Point-Based Manifold Harmonics

Yang Liu, Balakrishnan Prabhakaran, Xiaohu Guo

Abstract—This paper proposes an algorithm to build a set of orthogonal Point-Based Manifold Harmonic Bases (PB-MHB) for
spectral analysis over point-sampled manifold surfaces. To ensure that PB-MHB are orthogonal to each other, it is necessary
to have symmetrizable discrete Laplace-Beltrami Operator (LBO) over the surfaces. Existing converging discrete LBO for point
clouds, as proposed by Belkin et al [1], is not guaranteed to be symmetrizable. We build a new point-wisely discrete LBO over
the point-sampled surface that is guaranteed to be symmetrizable, and prove its convergence. By solving the eigen problem
related to the new operator, we define a set of orthogonal bases over the point cloud. Experiments show that the new operator
is converging better than other symmetrizable discrete Laplacian operators (such as graph Laplacian) defined on point-sampled
surfaces, and can provide orthogonal bases for further spectral geometric analysis and processing tasks.

Index Terms—Point-Sampled Surface, Laplace-Beltrami Operator, Eigen Function

1 INTRODUCTION

1.1 Background

In computer image processing, spectral methods like
Discrete Cosine Transform and Discrete Fourier Trans-
form are widely used for analyzing signals. But these
techniques do not work on geometric processing. One
difficulty of applying spectral techniques on geomet-
ric processing is defining a set of suitable bases. The
eigen-functions of Laplace-Beltrami Operator could
serve this purpose.

Laplace operator A is a simple second-order differ-
ential operator (the divergence of gradient) defined in
Euclidean space R™. Similarly, we can define Laplace-
Beltrami Operator (LBO) in the compact boundary-
less n-dimensional orientable Riemannian manifold
M as the divergence of gradient:

Apf =divgrad f. (1.1)
The eigen problem of LBO can be defined as:
AmH = —)\H, (1.2)

where A and H are the eigen-value and correspond-
ing eigen-function (eigen-vector in discrete form).
Here the minus sign “-” is used to ensure that all
A > 0. Note that some researchers [2] define Ay =
—divgrad, in which case the minus sign in equation
(1.2) can be removed. From now on we will denote the
i-th eigen-value and the corresponding eigen-function
(eigen-vector) as \; and H'.

LBO is a symmetric operator in compact boundary-
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less orientable manifold [3]:

< Apmg> = / TN (13)
M
=—/ <Vf,Vg> (1.4)
M
=<Amf,g>. (1.5)

Here f and g are functions defined over the manifold
surface, V denotes the gradient operator. With this
property, we know that eigen-functions with different
eigen-values are orthogonal to each other:

<H' ApmH? >=)\; < H'H’ > (1.6)
=<AMH,H >=)\<H' ,H > (17

if A; # A; then (1.8)
< H',HI >=0. (1.9)

Note that constant functions with A = 0 is a solution
for any Laplacian operator. We denote Ay = 0 with
corresponding eigen-function H° = constant. Other
eigen-values are sorted according to their magnitudes:
0=X <A < A <eee

With the development of 3D scanning technology,
it is much easier to generate 3D models from real
objects today. For most of these surfaces we only have
discrete representations such as polygonal meshes or
point clouds. Thus we need to define the discrete form
of LBO over the discrete representation of surfaces
to perform the geometric analysis. By solving the
above eigen problem, we can get a set of eigen-
values {)\;} and corresponding eigen-vectors {H'}
defined over the discrete manifold surfaces [4]. Reuter
et al [4] proposed to extract data of the manifold
such as volume, boundary length and genus number
using the eigen-values of LBO. The eigen-vectors are
called the Manifold Harmonic Bases (MHB). They
are intrinsic properties of the surface [4], [1] and
have been used for spectral analysis over triangle
mesh surfaces [5], salient feature extraction [6], and



many other applications [7]. These techniques further
motivated some researches on image processing by
reinterpreting an image as a Riemannian manifold [8].

1.2 Motivation and Contribution

As a discrete representation of surfaces, the point
cloud is less explored, comparing with polygonal
meshes. The 3D scanning devices can produce point
clouds sampled from object surfaces easily. Compar-
ing with mesh, point clouds do not provide any
information about the connectivity. This makes point
clouds more difficult to process than meshes. Because
the Laplacian operator employed in Manifold Har-
monics proposed by Vallet et al [5] requires the mesh
connectivity information, it can not be applied to
point clouds directly. This paper extends the Manifold
Harmonics framework to the geometry processing of
point clouds.

Belkin et al [1] proposed a novel method to com-
pute the discrete LBO on manifolds represented by
point clouds. They also proved that this discrete LBO
denoted as L%, is converging as points get denser.
Here convergence of L, means that L%.f is converging
to Apf point-wisely where f is the discrete form
of function f. This property is called consistency in
works related to finite element methods [9]. However,
their discrete LBO is not guaranteed to be symmetriz-
able matrix. A matrix A is called symmetrizable [10] if
it could be expressed as product of two symmetric
matrices one of which is positive-definite. It is also
called self-adjoint matrix with respect to a given inner
product. It is obvious that any symmetric matrix
is also symmetrizable. Because LBO is symmetric,
discrete LBO is expected to be symmetrizable matrix.
It is important for discrete LBO to be symmetriz-
able in Manifold Harmonics because symmetrizable
matrix operator is guaranteed to provide orthogonal
bases. For discrete LBO matrix L, if it can be de-
composed as L = B~'Q where Q is symmetric and
B is symmetric positive-definite, it is a widely-used
technique to compute the generalized eigen problem
Qzr = —ABxz instead of the standard eigen problem
Lx = —Ax [4]. With a modified definition of inner
product < z,y >= 27 By, it is possible to ensure
orthogonality of the eigen-vectors. But this technique
is not applicable to L%, which is explained in sec-
tion 3.5. Using (Lt + (L%)")/2 instead of L is a
trivial extension to make it symmetrizable. Lévy [11]
used this technique with cotangent weighted graph
Laplacian. But our experiments in section 5 show
that this trivial extension does not converge. Any
technique to make L symmetrizable that modifies L,
itself will invalidate the convergence proof. Because
we want our method to be geometry-aware, this is
not acceptable either.

