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Abstract—Harmonic volumetric mapping aims to establish a
smooth bijective correspondence between two solid shapes with
the same topology. In this paper, we develop an automatic meshless
method for creating such a mapping between two given objects.
With the shell surface mapping as the boundary condition, we first
solve a linear system constructed by a boundary method called the
method of fundamental solution, and then represent the mapping
using a set of points with different weights in the vicinity of the
shell of the given model. Our algorithm is a true meshless method
(without the need of any specific meshing structure within the
solid interior) and the behavior of the interior region is directly de-
termined by the boundary, which can improve the computational
efficiency and robustness significantly. Therefore, our algorithm
can be applied to massive volume data sets with various geometric
primitives and topological types. We demonstrate the utility and
efficacy of our algorithm in information transfer, shape registra-
tion, deformation sequence analysis, tetrahedral remeshing, and
solid texture synthesis.

Note to Practitioners—Building a one-to-one smooth corre-
spondence between two solid geometric models is a fundamental
problem. It directly applies to shape registration: when we have
two solid shapes matched, we can easily compute and visualize for
analysis purpose where and how much do they differ. Another
important application is generating regular connectivity for ar-
bitrary solid objects. This is performed by transferring regular
structure from a canonical object to our target object once the
correspondence (mapping) is created. Given two solid models, we
can automatically compute a physically natural mapping between
them. This “physically natural” property is characterized by
so called harmonicity, which measures the smoothness of the
mapping function, and is represented by the harmonic energy. A
map with minimized harmonic energy means it is smoothest and
natural; and our algorithm gets such a mapping. We show the
desirable property of our map using applications such as shape
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comparison, tetrahedral mesh regularization, and solid texture
synthesis. These applications in turn demonstrate the strong po-
tential of our volumetric mappings. Our method is so far the first
“meshless” attempt in computer graphics and modeling field for
computing harmonic volumetric map, and it outperforms other
existing techniques in smoothness, stability, and computational
efficiency. The computational complexity of our algorithm is only
solving a dense linear system. Furthermore, once the coefficient
matrix is decomposed, it can be reused very efficiently whenever
the boundary condition changes—only a matrix-vector multiplica-
tion is necessary for the new mapping computation. In our current
work, the behavior of the volumetric mapping in the interior
region is determined by the shell boundary correspondence, and
we will pursue mapping with free boundary constraints in the
future.

Index Terms—Computational geometry and object modeling,
computer graphics, computing methodologies, geometric algo-
rithms.

I. INTRODUCTION

R ECENT advances in modern 3-D scanning and acqui-
sition techniques have led to the rapid growth in terms

of the number of digital models and their complexity. More
and more volumetric objects are routinely obtained and stored
in shape repositories. Shapes in databases usually vary signif-
icantly based on their topological types and geometric com-
plexity; and they could be acquired from different viewing po-
sitions, in different resolutions; furthermore, shapes are often-
times deformable with time-varying behaviors. All of these give
rise to the difficulty in effectively analyzing, comparing, and
searching shapes. One viable approach for the shape matching
and analysis purpose is to establish the correspondence between
objects of interest. Towards this goal, we need either a registra-
tion process between objects or a parameterization technique
from objects onto certain canonical domains, both of which are
very difficult due to the geometric and topological complexity
of the underlying solid objects. In principle, building the corre-
spondence between objects is equivalent to seeking a mapping
from one domain to another, which remains to be one of the key
issues in graphics and solid modeling fields in order to facili-
tate many applications. Two-dimensional surface mappings and
3-D volumetric mappings are most relevant and deserve exten-
sive research investigation.

Computing correspondence between two surfaces has been
widely studied in computer graphics, usually for surface de-
formation or morphing purpose. Its variation, parameterizing a
surface onto planar domains, has been a central research topic
in graphics and modeling areas in recent years. It arose from
applications such as texture mapping; and it aids in many sci-
entific computations such as providing domains for continuous
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surface spline construction and physically based simulation or
deformation. In reality, despite the necessity of surface mapping
techniques, interior volume data carries abundant information
including material, density, texture, etc. (beyond pure geometric
information). Therefore, not only the thin-shell of the object but
the entire solid model should be taken into account in many
cases of solid modeling, shape analysis, and physically based
computation. For example, most of the physically based defor-
mation techniques are volume-driven. Volumetric mapping be-
tween objects instead of surface mapping, serves as an enabling
and more accurate tool for this task. In spite of this strong need,
due to its technical challenges and computational complexity,
much less work has been actually carried out in volumetric map-
ping compared with the surface case. In this paper, we aim to
pursue a robust, efficient, and accurate algorithm to compute
the harmonic volumetric mapping between two solid objects.
We make use of the boundary method, in which the behavior of
the interior region of the volume data is determined only by its
surface boundary, thus naturally reduces this volume problem to
that of its boundary surface scale. The harmonicity of the map-
ping is guaranteed by the method of fundamental solution.

