
Appendix of Particle-Based Anisotropic Surface Meshing

1 Relation with Fattal’s Formulation

In this section, we show the fundamental relationship between
our particle-based formulation and Fattal’s kernel-based formula-
tion [1]. In particular, for the uniform isotropic case, we show in
Sec. 1.1 that our particle-based formulation is equivalent to Fattal’s
kernel-based formulation. For the non-uniform isotropic case, we
show in Sec. 1.2 how the difference of these two formulation leads
to the result shown in Fig. 2.

1.1 Uniform Isotropic Case

We start from Fattal’s kernel-based formulation. Given n samples
with their positions X = {xi|i = 1 . . . n} in the domain Ω ⊂ Rm,
we place the Gaussian kernel centered around each sample position
xi:

Gi(x) =
1

(
√
2πσ)2

e
− ∥x−xi∥

2

2σ2 , (1.1)

where σ is the standard deviation of Gaussian kernel, and x ∈ Ω.
We call σ the “kernel width”, and assume that all kernels have the
same fixed width. Here the normalization factor 1

(
√

2πσ)2
ensures

that the kernel’s integral to be fixed. Given any target function
C(x), Fattal [1] suggests to use the summation of kernels to ap-
proximate C(x), i.e., to minimize the following energy:

E(X) =

∫
Ω

|C(x)−
n∑

i=1

Gi(x)|2 ds. (1.2)

If we set the target function to be a unit constant C(x) = 1, then
minimizing E(X) w.r.t. the sample positions X will achieve a
hexagonal distribution of samples in 2D space [1].

The minimizer is defined by: X∗ =

argmin
X


∫
Ω

ds︸ ︷︷ ︸
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−2
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Gi(x))
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 .

Let us suppose the domain Ω is finite, either open or closed. If Ω
is open with boundaries, we can constrain the samples on a slightly
smaller domain Ω′ ⊂ Ω so that the finite supports of these kernels
are all in Ω. Under this assumption, we can see that only the third
term

∫
Ω
(
∑n

i=1 Gi(x))
2ds depends on the sample location X. The

first term is obviously constant. The second term is also constant
because the Gaussian kernels are normalized. Thus, the above min-

imizer can be simplified as:

argmin
X

∫
Ω

(

n∑
i=1

Gi(x))
2ds

=argmin
X

n∑
i=1

n∑
j=1,j ̸=i

1

(2πσ2)2
e
−

∥xi−xj∥
2

4σ2

∫
Ω

e
−

∥x−
xi+xj

2
∥2

σ2 ds

=argmin
X

n∑
i=1

n∑
j=1,j ̸=i

1

(2σ
√
π)2

e
−

∥xi−xj∥
2

4σ2

=argmin
X

n∑
i=1

n∑
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Eij(X)

= argmin
X

n∑
i=1
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Eij(X).

(1.3)

Here Eij is the inter-particle energy as we defined in our paper.
From this derivation, we can see that Fattal’s kernel-based formula-
tion [1] is fundamentally equivalent to our particle-based formula-
tion for uniform isotropic case, where only the mutual effect be-
tween particles i and j (i ̸= j) needs to be considered. Such
inter-particle repulsion model avoids the numerical integration of
the kernel-based functional approximation, making it practical to
handle anisotropic meshing with large stretching ratios.

Figure 1: Equivalence between Fattal’s kernel-based scheme and
our particle-based scheme, for the uniform isotropic case.

1.2 Non-Uniform Isotropic Case

For non-uniform isotropic case with background density ρ(x) de-
fined on a 2D domain, the metric tensor is essentially M(x) =
ρ(x) · I, where I is the identity matrix. Let us denote the particle
positions on the corresponding surface Ω in the high-dimensional
embedding space by X = {xi | xi = ϕ(xi), i = 1 . . . n}. In our
paper we define the following inter-particle energy for particles i
and j in the embedding space:

E
ij

= e
−

∥xi−xj∥
2

4σ2 . (1.4)

Using the derivation introduced in the above section, we can see
that our particle-based energy formulation, in the embedding space,
is fundamentally equivalent to the optimization of the following



kernel-based energy function:

E(X) =

∫
Ω

|1−
n∑

i=1

Gi(x)|2 ds, (1.5)

where Gi(x) is the normalized Gaussian kernel in Ω, and is defined
as:

Gi(x) =
1

(
√
2πσ)2

e
− ∥x−xi∥

2

2σ2 . (1.6)