To ensure that the bases {H'} are orthogonal to
each other, we propose a new method to construct

the symmetrizable discrete LBO L, over point clouds
sampled from manifold surfaces. We also prove that
this new operator is converging when point clouds get
denser and satisfy certain sampling conditions. Based
on the symmetrizable property of this new operator,
we can construct a set of point-wisely converging
manifold harmonic bases, to be used for general
spectral analysis over the point-sampled surfaces. We
summarize the contributions of this paper as follows:

1) We propose a provable construction algorithm
for the symmetrizable and converging discrete
Laplace-Beltrami operator over point-sampled
manifold surfaces based on computing the in-
tegration over the manifolds numerically. The
symmetrizable property of the discrete LBO,
resulted from our local Voronoi computation,
guarantees the orthogonality of the computed
Point-Based Manifold Harmonic Bases (PB-
MHB). The construction process based on the
heat diffusion kernel guarantees the conver-
gence of the discretized LBO (Theorem 4.2), and
leads to more accurate manifold harmonic bases.

2) Our algorithm can be directly applied to the
point clouds using a local Voronoi computation
procedure in the tangential space, based on our
theoretical proof that the estimated Voronoi cell
area on the tangential space is converging to its
counterpart on the manifold (Theorem 4.1), as
long as the point clouds satisfy certain sampling
condition (addressed in section 3.2). So we do
not need a global mesh for the manifold surface
to compute the orthogonal bases.

3) The experimental results shown in section 5
are very encouraging. The convergence of our
new LBO is better than other point-based sym-
metrizable discrete Laplace operators, such as
the graph Laplacian, Kirchhoff Laplacian, or the
trivial extension of Belkin et al’s discrete operator
(L% +(L%)T) /2. The computed orthogonal bases
are fully geometry-aware, and are performing
better than those operators for general geometric
processing tasks such as spectral filtering and
feature extraction.

2 RELATED WORK

Researchers have been looking for spectral geometric
processing methods [7], [12], for surface smoothing
[13], segmentation [14], compression [15], watermark-
ing [16], [17], quadrangulation [18], [19], conformal
parameterization [20], matching and retrieval [4], [6],
etc. Manifold Harmonics, as proposed by Vallet et
al [5], is defined as the eigen-functions of LBO, based
on the Discrete Exterior Calculus (DEC) computa-
tional framework.

Discretizing Laplacian operator on mesh surfaces
is an active research area. Most of the proposed
discretization methods [13], [21], [22], [23] applied



finite element methods (FEM) with different assump-
tions. They have similar forms of cotangent scheme
[24] despite those different assumptions. Xu [23] gave
a theoretical analysis of the available discrete LBOs
defined on meshes about their convergence property.
It shows that the cotangent scheme does not converge
to the continuous counterpart in general, except for
the versions in Desbrun et al [21] and Meyer et al [22]
applied to some special classes of meshes, such as
certain meshes with valence 6. Hildebrandt ef al [25]
analyzed the convergence of LBO and showed that the
cotangent scheme has weak convergence for the solu-
tion of the Dirichlet’s problem, assuming the aspect
ratios of the triangles are bounded. A recent work by
Wardetzky et al [26] showed that a “perfect” discrete
LBO based on mesh connectivity satisfying all the
properties of the continuous one cannot exist on gen-
eral meshes under certain restrictions such as piece-
wise linear functions. Reuter et al [27] showed that
their discrete LBO based on cubic FEM works very
well with respect to the continuous case, and demon-
strated the applications in shape understanding. Pei-
necke et al [8] first proposed to use the spectrum of
eigen-values as fingerprint for image recognition.

It is known that LBO and the heat equation on
manifolds are closely related [2]. Belkin et al [28]
extended this by proving that it is possible to approxi-
mate LBO on the estimated tangent planes of surfaces
with the Gaussian kernel. They [29] proposed the first
algorithm for approximating LBO of a surface from a
mesh with point-wise convergence guarantees. Dey et
al [30] proved the convergence of its eigen-values. This
method was extended later [1] to discretize LBO on
manifold surfaces represented as point clouds. Their
matrix form LBO [1], denoted as L;,, has been proved
to converge point-wisely as point clouds get denser.
However, their discrete LBO on the point cloud is
not guaranteed to be symmetrizable. So it cannot be
used for computing the orthogonal bases on surfaces.
LBO is naturally related to diffusion [31], which is also
used in dimensional reduction and other applications.

Due to the lack of connectivity information, com-
puting LBO on the point cloud is traditionally carried
out in the local neighborhood of each point, by the
combinatorial graph Laplacian [32], [16], which is
hard to be geometry-aware. Since LBO is a differential
operator, computing LBO on the point cloud is closely
related to the integral computation on point clouds.
Luo et al [33] worked on integral estimation over
manifolds represented by point clouds. They em-
ployed the Voronoi diagrams based on the geodesic
distance while our paper uses the Euclidean distance.
We choose Euclidean Voronoi diagrams because it
provides (1) the convergence rate of O(¢?) rather than
O(e) of geodesic Voronoi diagrams, with the specific
sampling condition ¢ defined in definition 3.1; and
(2) bounding properties on both Voronoi cells and
Voronoi neighbors that ease the proof of the final

convergence property of our discrete LBO in Theorem
4.2. We estimate the area of the Euclidean Voronoi
cell on the local tangent plane, and prove its con-
vergence in Theorem 4.1. The proofs of the theorems
are provided in the supplementary appendices. The
convergence proof of the discrete LBO is dependent
on some geometric properties of point clouds, e.g.
sampling conditions, local feature size, etc., studied
in the literature of surface reconstruction and compu-
tational geometry [34], [35].

3 CONSTRUCTION OF PB-MHB
3.1 Overview

To construct PB-MHB, discrete LBO is necessary. In-
stead of discretizing LBO directly like finite element
method, we discretize the integration of certain con-
tinuous functions defined over manifold which is
proved to approximate Ay (Lemma 5 in [28], Lemma
2.5 in Supplemental Appendices):

. 1 _lp—y)?
Amf (@) :tlgr(l) 472 (/Me i

/ 5 Fy)duy).
M

In section 3.2 several necessary definitions are in-
troduced. In section 3.3 for each vertex p in the point
cloud P, we discretize the integration mentioned
above to approximate Ay f(p) where f is a function
defined over M. In section 3.4 by representing this
discretization in the form of matrix, we get our dis-
crete LBO Al

In section 3.5 we compare our discrete LBO and
Belkin’s work to show why Belkin’s work is not
suitable for this case. In section 3.6 we show that the
eigen-vectors of our discrete LBO, i.e. PB-MHB, are
orthogonal to each other with respect to certain inner
product, so PB-MHB can be used for spectral analysis.

f(p)dpy,—

3.2 Definitions

To construct the discrete LBO, the point clouds need to
satisfy some sampling conditions defined as follows:

Definition 3.1 (Sampling Condition): Let ¢ > 0. A
finite sample P C M is called an e-sample if

Vee M,Ipe P: |z —p| <e. 3.1)

And the e-sample P is called an (g, {)-sample or tight
e-sample if it satisfies the additional condition:

Vp,g€ P:p—ql >¢,

where ¢ > ¢ > 0.