Harmonicity of a mapping characterizes smoothness, which
is a natural phenomenon that depicts the minimized physical en-
ergy configuration that arises from the difference between two
shapes. In the surface case, harmonic mapping tries to achieve
this by vanishing on the source surface the Laplace-Beltrami
operator. Intuitively speaking, finding a harmonic mapping be-
tween two surfaces with fixed boundary correspondence is like
computing the final deformation of a rubber membrane. The
membrane has the source surface as its relaxed shape config-
uration, and is wrapped onto the target shape with certain fixed
boundary constraints. The final mapping that leads to the phys-
ically natural deformation should minimize the harmonic en-
ergy and is what the algorithm aims to achieve. Similarly, for
harmonic volumetric mapping, we fix the boundary mapping,
which is now a surface mapping between shells of the two given
solid objects. Then we seek a smooth interior region mapping by
enforcing 3-D Laplacian everywhere to be zero. This is equiva-
lent to arriving at the final stable configuration of a solid rubber
subject to its boundary shape constraint.

Unlike the surface case, the variational procedure that mini-
mizes a predefined energy needs to adjust a much larger number
of points, which usually results in an intolerable computation
complexity. According to the maximum principle of harmonic
functions, interior value of a smooth field is determined by its
boundary setting. Therefore, we can use a boundary method
called method of fundamental solution (MFS) to solve this
problem, hence reducing the volumetric solid problem to just
the boundary surface scale. To our best knowledge, this is the
first work in the computer graphics area that MFS is employed
to solve the volumetric mapping problem.

Several applications are employed to demonstrate the efficacy
of our mapping technique. These applications also show the im-
portance of the volumetric harmonic mapping. The first and nat-
ural application is to use this correspondence to establish a regis-
tration between two solid models. Information on one model can
be transferred to another; thus material, texture, and disparate
functions defined on a volume domain can be transplanted and
reused easily. With the registration being established, we can

also measure the distance between shapes naturally by the en-
ergy required to deform one solid object to the other. We are able
to visualize the deformation energy distribution, which aids in
shape and deformation sequence analysis. Second, a solid pa-
rameterization can be computed once we have the mapping be-
tween a solid object and a canonical 3-D domain. We transplant
the tetrahedralization of standard regular shapes such as poly-
cubes onto other objects. Such a remeshing mechanism provides
a highly regular tetrahedron structure for complex solid objects,
which makes the geometry operations and computations more
efficient, and suitable for graphics hardware acceleration. Third,
our method can be used for a solid texture synthesis, which gen-
erates solid texture from the object’s boundary surface texture
mapping.

Our specific contributions in this paper are three-fold.
1) We develop a simple and efficient algorithm that can ro-

bustly and automatically compute the harmonic volumetric
mapping from one volumetric object to another.

2) To the best of our knowledge, this is the first attempt to
bring the method of fundamental solution into the graphics
and solid modeling community. The technique is an effi-
cient meshless boundary method with great potential. Ear-
lier work provides some theoretical analysis from the point
of view of mathematics and mechanical engineering, but it
lacks experimental validation. We conduct experiments on
the problem of computing harmonic volumetric mapping
using this method; and we provide some valuable sugges-
tions for using this method in the modeling field.

3) We demonstrate our harmonic volumetric mapping with
several applications, which not only illustrate our mapping
results, but also show the strong potential of volumetric
mapping as an enable tool for future graphics and modeling
research.

We will briefly review the related literature in Section II.
Then we introduce the theory and algorithm of our method in
Section III, followed by Section IV with some implementation
details and property discussions. Finally, we demonstrate our
experimental results with some applications in Section V and
conclude our work in Section VI.

II. RELATED WORK

Harmonic Maps: Having been extensively studied in the lit-
erature of surface parameterization, harmonic maps are usu-
ally addressed from the point of view of minimizing Dirichlet
Energy. Its discrete version was first proposed by Pinkall and
Polthier [1] and later introduced to computer graphics field in
work of Eck et al. [2]. By discretizing the energy defined in [1],
Desbrun et al. [3] constructed free-boundary harmonic maps.
More harmonic and conformal maps are studied and surveyed
by Floater and Hormann [4]. The harmonic maps between sur-
faces arose from shape blending [5] and are widely used in shape
morphing applications later [6]–[10].

Harmonicity in the volumetric sense is similarly defined
via the vanishing Laplacian, representing the smoothness of
the mapping function. Wang et al. [11] studied the formula of
harmonic energy defined on tetrahedral mesh and computed the
discrete volumetric harmonic maps by a variational procedure.
Ju et al. [12] generalized the mean value coordinates [13] from
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surfaces to volumes and built a smooth volumetric interpola-
tion. Later, Joshi et al. [14] presented Harmonic Coordinates for
volumetric interpolation and deformation purpose, their method
guaranteed to provide nonnegative weights and therefore in
concave regions, it led to a more pleasing interpolation result,
compared to [12]. However, the technique introduced in [14]
lacked the closed form expression for a given interior point,
which increases computational burden and reduces numerical
accuracy. In contrast to [11] and [12], our method is meshless
and has the closed form representation. Therefore, our method
has much better flexibility and efficiency when boundary
condition change (for example, when mapping a sequence of
different data) or mapping resolution change (for example,
when adaptive or hierarchical structure is used) is necessary.

