 100 random initial sites in (a) the
UCS, and the centroids for Voronoi cells of sites in S. Red dots are
sites in S, green dots are sites in S', and blue dots are centroids.
(b) CVT result generated from (a). (c) Initial Voronoi diagram on
surface. (d) CVT result on surface.

u(centroid(t))?. Since we want the sites uniformly distributed on

the surface, the sizing filed on the surface should be a constant value

everywhere. After a proper normalization, we have Azp(p) ~ 1
1

and Asp(p) ~ H(P)2’ thus the conformal factor c¢f (p) = LA

It is pointed out by Du and Wang [2006] that the dual mesh of a

CCVT with density values p(p) = W will satisfy the given

sizing field, where d is the dimension of the problem. So, in 2D,
we assign the density value at point p as:

! n :cf(p)Q. (11)

p(p) = o)

So the uniformity of the sites in the CVT result is compensated by
the distortion, and thus uniformly distributed on the surface.

With the modulated density values (instead of a constant), the CVT
result generated by 100 Lloyd’s iterations from initial sites shown
in Figure 9(a) is given in Figure 9(b). The Voronoi diagram of
initial sites and the CVT results on the original surface are shown
in Figure 9(c) and 9(d) respectively. As we can see the final sites
are evenly distributed on the surface.

A CVT result of the surface of Amphora with 1,000 sites is shown
in Figure 10(b). Compared with the Voronoi diagram of the random
initial sites (Figure 10(a)), we can clearly see the improvement of
the uniformity of Voronoi cells. We can also modulate the density
values using some properties required by applications. One exam-
ple is to use the local feature size (LFS, distance to the medial axis)
as in [Yan et al. 2009]:

p(p) = cf(p)?/Lfs(p)*. (12)

By modulating the density values by the LFS, the CVT result con-
tains more sites where there are more details and vice versa. Fig-

(D€

RO

4

2

Figure 10: Results for the surface of Amphora (genus-2): (a) The
Voronoi diagram of 1,000 random initial sites, (b) the CVT with
density values computed using Equation (11), and (c) the CVT with
density values modulated by LFS.

(b)

Figure 11: (a) The CVT of 2,000 sites on the surface of Knot
(genus-2). (b) Dual triangle mesh for Knot. (The wire frame mode
is used to show the complex inner structure.)

ure 10(c) shows the CVT result with LFS-modulated density values
using the same initial sites as in Figure 10(a).

Figure 11 shows results for a genus-2 surface with much more com-
plicated shape. It is clear that our algorithm using the hyperbolic
CVT can generate high-quality results for relatively few sites on
complicated surfaces. Two more results for genus-3 surfaces are
shown in Figure 12.

Figure 13 compares our algorithm with Yan et al.’s fast restricted
Voronoi diagram algorithm (FRVD) [Yan et al. 2009], which uses
Euclidean distance to compute a 3D Voronoi diagram, and then
finds the intersection between the 3D Voronoi diagram and the sur-
face. For the surface of Knot, part of the inner knot is very close to
the outer surface, but they are far apart along the surface. From our
experiments, even with 4,000 sites, some Voronoi cells in the FRVD
result still spans over the inner knot and the outer surface. As the
result, the inner knot is glued with the outer surface by some non-
manifold vertices and edges (shown in red in Figure 13(c)). As a
comparison, our method using the hyperbolic CVT has no problem
to separate these two parts with much fewer sites.

Although our method cannot always guarantee a valid triangulation,
we did not have any problems in our experiments with a reasonable
number of sites. In our method, the hyperbolic CVT is computed in
the running-time, but all other steps, including computing the uni-
formization metric, embedding, and computing the distortion can

s,
.8

7~

=

e

i

™
asgs
T

sty

(b)

Figure 12: (a) The CVT of 1,000 sites on the surface of David
(genus-3) and (b)The CVT of 2,000 sites on the surface of Sculpture
(genus-3).