It is obvious that any (¢, {)-sample is also an e-sample.
In this paper, we assumed that the given point

cloud P is an (g,se)-sample of the manifold M.

0 < s < 1is a fixed positive number for the given

point cloud P. That is, any two points in P can not be

extremely close. This property is used to ensure that

(3.2)



the estimation of the Voronoi cells described in section
3.3 is converging, which is Theorem 4.1. We will
employ Voronoi cells on manifolds in the construction
process of discrete LBO. The Voronoi cell of a point p
on manifold is the intersection of M and the Voronoi
cell of p in Euclidean space R3. We define the Voronoi
cells on manifolds as follows:

Definition 3.2 (Voronoi Cell): For the point set P
sampled on the manifold M, the Voronoi cell of a
point p € P on M is defined as the subset of M:

Vrm(p) ={qlg e MY € P,p' #p,lla—p| < lla =72},

where ||g — p|| stands for the Euclidean distance be-
tween points p and g.

We also need to use the Local Feature Size to char-
acterize how much the manifold M bends locally at a
given point. The larger the feature size, the flatter the
surface is. Local Feature Size is used by the theorems
in section 4. Its definition is related to the Medial Axis
of M:

Definition 3.3 (Medial Axis): A ball B is called a
medial ball of M, if B does not contain any point
of M in its interior but at least two points of M on
its boundary. The medial axis of M is the closure of
the set of all midpoints of the medial balls.

Please note that the definition of medial axis in this
work is similar to that in Amenta ef al’s work [36]
and Belkin et al’s work [1], but different from that in
Plum’s work [37] and Wolter’s work [38].

Definition 3.4 (Local Feature Size): The local feature
size is the function p : M — R that assigns to 2 € M
its distance to the medial axis.

In this paper the local feature size p(p) of a specific
point p is referred as p to simplify the notation.

3.3 Computing the Approximation of A f(p)

To build a discrete LBO approximating the LBO Ay
on the point-sampled surfaces, it is necessary to ap-
proximate Aqf(p) one by one for all points p € P.

Following is the algorithm to approximate Aaf(p):
1) Tangent Plane Estimation: Set » = 10e [1], where
the point cloud P is e-sampled. Here 10¢ is
used to ensure that the estimated tangent plane
is converging to the real tangent plane, which
is proved in Belkin et al’s paper [1]. Consider
the point set P, C P within distance r away
from p, i.e., P. = P N B(p,r) where B(p,r) is
the ball centered at p with radius r. Let Q* be
the best fitting plane passing through p such
that d(P,,Q*) is minimized. Using Har-Peled
and Varadarajan’s algorithm [39] (also used by
Belkin et al [1]) we construct a 2-approximation
T, of Q*, T, is a plane passing through p,
and dH(P,,.,Tp) g 2dy (P, Q*), where dg(-,-) is

the Hausdorff distance.

2) Voronoi Cell Estimation: Fix a positive constant
d > 10¢, and consider the set of points Ps that

are within § away from p, i.e., Ps = P N B(p,9).
Here § > 10e is to ensure we have enough
local neighboring points for approximation. We
project the points in Ps to T,. When § is suf-
ficiently small, this projection is bijective. We
denote the projection as II. Then we build the
Voronoi Diagram of TI(P;) on T Take the area
of the Voronoi cell Vs (p) on Tp as an approx-
imation of the Voronoi cell area of p on surface,
Vra(p). Vry (p) is also denoted as Vr4(p) in
this paper to simplify the notation. When the
point cloud P gets denser, the area of Vr;(p) is
converging to the area of Vra(p) (Theorem 4.1).

3) Integration Approximation: We compute
AL f(p) as an approximation to A f(p) as
follows:

AL f(p) =
S (e (f(g) — 1)) vol(Vra(a))).
(3.3)

Here vol(-) denotes the area of the given Voronoi
cell. Vr;(q) is the Voronoi cell of point ¢ in its
own estimated tangent plane 7). Because the
new operator is defined on the point cloud P
and employs the parameter ¢, here we denote it
as AL. The hat sign " is used to differentiate it
with respect to Belkin et al’s Al as explained
in section 3.5. t(e) = £7+¢, and & > 0is an
arbitrary selected positive fixed number, used
to ensure the convergence of AL. We are em-
ploying the Gaussian kernel to approximate the
heat function locally on the manifold M, and ¢
is the “time” of the heat diffusion process. As
the points get denser, A%, will converge to A
(Theorem 4.2). In the followmg section 3.4, we
assemble A%, into its matrix form L.

3.4 Discretization of the LBO

For LBO, since < f, Apmg >=< Aamf,g > holds, Ay
is symmetric. In the discrete case, inner product is
defined as < f,g >= fT Bg where B is a symmetric
positive-definite real matrix. Correspondingly we ex-
pect < f,Lg >=< Lf,g >= fBLg = fLT Bg holds,
where L is any discrete LBO in its matrix form. That
is, BL = LTB = (BL)" is expected to be symmetric
matrix. Denote BL = LB = ), we have L = B~1Q)
which means that the discrete LBO matrix L should
be symmetrizable (self-adjoint with respect to inner
product).

Belkin et al claimed that their discrete LBO matrix
L% [1] is converging point-wisely. However, their
L is not guaranteed to be symmetrizable. In our
application, to build the orthogonal Manifold Har-
monic Bases, it is necessary to have a symmetrizable
discrete Laplacian operator. A trivial way is to use
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Fig. 1. From left to right: the point-sampled Chinese Lion, H' to H* bases, and two filtering results.

(L% + (L%)T) /2 instead of LL,. However, our experi-
ments in section 5 show that this trivial extension does
not converge at all.