Boundary Method and MFS: We construct the mapping
through a meshless procedure by using a boundary method
called method of fundamental solution (MFS). Notable work
among boundary methods for solving elliptic partial differen-
tial equations (PDEs) includes the classical boundary integral
equation and boundary element method (BIE/BEM), which
has been widely used in many engineering applications [15],
and was introduced into computer graphics for the simulation
of deformable objects in [16]. One of the major advantages of
the BIE/BEM over the traditional finite element method (FEM)
and finite difference method (FDM) is that only boundary
discretization is usually required rather than the entire domain
discretization needed for solving the PDEs numerically. Com-
pared with the BIE/BEM approach, the MFS uses only the
fundamental solution in the construction of the solution of a
problem, without using any integrals over boundary elements.
Furthermore, the MFS is a true meshless method, since only
boundary nodes are necessary for all the computation. “Mesh-
less” has the advantage of simplicity that neither domain nor
mesh connectivity is required in storage and computation; so it
becomes very attractive in scientific computing and modeling
[17], [?]. A comprehensive review of the MFS and kernel func-
tions for solving many elliptic PDE problems was documented
in [19].

III. THEORY AND ALGORITHM

We pursue a volumetric map from a given solid object
to another object , this is equivalent to building up a smooth
one-to-one correspondence between and . The boundary
constraint is a surface mapping from the boundary surface of

, denoted as , to the boundary surface of , .
We focus on objects embedded in . So the mapping
( , and ) can be decomposed into three separate

components for three axes directions, i.e., . In
each direction, maps the point to ’s corresponding com-
ponent . This problem is then reduced to the computation of
three separate , with the given boundary mapping
constraints .

A. An Intuitive Explanation of Our Idea

We first introduce our idea in an intuitive way through the
electrostatics point of view. In each direction, our target is the
harmonic function . The harmonicity, or smoothness, can be
simulated using an electric field. Suppose we have lots of elec-
tronic particles, if we can place them in as we like, and set

arbitrary charge amount on each of them, then we can flexibly
control the electric field we get. An important fact is that the po-
tential of electric fields is guaranteed to be harmonic. Therefore,
once the electric field generated by this particle system simu-
lates the boundary condition, in other words, the potential on
each boundary point satisfies the boundary constraint

, then we can use the potential of this particle system to
simulate the mapping component in the interior region.

Electric fields provide a correct simulation for harmonicity
because its potential satisfies the vanishing Laplacian operator
everywhere, except for the positions of those particles, where
the potential is infinite. Therefore, we call these particles singu-
larity points or source points; and in order to make the potential
valid everywhere in the interior region of , we should place
them outside of .

Since we know the harmonicity is guaranteed, we are only
left to enforce the boundary conditions . We fix positions
of all particles, and the charge amount carried on each particle
provides the freedom we have for enforcing the boundary con-
straints. This fitting process, as we will show in the coming
Section III-B, leads to a linear system. We place many esti-
mation points on the boundary , and compute the charge
amount distribution which can result in the desired potential
given by . By solving a linear system, we obtain the best fit
charge amount distribution, and get the simulation of .

Intuitively, if we have dense enough particles placed outside
of , the smooth boundary condition can always be well ap-
proximated, only with exceptions in some extremely discontin-
uous boundary regions. For more details, we refer readers to
[20].

This section gives an intuitive explanation and pipeline of our
idea. In the coming section, we will rigorously formulate our
algorithm, and address its theoretical foundation.

B. Formulations

We rigorously formulate our volumetric mapping problem as
follows:

Given a one-to-one mapping between boundary surfaces
and : , , our goal is to

compute a mapping such that

,
.

where the operator is defined continuously in 3-D as

and for is equivalent to for
all ,1,2.

Harmonicity and Kernel Function: Since is a linear self-
adjoint differential operator, we can compute its Green Func-
tion. We denote , and denote as the inverse
of the operator , so that where is the identity op-
erator; then we can write the solution as .

Note that ,
where is the Dirac function. If we make a kernel function

that satisfies . We can rewrite
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the solution to following the above equation in terms of the
Kernel function as

Such a kernel function is known as the Green’s function
associated with the 3-D Laplacian operator , and has the for-
mula: , where denotes
the distance between the points and .

Since in the interior region is fully determined by the
boundary values, we discretely solve it using Method of Fun-
damental Solution (MFS) [19] with the above kernel. The linear
nature of Laplacian operator indicates that the boundary-based
method such as MFS is most suitable since the interior har-
monicity is now represented in an exact manner; we only need
to enforce the given boundary condition function , i.e., for
each . The MFS approximation equation to evaluate on an
interior or boundary point is

(1)

In this above equation, is a -dimensional vector
concatenating positions of all 3-D source points.

is the -dimensional vector
representing the charge amount distribution on these source
points. It is firstly unknown and is what we want to solve.

Note that source points , should lie
outside of , in other words, they are located on the boundary

of a region containing (i.e., ). Once
no source points are inside , an arbitrary charge distribution

can guarantee in an exact manner the vanishing Laplacian
operator on in the interior region of , only violating the
boundary conditions.

Boundary Fitting: To enforce the boundary conditions, we
pursue a special set of charge amounts , such that the images of
points on satisfy the boundary map . This boundary fit-
ting process is performed as follows, we sample a set of estima-
tion points on the ’s boundary surface . These points are
called constraint points or collocation points. Unlike the afore-
mentioned source points which are electronic particles and will
be used for estimating electric potentials in interior region of the
solid object, collocation points are different types of points; the
configuration of source points does not affect the configuration
of collocation points and vice versa.

Boundary conditions are represented by enforcing col-
location points to be mapped to the boundary of the target
model . Their images are given with . For example,
for number of collocation points :
in each axis direction, we denote their image vector as

.