Fattal’s kernel-density energy function (Eq. (3) of [1]) in 2D do-
main can be summarized as:

E′(X) =

∫
Ω

|ρ(x)−
n∑

i=1

G′
i(x)|2 ds, (1.7)

where G′
i(x) is a normalized Gaussian kernel centered around xi

in Ω:

G′
i(x) =

ρ(x)

(
√
2πσ)2

e
− ρ(x)∥x−xi∥

2

2σ2 . (1.8)

If we want to map Fattal’s kernel-density energy to Ω in the high-
dimensional embedding space, we can introduce ϕ : Ω → Ω, and
exploit the following relationship:

∥x− xi∥2 = < x− xi,x− xi >
= (x− xi)

TJ(x)TJ(x)(x− xi)
= (x− xi)

TM(x)(x− xi)
= ρ(x)∥x− xi∥2,

(1.9)

where J(x) denotes the Jacobian matrix of the embedding function
ϕ evaluated at x. Thus the Gaussian kernel of Eq. (1.8) can be
rewritten as:

G′
i(x) =

ρ(ϕ−1(x))

(
√
2πσ)2

e
− ∥x−xi∥

2

2σ2 .

Considering the infinitesimal area of Ω: ds = ρ(x)ds, we can
rewrite Fattal’s kernel-density energy of Eq. (1.7) in Ω as:

E(X) =

∫
Ω

ρ(ϕ−1(x))|1−
n∑

i=1

Gi(x)|2 ds, (1.10)

where Gi(x) = 1

(
√

2πσ)2
e
− ∥x−xi∥

2

2σ2 is the normalized Gaussian

kernel on Ω, and ρ(ϕ−1(x)) = ρ(x).

By comparing Eq. (1.5) with Eq. (1.10), which are both formulated
on the “isotropic” Ω in the high-dimensional embedding space, we
can see that our energy of Eq. (1.5) is a formulation of least squares,
while Fattal’s energy of Eq. (1.10) is the weighted least squares
(weighted by ρ(ϕ−1(x))).

As can be seen, our approach leads to a formulation that is slightly
different from Fattal et al.’s approach, when handling non-uniform
isotropic case with given background density. Our following result
shows that Fattal’s kernel-density energy function cannot produce
desirable result.

We use L-BFGS optimizer to directly minimize Fattal’s energy in
Eq. (1.7), and compare with our particle-based optimization result,
both running in a 2D square domain with certain density functions.
Fig. 2 shows such comparative results with 500 sample points. We
can see that by using Fattal’s energy function, all the samples are
attracted to the high density area, which does not match the input

density field. In contrast, our particle-based energy optimization
can generate the correct sampling result conforming to the input
density.

Note that Fattal’s method does not handle anisotropic case.

Figure 2: The sampling results with 500 particles by optimizing our
particle-based energy function and Fattal’s kernel-density energy
function.

2 A Simple 1D Example to Compare Forces

In this section, we show a simple 1D example to illustrate the dif-
ference between our force (Eq. (21) of the paper) and the other two
alternative forces (Eq. (24) and Eq. (25) of the paper), as illustrated
in the following Fig. 3.

Figure 3: A simple 1D example with particles k, i, and j.
Suppose particles j and k are two neighbors of particle i. They are
placed in the 1D domain with desired density ρki = 2ρji. Then we
will expect to have ∥xj − xi∥ = 2∥xk − xi∥ using a correct force
function. Since it is 1D case, according to Eq. (3) of our paper, we
know the metric M = ρ2, and Q = ρ. If we use our force function
in Eq. (21) of the paper, then:

F̃ki = ρki(xk−xi)

2σ2 e
−

ρ2ki∥xk−xi∥
2

4σ2 ,

F̃ji =
ρji(xj−xi)

2σ2 e
−

ρ2ji∥xj−xi∥
2

4σ2 .

(2.1)

If we sum up the two forces applied on particle i: F̃i = F̃ki + F̃ji,
we can see that:

F̃i = 0 ⇔ ∥xj − xi∥ = 2∥xk − xi∥, (2.2)

which means that the force equilibrium is exactly located at the
desired particle configuration. It is easy to see that using the other
two alternative forces in Eq. (24) and Eq. (25) of the paper:

F̂i = 0 < ∥xj − xi∥ = 2∥xk − xi∥. (2.3)
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