In our method, we build the discrete LBO A%, from
the equation (3.3) which is linear on the function
values f(p;), for p;, € P. Thus it can be written
as ALf(p;) = RTf, where R; is an N-vector, f =
[f(p1), F(p2), ..., f(pn)]" is the N-vector representing
the input continuous function f sampled at the points,
and N = |P|. Thus we have the matrix form L% of our
discrete LBO A%, over the point cloud:

Abf =1L f, (34)

where RT is the i-th row of matrix L. We can
rewrite the matrix form as [A/f,, = B~!.(Q, where
the elements ¢;; of the symmetric matrix @), and the
diagonal elements b;; of the diagonal matrix B can be
computed as follows:

1 _leimpyl?
qij = vol(Vrs(pi)) Vol(VrTA(pj))We 7w, (3.5)
where i # ja ||pl _pJH S 6)
and t(e) = eTE, £ 0,
Gi =— Y dij» (3.6)
J#i

By redefining the functional inner product in matrix
form as < f,g >= f7 Bg, we have:

<f,ILbg > =f"B(B~'Qg)
=f"Qg
_ fTQT(BB—1>Tg
= (B'Qf)"Bg
=< Lbf, g >,

which means we have the symmetrizable matrix op-
erator L, now.

3.5 Comparison with Belkin’s discrete LBO L’

In Belkin et al’s method [1], the tangent plane Tp for
a specific point p is constructed with the identical

(b)

Fig. 2. (a) Belkin et al’s approach: integration with
area of triangles on the estimated tangent plane in
L%,; (b) our approach: integration over the manifold
with Voronoi cell computation on the estimated tangent
plane in L.

algorithm. Then A, f(p) is approximated as follows.

Fix a constant §. Consider the set of points Ps that
are within ¢ away from p, i.e., Ps = PN B(p, ). Build
the Delaunay triangulation K5 of TI(Ps) on T). Let

K ; be the sub-mesh of K; containing triangles whose

vertices are within g

computed as:

1 vol(o)
Apf()=1—5 D 03

ceKs
2

3 (R (b)) - F@), (38)

g€V (o)

away from p. Then L% f(p) is

where o is a triangle in K, V(o) is the set of vertices

of ¢ and ® = II'. Then L% is constructed from Al
using the similar way as introduced in section 3.4.
As mentioned earlier, to get orthogonal basis the
symmetrizable discrete LBO L needs to be decom-
posed as L = B7'Q where B is real, symmetric
and positive-definite and () is symmetric and real.
Here B has to be symmetric and positive-definite
because it is used to define inner product. Suppose
L%, is symmetrizable and could also be decomposed
as L%, = B71Q. It is easy to see that all eigen-values of
L%, should be real. But L, does not provide real eigen-
values all the time in our experiment while L% does.



So we believe it is impossible to decompose L% as
L%, = B~!Q. In other words, L%, is not symmetrizable.
As shown in Fig. 2, it is obvious that the difference
w.r.t. our Al and L is: in L%, the weight for point ¢
depends on each specific point p, while in our L%
each point is assigned a fixed weight based on its
Voronoi cell area. That is in L%, the action from a
certain point p to another point ¢ is not necessarily
equal to the opposite reaction from ¢ to p. In other
words, the interactions between points are not nec-
essarily “symmetric”. But in our L%, the interactions
are always symmetric just like in LBO. We believe
this is why L%, is not guaranteed to be symmetrizable
while L% is. So L% can not be used for computing
orthogonal Manifold Harmonics while our L} can.

3.6 Point-Based Manifold Harmonic Transform

Having the symmetrizable LBO matrix operator L%, =
B~1.Q, we can solve the following generalized eigen
problem:

QH = —\BH. (3.9)

By solving this problem, we have eigen-values {\;}
and corresponding eigen-vectors {H'‘}. {H'} are
called the Point-Based Manifold Harmonic Bases (PB-
MHB) of the sampled manifold surface. PB-MHB can
be used for the general spectral processing of 3D
models.

Without any loss of generality, we assume that
all the eigen-vectors are normalized < H', H' >=
(HYTBH® = 1, and A\; < \; holds for all i < j. Be-
cause < H', HY >= (H)TBH' = §;; holds where §;;
is Kronecker delta, the eigen-vectors { H'} can be used
in Fourier-like spectral decomposition for functions
defined over point-sampled manifold surfaces:

fi =<f,H >=fTBH", (3.10)
where f is the vector of function values sampled on
the point cloud. This process is called Point-Based
Manifold Harmonic Transform (PB-MHT). With { f;}, we
can reconstruct f using the Inverse PB-MHT:

f=> fi-H
We can consider the coordinates of the points as
three continuous functions defined over the manifold
surface: x, y and z. By employing PB-MHT presented
above, we can decompose the manifold surface into
its spectral representation (Z;, §;, Z;) and recover them
using the Inverse PB-MHT. In section 5 we show the
results of applying some spectral filters on general
point-sampled surfaces, by modifying their spectral
representations {(%;,¥;,2;)}. Figure 1 shows the re-
sults of applying two spectral filters on the point-
sampled Chinese Lion model. This can be used to
remove noises from scanned surfaces or to enhance
detailed features.

(3.11)

4 CONVERGENCE THEOREMS

In Belkin et al’s work [1], the convergence of discrete
LBO L means Lf is converging to A, f point-wisely
where f is the discrete form of function f. In works
related to finite element method, this property is
called consistency of operator [9] while convergence
of operator has different definition [25]. In this work
we take the definition in Belkin et al’s work.

In our construction of PB-MHB, the assumption is
we have a continuous closed differentiable Rieman-
nian manifold M on which the sample set P lies. f
is a C? continuous function defined over M. To show
that this method is geometry-aware, we are going to
prove that the result of our discrete LBO applied on
the function L%f converges to the continuous result
A f point-wisely.

To show the convergence of L%, first in Theorem
4.1 we show that our estimation of the Voronoi cell
area is converging to the real Voronoi cell area as
point clouds get denser. With the Voronoi cell area
convergence result, in Theorem 4.2 we show that
LL.f converges to A f point-wisely. The proofs are
provided in the supplementary appendices.

Theorem 4.1 (Voronoi Cell Approximation): Consider
the Voronoi cell of point p € P where P is a (g, s¢)-
sample of the manifold Vr4(p), and the Voronoi cell
on its estimated tangent plane V7 (p) built with our
algorithm,

vol(Vrm(p))
vol(Vr4(p))

holds when ¢ is small enough.

Theorem 4.2 (Convergence of A%, to Ay): Consider
an (g, se)-sample P of the closed manifold surface
M, and an arbitrary function f € C?, our discrete
LBO operator A, satisfies:

4.1)

-1 <o)

. At . _
lim [ABf = Amfllee =0, (4.2)

where t(¢) = ez, and £ > 0 is any positive fixed
number.