According to (1), this vector can be represented by ,
where is called the coefficient matrix, whose element

( is a collocation point while is
a source point). These images should satisfy the boundary
condition, i.e., equal to . Therefore, the above fitting process
reduces to a linear system on each axis direction

We solve three linear systems in three different axis directions
separately. The resultant vectors corresponding to
three different charge distributions, are used to compose our
final harmonic volumetric mapping.

C. Algorithm

With the discussion above, we can formulate our algorithm.
The input are two given solid objects , and their
boundary surface mapping . The output
is a harmonic volumetric mapping s.t. on
boundary and in the interior region:

. is decomposed
to , we solve each separately as follows.

In: , , .

Out: for ,1,2.

1) Place the source points and the collocation points.
(Section IV-A and Section IV-G).

2) Compute the coefficient matrix . Its element takes
the value of the kernel function on the collocation
point and the source point .

3) Decompose the coefficient matrix using singular value
decomposition (SVD). (Section IV-B and Section IV-F).

4) Solve this linear system under the given boundary
mapping constraints using the decomposition result
from Step 3), and get represented by in the form
of (1).

The resultant volumetric mapping is harmonic, guaranteed by
the kernel function. It minimizes the harmonic energy, which
will be discussed in Section IV-C. We assume the boundary sur-
face mapping is given as an input, and in Section IV-D, we
briefly discuss how to obtain this surface mapping with existing
techniques.

IV. IMPLEMENTATION AND DISCUSSION

A. Source Points and Collocation Points Placement

In the first step of our algorithm, we place source points uni-
formly on an offset surface outside the boundary surface

, as shown in Fig. 1(b). The following procedure is a robust
way to create such a sampling.

In:

Out: A uniform sampling on the offset surface .

1) Compute the implicit distance field in with respect to
the given object boundary surface using technique
introduced in [21]. We get a distance evaluation function

that the signed distance from any point
to can be computed efficiently.

2) Build an offset surface using Bloomenthal’s
polygonization method [22]. The Bloomenthal’s
polygonization method takes an implicit distance
evaluation function defined in as the
input. Therefore, to build the offset surface
with distance to , we set such input function

.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on June 30, 2009 at 17:19 from IEEE Xplore.  Restrictions apply.



LI et al.: MESHLESS HARMONIC VOLUMETRIC MAPPING 413

Fig. 1. Volumetric harmonic mapping from the solid Igea model to the solid
sphere model. (a) shows the source and target objects. As shown in (b), source
points are placed on an offset surface. The harmonic energy distribution of the
mapping is color-coded and illustrated on two different cross sections [(c) and
(d)], and the deformation energy distribution is illustrated over a cross section
[(e)]. (For the references to colors in our figures, we refer the reader to the web
version of this paper.)

3) Uniformly sample points on mesh . We use the
uniform sampling technique introduced in [23].

We place collocation points by sampling boundary points
uniformly. The reason that we conduct the source

and collocation points placement in this way will be discussed
in Section IV-G.

B. Solving the Linear System

As discussed in Section III-B, we want to solve the linear
system . Element in the coefficient matrix is the
value of the kernel function on each collocation point, which
is almost never zero, making the matrix quite dense. The ma-
trix may be ill-conditioned [24], in which case, regular linear
system solvers such as Gaussian elimination or LU decompo-
sitions usually fail to produce a stable solution. We use SVD
because it approaches accurate and stable results even when the
coefficient matrix is highly ill-conditioned. Another advantage
of using SVD is that once we have decomposed the matrix, we
can reuse the result for the rapid re-computation of new map-
pings whenever boundary conditions change. This efficiency
also arises from the boundary method, and detailed discussion
about this aspect will be given in Section IV-F. More advantages
of using SVD in MFS are discussed in [24].

C. Energy of Volumetric Mapping

Harmonic Energy: Harmonic Energy measures the smooth-
ness of the mapping. It is measured by the integration of the
square of the gradient over the entire interior region domain .
Both the source and the target models should be normalized to
unit size in volume before computing the harmonic energy. The
total harmonic energy of this mapping is

(2)

We built a volumetric grid structure and compute the gradient
of the mapping on each grid point, then use the following for-
mula to approximate the energy:

(3)

where is the interior volume on grid point ,
and equals to the volume of the intersection of
and the small grid cube centered at . Here,
the edge length of is the distance between two ad-
jacent grids. We can use the volume of to approxi-
mate . With the increase of the grid sampling den-
sity, the value of (3) is asymptotic to (2). We use the simple
volume grid data structure because it is easy to implement and
efficient in tracing function values on neighboring grid points:
the gradient of the harmonic mapping on each grid point can
be represented by three vectors: , so

. In the ex-
ample of Fig. 1, the harmonic energy distribution of the volu-
metric mapping is colorized in (c) and (d) over two different
cross sections. The color-coding scheme in our paper is shown
in the bar in (c): red represents the maximum while blue repre-
sents the minimum.

Deformation Energy: Once a correspondence between two
solid objects is created, deformation around each interior voxel
point can be estimated easily. This provides us a formal mech-
anism to compute the energy required to deform one object to
another. In Section V we will use this energy to measure the dif-
ference between two shapes.

To compute the deformation energy, we start from the clas-
sical strain and stress tensor analysis. Green’s strain tensor is
used to quantify the local strain undergoing a 3-dimensional de-
formation. If an interior point is mapped to , then the 3 3
tensor has its elements represented by

where are indexes in axis directions, is the
Kronecker delta

.