Figure 13: Comparing the dual triangle meshes generated by
(a) FRVD with 4,000 sites and (b) our algorithm with 2,000 sites.
The regions where the inner tube is very close to the outer surface
(marked by red boxes) are enlarged in (c) and (d). Non-manifold
vertex and edges in (c) are shown in red.

all be pre-computed. The time complexity of computing the hyper-
bolic Voronoi diagram is same to the that in Euclidean space, i.e.
O(nlogn) where n is the number of sites. As a comparison, the
algorithms using the exact geodesic distance need to compute the
geodesic Voronoi diagram in every iteration, which is much more
expensive than the computation of the power diagram.

6 Conclusion and Future Work

We extended the concept of the centroidal Voronoi tessellation from
Euclidean space to hyperbolic space. We showed the hyperbolic
CVT has the same property with its Euclidean counterpart, i.e.
the sites are uniformly distributed. We explained how to apply
Lloyd’s algorithm and the L-BFGS algorithm to compute the hy-
perbolic CVT, and proved the convergence of Lloyd’s algorithm in
hyperbolic space. Finally, we used the hyperbolic CVT to get uni-
form partitions and high quality remeshing results for high-genus
(genus>1) surfaces. We believe this newly proposed hyperbolic
CVT would have many more applications in difference areas such

as surface processing, scientific visualization, pattern recognition,
etc.

Note that we only handle closed high-genus surfaces in this paper,
but our method can also be generalized to surfaces with bound-
aries, by using the double covering technique (gluing two copies
of a same open surface along their boundaries) to convert them to
closed symmetric surfaces. We are also investigating conformally
embedding high-genus surfaces with boundaries in the Klein disk.

Due to lack of a close-form solution for the hyperbolic centroid of
a triangle with non-uniform density, we can only use summation to
approximate the integral in the computation of the hyperbolic CVT.
This not only leads to degraded quality, but also slow down the
performance of our programs. How to directly compute the integral
as in Euclidean space is one of our major future work.

In our current implementation, the Voronoi diagram on the UCS
is computed by using all points in S U S’. For a genus-g surface,
there are 169> — 8¢ neighbor domains. So the number of sites is
quite large. This makes the computation of the Voronoi diagram
very slow, which becomes the bottleneck of our current program.
For a genus-3 surface with 2,000 sites, our current program needs
more than one minute to compute the Voronoi diagram for a sin-
gle iteration. Optimizing this procedure is critical to increase the
program speed. We may borrow the idea of the periodic triangula-
tion package in CGAL [Caroli and Teillaud 2009] to accelerate this
procedure.

Another possible acceleration approach is to utilize the paral-
lel computability of the programmable graphics processing unit
(GPU). GPU has already been used to accelerate the computation
of the CVT in Euclidean space [Vasconcelos et al. 2008; Rong et al.
2010]. But the metric of the Klein disk is highly non-uniform in the
unit Euclidean disk, and is not easy (if not impossible) to be rep-
resented by a 2D texture. So none of the existing GPU algorithms
can be straightforwardly extended to compute the hyperbolic CVT.
We would like to investigate new data structures on the GPU for
hyperbolic geometry.

Acknowledgements

Guodong Rong and Xiaohu Guo are partially supported by the Na-
tional Science Foundation under Grant No. CCF-0727098. Miao
Jin is partially supported by Louisiana Board of Regents under
Grant No. RD-A-21.

References

ALLIEZ, P., DE VERDIERE, E. C., DEVILLERS, O., AND ISEN-
BURG, M. 2005. Centroidal Voronoi diagrams for isotropic
surface remeshing. Graphical Models 67, 3, 204-231.

AURENHAMMER, F. 1987. Power diagrams: properties, algorithms
and applications. SIAM Journal on Computing 16, 1, 78-96.

CAROLI, M., AND TEILLAUD, M. 2009. Computing 3D periodic
triangulations. Research Report RR-6823, INRIA.

COHEN-STEINER, D., ALLIEZ, P., AND DESBRUN, M. 2004.
Variational shape approximation. ACM Transationcs on Graph-
ics 23, 3,905-914.

Du, Q., AND WANG, D. 2006. Recent progress in robust and
quality Delaunay mesh generation. Journal of Computational
and Applied Mathematics 195, 1, 8-23.

Du, Q., FABER, V., AND GUNZBURGER, M. 1999. Centroidal
Voronoi tessellations: Applications and algorithms. SIAM Re-
view 41, 4, 637-676.