5 EXPERIMENTAL RESULTS

Experiments were conducted to verify the conver-
gence property of our operator L% addressed in sec-
tion 4, the convergence property of the eigen-vectors
{H'"}, the geometry-awareness of {H'}, and applica-
tions of PB-MHT. In our implementation, the gener-
ation of LBO matrix is developed using MinGW, the
eigen problem is solved in MATLAB, and the filtering
and rendering parts are written in Visual C++. We
conducted experiments on a Windows XP platform
with Intel Core 2 Duo 2.66GHz CPU and 2GB DDR2
RAM. Table 1 shows the model information and the
running time of our experiments.



TABLE 1
Model information and running time (in seconds) for
computing LBO matrix (¢;,50) and solving the
eigen-vectors (teigen)-

Model #Points trL,BO #Bases | teigen
Sphere 4,002 156 100 2.8
Eight 7,678 401 100 17
Cylinder 90, 300 6,426 100 348

Rabbit 248,304 | 12,198 | 100 | 2,051

Chinese Lion | 611,222 | 25,214 100 7,269

5.1 Convergence of Laplace-Beltrami Operator

To verify the convergence of our discrete LBO matrix
L%, we used a cylinder model with radius 1, height
4, and 90, 300 vertices. We parameterized this cylinder
surface as:

T = cos q, (5.1)
y =sinaq, (5.2)
z =, (5.3)

where a and v are the parameters: 0 < a < 27,0 < v <
4. We sampled the cylinder circle with 300 points, and
sampled the v direction with 301 points. We defined
the function f over the cylinder surface as:

flp) =0*.

The analytical solution of the LBO applied on the
function f is Ay f = 2, for v > 0 over this cylin-
der surface. In this paper we only consider closed
surfaces, but it is impractical to conduct experiments
on infinite-length cylinder surfaces. So in our experi-
ments we used the cylinder model of finite length and
ignored the solutions for points near the boundary to
verify the performance of LBO convergence on the
infinite cylinder surface. We gave each point an index
according to its v parameter value. Figure 3 shows the
approximation results of our discrete LBO applied on
the function (a) ﬁﬁgf, as compared to (b) Belkin et al’s
discrete LBO LLf, (c) the graph Laplacian L¢f, and
(d) the trivial extension of 1/2- (L} + (L%)T)f. If we
ignore the cylinder boundary points, which indices
are close to 0 and 9 x 10* as in Fig. 3, we can see that:
(a) our L%, is converging perfectly; (b) Belkin et al’s
L%, has slight oscillations; (c) the graph Laplacian L¢
gives constant 0 values incorrectly; and (d) the trivial
extension (L% + (L%)7)/2 does not converge at all.
The reason why Belkin et al’s discrete LBO L%, has
more error, as shown in Fig. 2(a), is that L} is actu-
ally trying to compute the integration on estimated
tangent planes rather than the integration over the
manifold as proposed by Lemma 5 in [28]. Although
this is still converging, there may be more error. In
Fig. 3, the point index depends on v parameter, that is,
the higher the index, the higher function value will the
point and its neighbours have, since f(p) = v?. This
may “amplify” the error as the index gets larger. Our
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Fig. 3. LBO approximation result on the cylinder sur-

face: (a) our Voronoi cell-based discrete LBO ﬁﬁ,; (b)
Belkin et al’'s discrete LBO L%,; (c) the graph Laplacian
operator L¢; (d) the trivial extension (L%, + (L)) /2.
Note that (d) has much larger scale than others.

discrete LBO L%, as shown in Fig. 2(b), approximates
the integration over the manifold directly with the
estimated Voronoi cell area.

LBO on the 2-sphere in R? is well studied. The
eigen-functions of LBO over the sphere are called
Spherical Harmonics and denoted as Y;™ with degree
I and order m. In spherical coordinates, the eigen-
function of LBO with the smallest non-zero eigen-
value A = 2 on the unit sphere is Y;? = cos6. That is,
Ag2)Y? = —2Y. We used three point clouds sampled
from the 2-sphere of unit radius: uniform 1, 000 points,
uniform 3, 994 points, and 2, 475 points with different
resolutions on its two hemispheres, as shown in Fig. 4.
For each point, we computed the error between the
approximated Ag 2 Y, and the analytical result —2Y7.
Figure 5 shows the error histograms of L% and L% on
these sphere models with input function f = Y. In
all cases L%, has less error than L.

(a) (b) (© (d)

Fig. 4. Different point clouds sampled on unit sphere:
(a) uniform 1,000 points; (b) uniform 3,994 points; (c)
non-uniform 2, 475 points; (d) Spherical Harmonics Y7’
on unit sphere.
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Fig. 5. Approximation result of AS(Q)YP on the unit sphere. (a), (c), (e) are the error histograms of Belkin et al’s
discrete LBO L%,; (b), (d), (f) are the error histograms of our discrete LBO L%.: (a), (b) uniformly sampled 1,000
points; (c), (d) non-uniformly sampled 2,475 points; (e), (f) uniformly sampled 3,994 points.

5.2 Convergence of Manifold Harmonics

We use the same sphere models as in section 5.1. In
spherical coordinates, we have Y = cos® which is
the spherical harmonics with the smallest non-zero
eigen-value. In the spectrum of the unit 2-sphere in
R?, Y has multiplicity of 3 with A = 2. In other
words, Y appears 3 times as fyi, fy2 and fys with
different rotation. Note that any linear combination
fy = afy1 + bfya + cfys is also an eigen-function
with A = 2. More specifically, fy is a scaled Y, that is
rotated over the surface with some angle. Given one
of the first 3 eigen-vectors H of any discrete LBO, we
need to find such a fy that fits it best. Consider the
square error £ = ij (H(p;) — fy(p;))? as a function
of a, b and c that are real numbers, and p; € P. We take
the fy that minimizes &> as the best-fit. The minimal
value is achieved when the partial derivatives of &,
with respect to a, b and ¢ are 0. By solving this
problem we have the best-fit fy-. This fy is then used
to calculate the error for the eigen-vectors.

Our PB-MHB can be directly used on point-sampled
surfaces. So we compared it with the eigen-vectors of
other combinatorial Laplacian operators, such as the
normalized graph Laplacian (GL), Kirchhoff Lapla-
cian (KL), and Tutte Laplacian (TL), by creating the
connectivity between points using the e-ball. Denote
the degree of point p; as d;. Define the adjacency
matrix A as A;; = 1 when (p;,p;) is an edge , and
A;; = 0 otherwise. GL is defined as: G = Z — (), where
Qi; = Qji = A;j/+/did; and T is the identity matrix;
KL matrix C is defined by: K;; = d; if i = j, and
Kij = —1if i # j and (p;,p;) is an edge; and TL is
defined as: 7 = Z — C, where C;; = 1/d; if and only
if (p;,p;) is an edge. These operators were studied
extensively in Zhang’s work [32].