According to differential geometry, this strain tensor is in-
variant under rigid transformation and vanishes under identity
mapping. The stress tensor represents the information of the in-
ternal forces under the deformation. A simplified linear form of
elastic stress with the assumption of isotropy is defined as

where and are two Lamé constants of material, respectively,
representing rigidity and resistance to volume dilation change.
For example, in most of our experiments, we make use of the
parameter of rubber, i.e., , . Finally, the
elastic potential density on this point is measured by
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representing the internal elastic energy under the shape change.
Similar to (3), the total deformation energy of this volumetric
mapping is computed by

(4)

Fig. 1(e) color-codes the deformation energy distribution of
the volumetric mapping from the solid Igea model to the solid
sphere.

D. Boundary Conditions

The boundary condition of our harmonic volumetric mapping
is a surface mapping between and . We assume that it
is provided as an input. Existing surface mapping techniques
[5]–[10], [25] can be used for creating the boundary surface
mapping. On one hand, the efficiency of the surface mapping
is important. Given the boundary map, our following algorithm
is fast and fully automatic; therefore, to make the entire volu-
metric mapping pipeline efficient and automatic, we hope this
surface mapping creation is simple and automatic as well. On
the other hand, surface mapping with relatively low distortion
is preferred. As we know, quality of a harmonic mapping de-
pends on the boundary condition. How to generate a suitable
boundary surface mapping and how the quality of this mapping
affects the volume mapping are worthy of more comprehensive
research studies. Since the detailed discussion goes beyond the
scope of this paper, we will only briefly explain how we get a
relatively good initial surface mapping. We consider mapping
between solid objects with the same topology, that is, the ob-
jects have pairs of corresponding boundary surfaces. Consider
the mapping between each surface pair: 1) If the boundary sur-
faces are closed genus-0 surfaces, the conformal surface map-
ping suffices. This mapping can be computed/combined through
a common sphere domain, similar to techniques in [5]. 2) If the
surfaces are of higher genus, we prefer a globally smooth map-
ping. In this work, we compute their quasi-conformal mapping
as the initial boundary condition using techniques introduced in
[26].

To demonstrate the different volumetric mappings results
from different boundary surface mappings, we perform exper-
iments and show results in Fig. 2. The harmonic volumetric
mappings from the solid Teapot model to the solid Cup model
have different harmonicity under two different boundary surface
mappings [as shown in (a)]. We render the mesh connectivity
for the points on the target boundary surfaces to better visualize
the differences [(c) and (e)]. The second boundary mapping (e)
is smoother than the first one (c); it leads to a volumetric map-
ping (f) with smaller harmonic energy. The harmonic energy
distributions for two volumetric mappings are visualized on the
Teapot model from the same cross section. The color-coding
scheme for (d) and (f) is depicted in (b).

In the future work, we plan to examine the technical issue
of how the surface mapping and the volumetric mapping
are related in a quantitative way, and how one mapping
guides the computation of the other. By adjusting the surface
boundary mapping condition accordingly, we will pursue the
free boundary volumetric mapping with minimum harmonic
energy.

Fig. 2. Different boundary conditions lead to different volumetric mapping re-
sults even for the same target object. Volumetric mappings from the solid Teapot
model to the solid Cup model (a) under two different boundary conditions [(c)
and (e)] have different harmonicity as shown in (d) and (f) (energy distributions
depicted on the Teapot model, respectively). (c) and (e) highlight different sur-
face mappings with magnified views.

E. Comparison With Previous Work

We compare our mapping results with the method introduced
in [11]. In their work, the discretized harmonic energy is defined
on the tetrahedral mesh to guide their variational procedure.
Once we compute our mapping, we can evaluate the mapping
on any interior point using (1). We tetrahedralize our volume
data (in our work we produce the tetrahedralization using [27]),
then compare our results with Wang et al.’s work in [11]. As
shown in Fig. 3, the volumetric mapping from the solid Igea
model (a) to a solid sphere can be visualized by transferring the
tetrahedral mesh of the Igea to the solid sphere. Our resultant
tetrahedral mesh on sphere (b) appears to be smoother than the
mesh produced in [11] (c). This smoothness is visualized from
the distributions of the discretized harmonic energy [11] of vol-
umetric mappings, which are color-coded in (b) and (c) using a
uniform scheme (d).
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Fig. 3. Comparison with previous work. The initial tetrahedralization of the solid Igea model is shown in (a). In (b), the tetrahedral mesh on the solid sphere
is transferred from the Igea model using our volumetric mapping algorithm. The result computed using Wang et al.’s variational technique is shown in (c). The
harmonic energy distributions of two volumetric mappings are color-coded on resultant tetrahedral mesh using a uniform color-coding scheme as shown in (d).

Another important advantage of our algorithm is the mesh-
less property. The discretization accuracy and the computational
cost of [11] depend heavily on the tetrahedralization quality of
the source object: dense tetrahedralization necessarily results in
high computational complexity; and irregular tetrahedralization
leads to large numerical error in approximating discretized har-
monic energy. In contrast, our algorithm is independent of the
connectivity, and thus is more flexible and can be adaptive to
any volumetric data sets with spatial-varying resolution.