Du, Q., GUNZBURGER, M. D., AND JU, L. 2003. Constrained
centroidal Voronoi tessellations for surfaces. SIAM Journal on
Scientific Computing 24, 5, 1488-1506.

Du, Q., EMELIANENKO, M., AND Ju, L. 2006. Convergence of
the Lloyd algorithm for computing centroidal Voronoi tessella-
tions. SIAM Journal on Numerical Analysis 44, 1, 102-119.

FABRI, A. 2001. CGAL - the computational geometry algo-
rithm library. In Proceedings of the 10th International Meshing
Roundtable, 137-142.

FEJES TOTH, G. 2001. A stability criterion to the moment theorem.
Studia Scientiarum Mathematicarum Hungarica 38, 1-4, 209—
224.

GALPERIN, G. A. 1993. A concept of the mass center of a system
of material points in the constan curvature spaces. Communica-
tions in Mathematical Physics 154, 1, 63-84.

GERSHO, A. 1979. Asymptotically optimal block quantization.
IEEE Transactions on Information Theory 25, 4, 373-380.

JIN, M., Luo, F., AND GU, X. 2006. Computing surface hyper-
bolic structure and real projective structure. In ACM Symposium
on Solid and Physical Modeling, 105-116.

KLINGENBERG, W. P. A. 1982. Riemannian Geometry. Walter de
Gruyter, New York.

Liu, Y., WANG, W., LEVY, B., SUN, F., YAN, D.-M., Lu, L.,
AND YANG, C. 2009. On centroidal Voronoi tessellation —
energy smoothness and fast computation. ACM Transactions on
Graphics 28, 4, 1-17.

LLoyD, S. P. 1982. Least squares quantization in PCM. IEEE
Transactions on Information Theory 28, 2, 129-137.

Lu, L., LEVY, B., AND WANG, W. 2009. Centroidal Voronoi tes-
sellations for line segments and graphs. technical report, INRIA-
ALICE.

MACQUEEN, J. B. 1967. Some methods for classification and
analysis of multivariate observations. In Proceedings of the fifth
Berkeley Symposium on Mathematical Statistics and Probability,
University of California Press, 281-297.

NEWMAN, D. J. 1982. The hexagon theorem. [EEE Transactions
on Information Theory 28, 2, 137-139.

NIELSEN, F., AND NOCK, R. 2009. Hyperbolic Voronoi di-
agrams made easy. ACM Computing Research Repository
abs/0903.3287 .

NILFOROUSHAN, Z., AND MOHADES, A. 2006. Hyperbolic
Voronoi diagram. In Computational Science and Its Applications
- ICCSA 2006, vol. 3984 of Lecture Notes in Computer Science.
Springer-Verlag, 735-742.

OKABE, A., BOOTs, B., SUGIHARA, K., AND CHIU, S. N. 1999.
Spatial tessellations: concepts and applications of Voronoi dia-
grams, 2nd ed. John Wiley & Sons.

ONISHI, K., AND TAKAYAMA, N. 1996. Construction of Voronoi
diagram on the upper half-plane. IEICE transactions on funda-
mentals of electronics, communications and computer sciences
E79-A, 4, 533-539.

PEYRE, G., AND COHEN, L. 2004. Surface segmentation us-
ing geodesic centroidal tesselation. In Proceedings of 2nd Inter-
national Symposium on 3D Data Processing, Visualization, and
Transmission,, IEEE Computer Society, Washington, DC, USA,
995-1002.

RONG, G., L1U, Y., WANG, W., YIN, X., GU, X., AND GUO, X.
2010. GPU-assisted computation of centroidal Voronoi tessella-
tion. IEEE Transactions on Visualization and Computer Graph-
ics. to appear.

STAHL, S. 2007. Mass in the hyperbolic plane. ACM Computing
Research Repository abs/0705.3448.

SURAZHSKY, V., ALLIEZ, P., AND GOTSMAN, C. 2003. Isotropic
remeshing of surfaces: A local parameterization approach. In
Proceedings of the 12th International Meshing Roundtable, 215—
224.

VALETTE, S., CHASSERY, J.-M., AND PROST, R. 2008. Generic
remeshing of 3D triangular meshes with metric-dependent dis-
crete Voronoi diagrams. /[EEE Transactions on Visualization and
Computer Graphics 14, 2, 369-381.