Table 2 shows the errors of the first 3 eigen-vectors
with the non-zero eigen-values of Lt ,GL G and KL K.
TL 7T is not presented because it is not symmetrizable
and has complex eigen-values and eigen-vectors. Here
we use &,y = max,, (fy(pj) — H(p;)) where p; € P,
to represent the error of each eigen-vector. Because
eigen-vector multiplied with a constant number is
still eigen-vector, the maximum and minimum of each
eigen-vector are also provided as range. We can see
that eigen-values and eigen-vectors of our L are very

close to the analytical result 2 and Y, respectively.
Those of G and K are not.

Figure 6 shows the first three eigen-vectors of the
graph Laplacian Lg, which are not close to the analyt-
ical counterpart as shown in Fig. 4(d). We can easily
see the distortion of the iso-contour lines of the eigen-
functions.

(a) (b) (©

Fig. 6. Eigen-vectors of graph Laplacian L on the
non-uniform sphere model as in figure 4(c): (a) H'; (b)
H?; (c) H3.

5.3 Non-Uniformly-Sampled Point Cloud

Our experiments show that as long as the point cloud
P is (g,se)-sampled, and the local feature sizes p
are not close to zero (since our discrete LBO conver-
gence rate is O(;—z)), our PB-MHB is geometry-aware
and independent of the sampling rate. We conducted
our experiment on the “symmetric” two-hole torus
(“Eight”) model, where the point sampling rate over
the two handles are different. As shown in Fig. 7,
when the point distribution is non-uniform, the first
4 bases of our PB-MHB are still symmetric over the
surface, while the eigen-vectors of the graph Lapla-
cian operator can not follow the geometric property
of the surface.

5.4 Spectral Filtering

Spectral filtering could be used for model manipu-
lation such as noise-removing. Having the PB-MHB,
we can apply filtering on the spectral representa-
tion of point-sampled surfaces. As shown in Fig. 1,
we can apply either “low-pass filtering” or “detail-
enhancement” on the point-sampled Chinese Lion
model. Note that even when points are non-uniformly
distributed, as shown in Fig. 8 where the left-part
of the Rabbit model is sparser than the right-part,



TABLE 2
Approximation results of eigen-vectors of Lt,, G and K defined on unit spheres.

. PB-MHB GL G KL K

#Points H Range Eint A Range Eint A Range Eint A
HT 0.0006 | 1.9882 | [<0.05,0.05] | 0.0017 | 0.1512 | [—0.05,0.05] | 0.0026 | 24.13
1,000 | H? 0.0004 | 1.9890 | [—0.05,0.05] | 0.0026 | 0.1567 | [—0.06,0.05] | 0.0029 | 24.75
H3 0.0004 | 1.9903 | [=0.05,0.05] | 0.0022 | 0.1658 | [—0.06,0.06] | 0.0028 | 25.84
Non- HT 0.0058 | 1.9779 | [—0.03,0.04] | 0.014 | 0.0567 | [—0.01,0.08] | 0.058 | 4.556
Uniform | H2 | [-0.5,0.5] [70.0007 | 1.9913 | [—0.04,0.04 0.015 | 0.0598 | [—0.06,0.06 0.044 | 8.618
2,475 H3 0.0013 | 1.9917 | [—0.01,0.08] | 0.057 | 0.0696 | [—0.06,0.06] | 0.044 | 8.718
HT 0.0003 | 1.9952 | [—0.03,0.03] | 0.0013 | 0.0376 | [—0.03,0.03] | 0.0014 | 6.04
3,994 | H? 0.0003 | 1.9953 | [—0.03,0.03] | 0.0015 | 0.0391 | [—0.03,0.03] | 0.0015 | 6.199
H3 0.0003 | 1.9957 | [—0.03,0.03] | 0.0014 | 0.0421 | [—0.03,0.03] | 0.0013 | 6.525

Fig. 7. The eigen-functions H*', H?, H?, and H* of
our ﬁfp (first row) and the graph Laplacian operator
L¢ (second row), for the symmetric model “Eight” with
non-uniform sampling rate.

our PB-MHT can still get “symmetric” filtering result,
while the graph Laplacian method makes the left-part
“shrink” more than the right-part. Figure 9 shows the
example of removing the high-frequency noises on the
sphere by applying the low-pass filter with PB-MHT,
which still preserves the symmetry of the sphere.

2.5 Low Pass Filter
2
E1,5
0.5 |
/ Jl /
Ha
mi nl

0% 26 40 6o 8o 100
| Ha
Fig. 8. First row: the Rabbit model with non-uniform
sampling, and the low-pass filtered model: using our
L} (left) and graph Laplacian operator L¢ (right).
Second row: H' and H? of our L}, (left) and the graph
Laplacian operator L¢ (right). It is obvious that L%, is
geometry-aware and L is not.

Hl

ma XI

ma

mind H' H‘ H‘

Fig. 9. First row: the sphere model with noises on its
left side, before and after the low-pass filtering. Second
row: the H', H?, and H? bases.

5.5 Salient Feature Point Extraction

MHB on mesh surface is used to extract salient feature
points by Hu et al [40]. With eigen-vectors {H'} of
the discrete LBO, a point p is selected as salient
feature point if H'(p) is larger than its neighboring
points in both of the adjacent two frequencies H'
and H'™!. Note that such feature point extraction
algorithm requires MHB to be fully geometry-aware
and independent of the sampling rate and mesh con-
nectivity.

For point-sampled surfaces, our PB-MHB can be
directly used to extract salient feature points using
this algorithm. We compared the performance with
the eigen-vectors of normalized graph Laplacian (GL),
Kirchhoff Laplacian (KL), and Tutte Laplacian (TL), by
creating the connectivity between points using the e-
ball. Because TL 7 has complex eigen-vectors which
is not applicable, we used the real part of the eigen-
vectors instead.

As shown in Fig. 10 and 11, PB-MHB could pro-
vide very stable feature points despite the different
resolutions of the input models, while the other com-
binatorial Laplacian operators could not.