F. Computational Efficiency

The computation cost of our algorithm is equivalent to
solving three linear systems. More importantly, since we de-
compose the coefficient matrix from the MFS using SVD
(Section IV-B), only one decomposition is necessary. Further-
more, it is very efficient to recompute the volumetric mapping
under different boundary conditions.

Given a new boundary configuration , the corresponding
for the new volumetric mapping can be computed directly from

. With the decomposition results, ,
where the matrix is a diagonal matrix that can be com-
puted directly from . Therefore, under a new boundary con-
dition, the decomposition matrix results can be reused, only a
multiplication operation between and is required.

This shows one more advantage of the boundary method
over variational methods which apply iterations on the entire
volume whenever the boundary condition is given. Under a
new boundary condition, variational methods can not avoid
a time-consuming recomputation. In our applications shown
later in Section V, we take full advantage of our computational
efficiency to compute a large number of sequential volumetric
mappings in a temporal deformation sequence, by decomposing

only once.

G. Source, Collocation Points, and Mapping Efficiency

One important issue that we have to address is how many
source points we need to use and where to place them. Using
our electric field model, imagine that we want to refine our con-
trol of the electric field behavior, the more particles (i.e., source
points) we have, naturally the more refined result we should be
able to get with increasing computational complexity. On the
other hand, numerically, their positions also matter. If all source
points are placed in one position, there would be no way that we
can achieve more satisfactory results with more source points.

Fig. 4. Placement of Source Points. Source points are sampled either on a
bounding sphere (a) or on an offset surface of the given model (b).

The positions of these source points actually determine the be-
havior of the coefficient matrix , which can be highly ill-con-
ditioned [28]. The condition number of the matrix generally in-
creases as the distance from to increases, though the ac-
curacy of the MFS approximation increases under this situation
[29]. That is to say, distant source points give a smoother ap-
proximation, but unavoidably introduce larger numerical error.
Theoretically optimal results of source positions are unknown at
present; current literatures either suggest placing source points
uniformly on a sphere within three times the diameter of
[29], [30] or on an offset surface of [31]. The real-world
computations in mechanical engineering field usually choose
the source and collocation points in a trial-and-error manner or
with the help of human experiences. Inspired by the above pi-
oneering work, we use experimental results to find a suitable
setting rule for our mapping problem, and guide the source and
collocation points’ placement in order to bridge the gap between
theoretical results and practical common senses.

We conduct experiments in the following three aspects to find
a suitable configuration for our volumetric mapping problem:

1) the shape of the surface (source points are sampled on
an offset surface or a sphere);

2) the distance from to ;
3) the number of the source points and collocation points.
The experimental results are shown in charts plotted in Fig. 5.

In this figure, Chart (a) plots the boundary constraint error when
source points are placed on a sphere [see Fig. 4(a)], while Chart
(b) shows the case when source points are on an offset surface
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Fig. 5. Volumetric mappings under different source/collocation point configurations. (a) shows the boundary constraint error (C-Error) under different R-Ratio
when source points are placed on spheres. (b) and (c) plot the constraint error (b) and harmonic energy (c) respectively under different O-Distance when source
points are placed on offset surfaces. In (d), constraint error under different numbers of source points and collocation points are compared. The x axis is the sRatio.
The y axis shows the constraint error. Different curves show the cases under different cRatio.

[see Fig. 4(b)]. In Chart (a), the x axis is the radius of the sphere,
denoted as R-Ratio, represented by the ratio of the sphere ra-
dius over the object size, and y axis shows the boundary con-
straint error, denoted as C-Error. C-Error is computed using:

for all collocation points . C-Error mea-
sures the total fitting error of our volumetric mapping to the
given boundary constraints. Therefore, we use its value to mea-
sure the quality of our mapping. Chart (b) shows the case that
source points are placed on the offset surface; the x axis is the
distance from to ; its value, denoted as O-Distance,
is the ratio of the distance over the source model size. Their cor-
responding C-Errors are plotted in y axis. Chart (c) shows the
harmonic energy values (y axis) under the different offset sur-
face settings (x axis).

Our statistical data demonstrates the following. 1) The closer
to the model boundary source points are placed, the smaller the
boundary constraint error can be achieved. 2) Placing source
points on the sphere is not as good as on an offset surface. Be-

cause we require the object is totally inside the interior of the
sphere, the radius of the sphere needs to be large enough and the
average distance will be much larger compared with the offset
surface placement. 3) If source points are placed on an offset sur-
face that is too close to the model, the approximation for the fun-
damental solution is becoming unstable, which is shown from
the values of their harmonic energies [Chart (c)]. Therefore,
in our experiments and applications, we usually place source
points on an offset surface with 0.1 O-Distance.

Chart (d) further shows how the numbers of source points and
constraint points affect the boundary constraint errors. We de-
fine two ratios cRatio and sRatio, respectively. The cRatio is
defined as the number of collocation points over the number of
boundary points. The sRatio is defined as the number of source
points over the number of boundary points. The x axis is the
sRatio, and the y axis shows the boundary constraint error. Dif-
ferent curves show the cases using different cRatio. We can
clearly see from this chart: the larger these ratios are, the smaller
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Fig. 6. Volumetric mappings to the canonical sphere. The Pierrot model (a) is mapped to the solid sphere (b); (c) shows the color-coded distance field in the
sphere. (d) visualizes the volumetric mapping: each point � in the original model of (a) is mapped to a point � inside the solid sphere; the target position �’s color
(as shown in (c)) is transferred and depicted on the corresponding � position (as shown in (d)). Similar examples of mapping from genus-0 Buddha model (e)
and the Max-Planck model (g) to the sphere (b) are visualized in (f) and (h) by this same color-coded distance field transfer method. The tetrahedral mesh on the
Max-Planck model (i) is mapped onto the solid sphere (j). Their corresponding cross sections are visualized.