VASCONCELOS, C. N., SA, A., CARVALHO, P. C., AND GAT-
TASS, M. 2008. Lloyd’s algorithm on GPU. In Proceedings of
the 4th International Symposium on Visual Computing, 953-964.

YAN, D.-M., LEVY, B., L1U, Y., SUN, F., AND WANG, W. 2009.
Isotropic remeshing with fast and exact computation of restricted
Voronoi diagram. Computer Graphics Forum 28, 5, 1445-1454.
(Proceedings of Symposium on Geometry Processing 2009).

A Proof of Lemma 1

Lemma 1 When the sites are fixed, the CVT energy F* (8S) is min-
imized when the tessellation is the Voronoi diagram of the sites.

Proof. Suppose we have another tessellation) which is different
to the Voronoi diagram 2, and we define another energy function
FH(S) overit:

FH(S) :Z/ﬁp(p) sinh? (d% (p, s:)) do. (13)

For a particular point p belonging to the Voronoi cell €2;, suppose in
the tessellation €2 it belongs to a cell €2;. Because of the definition
of the Voronoi diagram, we always have

dg(p.si) < dg(p.s)),
and thus
p(p) sinh? (dx (p, s:)) < p(p) sinh®(dx (p, s;)).

Since {2 is not a Voronoi diagram, the above formula must hold with
strict inequality on some cells. Thus,

F*(S) < FH(8)

so that F/7 (S) is minimized when the tessellation is the Voronoi
diagram of the sites. U

B Proof of Lemma 2

Lemma 2 When the tessellation is fixed, the CVT energy F (S) is
minimized when the sites locate at centroids of their Voronoi cells.

Proof. First, we compute the partial energy over the Voronoi cell
of the site s;

F(s0) = [plp)sink(df (p.50) do:

i

Since the energy is coordinate-independent, we can set the origin
of the coordinate system at s;. By doing so, the distance dZf (p,si)
can be simplified to

di(p,si) = 2o 2P =il

=tanh™'(||p — si]|). (14)
2 1-|p—si (Il)

So
Fi(s) = / p(p) sinh?(tanh ™ (|p - s;)) do
ot
p-sd\
P—5;
— B do. 15
/Qin(p)< ﬁlpsA?) o (15)

Denote q = p —s; and & = Upeqr @, we have:

ey ol Y’
Fil(s,) L?mq)(ﬁ_”q”2>

where p(q) = p(p) because the rigid transform does not change
the density values. Next, using the mapping functions ¢ and 1 (as
illustrated in Figure 3), we can map the above integral from the
Klein disk to the plane z = 0 as:

Py - Jal)
s = [f{p(q)(e
[, ot oo 16)

where g’ = ¥(¢(q)) and 7' = Ugeqn d”

Since ¢>'1H is in 2D Euclidean space z = 0, it is known that
the above energy function is minimized when its centroid is at
the origin [Du et al. 1999]. The z-coordinate of the centroid is
fq,/ZH p(d")zg do’

’

T, = . So to minimize F'¥ (s;), we need to have

JprH p(d’) do”
i

z!. = 0, and thus its numerator
i ! /
/ p(q)zgde’ = 0.
o' H

Since the mapping function 1) dose not change the z-coordinate,
Tq = @¢q. Furthermore, p(@)do = p(q’)do’ due to the conserva-
tion of mass. So we have

/ p(Q)Tq dT = / p(q)zgdo’ = 0.
w wit

Comparing with Equation (6), this indicates the z-coordinate of c¢!”
(the hyperbolic centroid of ®F) is 0. Similarly, we have the y-
coordinate of cf{ is 0. This means the numerator of Equation (6) is
on z-axis. So after the normalization, ¢/ is at the point (0,0,1),
i.e. the center of the Klein disk. Now we have proved that when s;
locates at ¢, the partial energy F'¥ (s;) is minimized.

Applying the same proof for all the Voronoi cells, we have the con-
clusion that when all sites locate at the centroids of their Voronoi
cells, the CVT energy function F¥(S) = >°" | F(s;) is mini-
mized.]