5.6 Discussion: Performance Degradation Near
Open Boundaries and Sharp Edges

When there are open boundaries or sharp edges,
the procedure described in section 3 may encounter
problems. In these cases the Voronoi Cell Estima-
tion process described in section 3.3 may get either
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Fig. 10. Extracting feature points from the two-hole
torus model using our PB-MHB, and the eigen-vectors
of GL, KL, and TL methods, with (first row) regular
resolution, and (second row) irregular resolution as in
Fig. 7.

v

PB-MHB GL KL TL

Fig. 11. Extracting feature points from the Santa model
using our PB-MHB, and the eigen-vectors of GL, KL,
and TL methods, with (first row) regular resolution of
75,781 vertices, and (second row) irregular resolution
of 122,292 vertices.

open or very slim Voronoi cells on the estimated
tangent plane, and may not provide valid cell areas.
These points are referred as invalid points. Our current
method is based on the assumption that the point
cloud is (e, se)-sampled, and the local feature sizes
p are not close to zero. When there are sharp edges,
the local feature sizes at those sharp edges tend to
be zero. Since our convergence rate of the estimated
Voronoi cell area is O(%; ), if the point cloud is not
dense enough locally at those regions, this algorithm
will have difficulty in converging to the continuous
counterpart.

We conducted the following experiments to explore
such performance degradation. Since the Voronoi cells
of the invalid points are either open or slim (degener-
ate), we took the average Voronoi cell area of the valid
points as the Voronoi cell areas of those invalid points.
Although such slight modification makes this method
applicable for models with open boundaries and
sharp edges, the convergence of both LBO and MHB
gets degraded. To verify the convergence degradation,
we performed experiments on a unit flat square model
with an open boundary. The model was sampled
with 101 points in both u and v direction where u
and v are the parametric coordinates. To create sharp

10

ridge, we folded the model along the line of v = 0.5
by different angles as shown in Fig. 12. Because the
folding process is isometric, A o4 remains the same no
matter how much we fold the model.

As shown in Fig. 12, the symmetry of MHB on
the flat square model is well preserved. However, the
MHB varies as the ridge gets sharper.

| B A 4

Fig. 12. H* of (a) flat square model sampled with
101x101 points; and the same model folded by (b) 30
degree, (c) 70 degree, and (d) 120 degree.

To further demonstrate the effect of different sharp
ridges on L%, we defined a scalar function f = v and
applied L% on it. The analytical result is Ay f = 0
no matter how we fold the square model. As shown
in Fig. 13, on flat square model the error of L f is
very little except for the boundary points. When we
fold the model as shown in Fig. 12, the error increases
for points near the ridge (middle part of the graph).
The sharper the ridge is, the higher error we get. Note
that the boundary points along u direction have very
large error while the others along v do not, as shown
in Fig. 13. This is due to the reason that we used the
function f = v, and A f(p) is approximated by the
local integration near the point p. Because boundary
points miss part of their neighbors, the integration
could be approximated only on part of the domain
for them. When the integration result for the missing
part is close to O the error will be negligible (along
v direction), otherwise the error could be very large
(along u direction).
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Fig. 13. L} %, f for function f = v on (a) flat square model
sampled W|th 101x101 points; and the same model
folded by (b) 30 degree, (c) 70 degree, and (d) 120
degree.

6 CONCLUSION AND FUTURE WORK

The mesh-based Manifold Harmonics [4], [5] provides
spectral processing framework for 3D models. How-
ever, it can not be applied to point clouds directly. In
this paper, we propose a new method to compute the
symmetrizable and converging discrete LBO matrix L%
on the manifold surface M represented by the point
cloud P. We prove that L%, is converging point-wisely
to the LBO A, given that P is (e, se)-sampled, and



the local feature sizes p at the points are not close to
zero. With the symmetrizable property of L%, we can
compute the Point-Based Manifold Harmonic Bases
{H'} on point clouds by solving the eigen problem
ﬁﬁg f = —Af. The orthogonal bases can be used to
perform spectral transformation and processing di-
rectly on point clouds without computing the explicit
global mesh. Our experiments show that L, is fully
geometry-aware, and converges very well as com-
pared to other discrete combinatorial Laplacian opera-
tors, such as the graph Laplacian, Kirchhoff Laplacian,
Tutte Laplacian, and the trivial extension of Belkin et
al’s discrete operator [1]. We also demonstrate that our
PB-MHT can be used as an effective spectral analysis
and processing tool for point-sampled manifold sur-
faces.

There are also some limitations about our cur-
rent approach, which motivates our future researches
along this direction of point-based spectral processing.
First of all, this method is designed for closed man-
ifold surfaces. When there is boundary on surfaces,
it is hard for the algorithm to estimate the Voronoi
cell area near the boundary, since the cell is open.
Thus the convergence of this method degrades sig-
nificantly at the boundary points. We will investigate
robust algorithms for open point-sampled surfaces.
Second, for the surface regions with high curvature,
our current method requires high sampling rates to
produce meaningful discrete operator. When there are
sharp edges or spikes in the model, the convergence
will degrade because the local feature sizes at those
sharp edges or spikes tend to be zero. Computing LBO
and MHB for the point-sampled surfaces with sharp
features will be an interesting research avenue for the
future.
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Supplemental Appendices

This document provides information about conver-
gence of L.

In Belkin et al.’s work [1], the convergence of L,
means Lf is converging to A f point-wisely where
f is the discrete form of function f. This is different
from the definition of convergence in works related to
finite element method [2], [3]. We take the definition
in Belkin ef al.’s work [1].

In our work, the discretization of LBO A ., is dif-
ferent from finite element method. With Lemma 2.5 in
this document, we know that it is possible to approx-
imate A f(p) using integration. So we discretize the
integration to approximate Af(p) for each vertex
p in point cloud P. The matrix form of this dis-
cretization is our discrete LBO L%. The convergence
of ﬁ’}, is shown in Theorem 4.2. Theorem 4.1 is about
the convergence of Voronoi cell approximation. It is
essential to the proof of Theorem 4.2. Proofs for these
theorems are presented in section 1 of this document.
Lemmas referred from existing works are presented
in section 2 of this document. Miscellaneous lemmas
are presented in section 3 and 4 of this document.

1 CONVERGENCE PROOF

In our construction of PB-MHB, the assumption is we
have a continuous differentiable Riemannian mani-
fold M on which the sample set P lies. f is a C?
continuous function defined over M. We are going to
prove that the result of our discrete LBO applied on
the function L%f converges to the continuous result
A f point-wisely.

To show the convergence of L%, first we are proving
that our estimation of the Voronoi cell area is converg-
ing to the real Voronoi cell area as point clouds get
denser. This part is proved in appendix section 1.1.
After having the Voronoi cell area convergence result,
we prove that Li.f converges to Ay f point-wisely in
appendix section 1.2.