Fig. 7. Harmonic volumetric mapping from a solid polycube model (a) to the
solid Buddha model (e). (f), (g) and (h) show the color-coded distance field of
the Buddha, from three cross sections, respectively. This color-coded distance
field is transferred from the Buddha to the PolyCube model as shown in (b), (c)
and (d) correspondingly.

boundary constraint error will be achieved. On the other hand,
fewer source points create an over-constraint system which will
be solved in a much shorter time. In our experiments, we usually
set cRatio larger than 0.8 but sRatio around 0.6 for an efficient
but well-fitted results for large models.

Unlike fixing the source/collocation points as discussed
above, the positions of source points and collocation points can

Fig. 8. Harmonic volumetric mapping from the solid Sculpture model (a) to
a solid polycube model (b). (c) color-codes the distance field of the polycube.
In (d), the transferred color-coded distance field is visualized on the Sculpture
model.

also be considered as unknowns in an optimization procedure,
in which case they have to be computed along with the unknown
weights during the optimization procedure. This necessarily
complicates the entire solver and makes the computation pro-
cedure highly nonlinear.

Near a boundary region whose target shape is seriously wrin-
kled, the harmonic mapping may map interior points to the out-
side of the target object if the source/collocation points nearby
are not dense enough. Such situation can be effectively remedied
by increasing the density of source/collocation points around
this region adaptively.

V. EXPERIMENTAL RESULTS AND APPLICATIONS

We first show some experimental results of harmonic volu-
metric mappings in Figs. 6–8. In Fig. 6, a solid Pierrot model
(a) is mapped to a solid sphere (b). The mapping result can be
visualized using (c) and (d). In (c), the distance field of the inte-
rior region of the solid sphere is color-coded using the scheme
shown in Fig. 1(c). Here in Fig. 6(d), each volume point
in solid Pierrot model (a) is mapped to an interior point in

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on June 30, 2009 at 17:19 from IEEE Xplore.  Restrictions apply.



418 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 6, NO. 3, JULY 2009

Fig. 9. Volumetric harmonic mapping for information reuse. The material on the solid Moai model is preserved when it deforms during the animation [(a)–(e)].
(f)–(j) show this consistency (via one corresponding cross section) on the original tetrahedral mesh and the mapped meshes during its morphing procedure.

Fig. 10. Energy analysis of deformation sequences. The horse model is deformed in a sequence. The deformation energies are calculated (red circles). The distri-
bution of the deformation energy required for each model in the sequence can be illustrated on the reference model.

solid sphere model (b). We transfer the color of to the po-
sition of . This color-coded distance field on source model
transferred from the target model provides an intuitive way to
visualize the volumetric mapping result. We call this visual-
ization method Color-Coded Distance Field Transfer. Another

mapping example from the solid Buddha model (e) to the solid
sphere (b) is computed and visualized in the same way as shown
in (f). One more example, mapping from the solid Max-Planck
model (g) to the solid sphere is visualized similarly in (h). We
also use another method, tetrahedral mesh, to visualize volu-
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Fig. 11. Harmonic Volumetric Mapping for Tetrahedral Remeshing. (a), (b)
and (c) show the tetrahedral mesh of the polycube model in Fig. 7(a) from three
cross sections. It is utilized to remesh the solid Buddha model [Fig. 7(e)]; and
the results are visualized with corresponding cross sections in (d), (e), and (f).

metric maps. In (i), a tetrahedralization of the solid Max-Planck
model (g) is illustrated in one cross section. Under the volu-
metric mapping, each vertex of the tetrahedral mesh is mapped
to a new position inside the solid sphere. Its corresponding tetra-
hedral mesh cross section is shown in (j).

In Fig. 7, we visualize the volumetric mapping from a solid
polycube model (a) to a solid Buddha model (e). We color-code
the distance field of the interior region of Buddha and show
it from three cross sections in (b), (c) and (d); (f), (g) and (h)
correspondingly show the Transferred Color-Coded Distance
Field. Fig. 8 shows another high genus volumetric mapping
example from a Sculpture model (a) to the polycube model
(b). (c) color-codes the distance field of the polycube while (d)
shows the Transferred Color-Coded Distance Field.

A. Information Transfer

Once the correspondence between two volume models has
been established, we can easily transfer information from one
object to the other. The previous Color-Coded Distance Field
Transfer method already demonstrates this. The information

Fig. 12. Solid texture synthesis. In the first column, the solid Igea model and a
corresponding 2-D image texture are shown in (a). The surface texture is firstly
mapped to the Igea as illustrated in (c). We synthesize the interior solid texture
and illustrate a cross section view in (e). Similarly, in the second column, the
solid Pensatore model and its 2-D texture are shown in (b), the surface texture
mapping and the synthesized solid textures are visualized in (d) and (f).

being transferred can be all kinds of volumetric functions,
no just limited to color; it can be material, solid texture,
density, and even more complicated ones such as gradient or
strain/stress tensors. Therefore, it has potential applications
in a larger scope. Fig. 9 shows another example. When the
Moai model deforms, the material information on the original
model is transferred and preserved by the deformed model
during the deformation. In the second row, we also show the
corresponding tetrahedral mesh from the same corresponding
cross section to visualize this transfer. We believe harmonic
volumetric mapping will serve for automatic interior region
registration on real temporal or deforming data in the future.

B. Shape Matching and Analysis

A direct application of mapping is registration. Based on a
good registration, we can easily measure the difference between
two objects in a quantitative way and perform both qualitative
and quantitative analysis. We use an example to demonstrate
the usage of volumetric mappings on shape matching and anal-
ysis. In this experiment, we analyze a horse-gallop deformation
sequence. We use the vertex correspondence provided in the
deformation sequence as the boundary surface mapping. Then
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we compute the volumetric harmonic mappings from the refer-
enced, static-standing horse model to all the deformed poses in
a sequence. With the mapping, we can compute their deforma-
tion energies. This energy naturally measures the distance from
the deformed shape to the reference model. Since we have map-
pings between objects, we can get not only a numerical distance
value, but also the precise error distribution between two shapes.
This distribution can be clearly visualized under this deforma-
tion, where stretching and bending concentrate over the shape.
Note that, as we discussed in Section IV-F, this procedure, with
the computation of a large number of volumetric mappings, is
performed efficiently by reusing one decomposition result.

The deformation energies of the horse gallop sequence are
shown in Fig. 10. We can easily see from the energy chart that
there are four running cycles in the data-set of the deforma-
tion sequence. And with the deformation energy, we naturally
measure how different each model is from the reference model.
The distributions of the deformation energy required from the
reference model to the deformed model are color-coded and il-
lustrated. Given a sampled model in the deformation sequence,
which regions have high deformation energy concentration can
be clearly visualized from the color-coded distribution of the
deformation energy, as we depicted on the original model with
cross sections. Without this correspondence, this kind of visu-
alization and analysis is impossible.

C. Tetrahedral Remeshing

Regular tetrahedral mesh structure is highly desirable for
finite element analysis and physically based deformations or
simulations. This is because regular tetrahedralization pro-
vides great precision and efficiency for geometry processing
and physically based computation [32]. With our volumetric
mapping, we can easily transfer the tetrahedralization of an
object to another object. We call this tetrahedral remeshing.
As shown in Fig. 11, we use the regular tetrahedral mesh of a
solid polycube model [Fig. 7(a)] to remesh the solid Buddha
model [Fig. 7(e))]. (a), (b) and (c) show the tetrahedral mesh
on the polycube from three cross sections; (d), (e) and (f)
show the remeshed solid Buddha model. Tetrahedralization for
regular shapes like polycubes can be easily created as shown in
this example. So using our mapping, we can generate regular
tetrahedral structure for complicated objects.

D. Volume Texture Synthesis

We can also synthesize volumetric texture using our method.
As shown in Fig. 12, given a 2-D texture image, we get the sur-
face texture mapping, then the texture applied on the surface
can be smoothly propagated to the interior regions of solid ob-
jects. To synthesize the interior texture, we only need to make
a change on the boundary condition; instead of using the target
boundary points positions, we use the texture coordinates.
Fig. 12(a) shows an solid Igea model; and we map a 2-D image
texture onto its surface as shown in (c). This texture is smoothly
extrapolated into the interior region using our method. (e) illus-
trates the synthesized solid texture. (b), (d) and (f) show another
example on the Pensatore model. From the given 2-D image, we
can synthesize the volumetric texture to decorate the solid inte-
rior for graphics applications.

VI. CONCLUSION

Based on the method of fundamental solution (MFS), we de-
sign a simple, robust, and fully automatic meshless algorithm to
compute harmonic volumetric maps. To the best of our knowl-
edge, it is the first attempt to bring this method into graphics
and geometric modeling community. We conduct experiments
to evaluate the performance of the method of fundamental solu-
tion on the harmonic volumetric mapping problem in this paper;
accordingly, we suggest the practical rules and develop the ef-
fective algorithm on the MFS settings. Then we demonstrate
our mapping results in several applications, such as information
transfer, deforming shape comparison and analysis, tetrahedral
remeshing, and solid texture synthesis, all of which in turn show
the strong potential of harmonic volumetric mapping.

Building correspondence between solid models and canon-
ical/regular objects provides a natural mechanism to facilitate
scientific computations and graphical simulations. If we exploit
the regular structure of mapped volumetric domains (such as
polycubes) and utilize graphics hardware acceleration, physi-
cally based simulations (such as simulating volumetric solid de-
formations or fluids in deformable bodies) can be efficiently per-
formed.

As discussed in Section IV-D, our current harmonic volu-
metric map depends on the boundary surface mapping. In Fig. 2,
we show that the volumetric mapping and its boundary surface
mapping are closely related to each other. The harmonic energy
of the volumetric map keeps decreasing with boundary surface
mapping getting more smooth. In the future work, we plan to
use the harmonic volumetric mapping to guide the variational
process of surface mapping towards the global energy optimiza-
tion (both for boundaries and solid interiors). Another possible
extension is not to fix the positions of source points and collo-
cation points. We can treat them as unknown variables in the
MFS procedure. Although this results in a nonlinear optimiza-
tion process, it may also lead to a free-boundary volumetric
mapping procedure for better mapping results.
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