1.1 Proof of Theorem 4.1: Convergence of Esti-
mated Voronoi Cell Area

As shown in figure 1, the proof consists of two
steps: (1) we prove that the projection of Vra(p)
on the estimated tangent plane 7}, II(Vra(p)), has
converging area to Vra(p), as shown in Lemma
1.5; (2) we build the upper bound and the lower

vol(Vr™(p))
Converge \\Uppﬂbou"d
vol(Vra(p))  vol(ITL(Vra( ))%\’OI(VTM@D
Converge /gowcrbound
vol(Vr=(p))

Fig. 1. Proof structure of Theorem 4.1.

bound of vol(II(Vra(p))) that are both converging
to vol(Vrs(p)) so we know that vol(II(Vraqg(p))) is
converging to vol(Vr4(p)). By combining this result
with Lemma 1.5, we have Theorem 4.1 proved.

To prove Lemma 1.5 we need to prove that there are
some bounds on the sizes of the Voronoi cells V7 (p)
and Vrz(p) (Lemma 1.1 and Lemma 1.3), and there
are some bounds on the set of neighboring points that
may influence these Voronoi cells (Lemma 1.2 and
Lemma 1.4).

Lemma 1.1 (Bound of Vra(p)): Consider the un-
derlying manifold M and its e-sampling P, Vp € P:

Vra(p) C B(p,e)

holds, i.e., its Voronoi cell on the manifold is bounded
by a ball with radius «.

Proof: Suppose 3q € Vra(p) € M, that satisfies
lp—al >e.

" P is e-sampling,

*. There is another point p’ € P that satisfies ||p’ —
q|| < e < |lp—q||, which means g is closer to p’ instead
of p.

. q ¢ Vra(p). This is contradictory to assumption.

L

(1.1)

Lemma 1.2 (Bound of Influencing Points on M):
Consider the boundary of the Voronoi cell: 0V (p).
Given that P is an e-sampling of M, Yq € OVra(p),
dp’ € P, p’ # p satisfies ||¢ —p|| = ||¢ —p'||, then for all
such kind of points p/,

lp—p| <2 (1.2)

holds. That is, only the point set in B(p,2¢) may
influence the Voronoi cell of point p.

Proof: According to Lemma 1.1, we have ||g—p]|| <
e and |l¢ — p'|| < € hold for Vg € dVra(p). Thus we
have

o=l <lla—pl+ll¢g—p| <e+e=2. (1.3)



L

As described in the paper, we project a local neigh-
borhood of points Ps = P N B(p,d), § > 10e onto
the estimated tangent plane 7},. When 6,  and r/p =
10e/p are small enough, the projection from the local
patch M N B(p,d) to T}, denoted as 1, is bijective. Let
o =111,

Lemma 1.3 (Bound of Vr4(p)): Consider the
Voronoi diagram of p U {II(Ps; — p)} on T}, where
p € P is a sample point and P is an e-sampling of
M. Denote the Voronoi cell of p on T}, as Vrp(p),
then

Vri(p) € B(pe) (14)
holds. Thatis, V7 (p) is bounded by a ball with radius
€.

Proof:
q
Cb(m A
g 1 p
p m

Fig. 2. Bound of V'r,(p) for Lemma 1.3.

Suppose 3m € Vr:(p) and [|p — m|| > ¢, as shown
in figure 2.
m € Vrsu(p),
Vg€ Pand p#q, |{i(g) = m| > p—m] > <.
Here p = II(p) since p lies on both M and T},.
- I is the projection from M to 7, and & =111,
||p m|| < [lp—@(m)|, [[11(q) —m| < llg —&(m )H,
Vg € P,|lg —®(m)| > |I(g) — m| > . This is
contradictory to the assumption that P is e-sampled.
L
Lemma 1.4 (Bound of Influencing Points on T},):
Consider the boundary of the Voronoi cell on the
estimated tangent plane: 9Vr;(p). Given that P is
an e-sampling of M, Vg € Vrsp(p), I € P, p #p
satisfies ||q p|ll = |l¢ — II(p')]|, then for all such kind
of points p/,
lp = 11(p")]| < 22 (15)
holds. That is, only the projected sample points in
B(p, 2¢) may influence the Voronoi cell Vr;(p).
Proof: According to Lemma 1.3, we know that
Vg e dVrp(p), lp—dall <e. A
Thus for the influencing projected point II(p') we
have

Ilp—qll = llg — TI(p)|| (1.6)

lp =@ < llp—all + llg - T@E)|  (1.7)
<e4+e=2¢ (1.8)

0

Lemma 1.5 (Convergence of TI(Vra(p)) to Vrp(p)):
Consider projecting V7 r(p) to T. P is an e-sampling
of M, and p is the local feature size of point p € P.
Then

62

vol(VrM( )) ) (19)

vol(IL(Vra(p)))

B

Ao

holds.
Proof:

Vg € Vra(p), consider the angle (T, T},) between
the two planes 7, and 7}, where T, and T, are the
real tangent planes of M at points p and ¢, T}, is the
estimated tangent plane at point p, as described in the
paper.

According to Lemma 2.1 (in appendix section 2),
when ||p — ¢|| < p/3 we have

||p q
IIP—QH’ Oe/e).

We get the last mequahty by applying Lemma 1.1.
Now we have three planes here: T,, T, and T},
According to Lemma 4.1 (in appendix section 4), when

all angles are small,

(T, Ty) < LTy, Ty) + £(T,, Ty)
< O(e/p)

holds, where we get the second inequality by apply-
ing Lemma 2.3 (in appendix section 2). Thus we have:

L(T,,Ty) < (1.10)

(1.11)

cos Z(T,, T,) = \/1 — sin® A(T,, T},) (1.12)
1—(4(T,,T}))? (1.13)

1—0(e2/p?) (1.14)

>1-0(e?/p%). (1.15)

When 4, ¢ and r/p = 10¢/p are small enough, the
projection from the local patch M N B(p,d) to T,,
denoted as TI, is bijective. Denote y = /(T,,7}), then
we have

vol(Vra(p)) :/ ! ds

€N(Vrm(p)) €087

)/ R ds (1.17)
q€I(Vra(p))

7)Vol(ﬂ(vw(p))). (1.18)

(1.16)

< max( cos 7y

1
= max(
cos
Thus by combining (1.18) with (1.15), we can have

vol(Vru(p)) H
vol(TI(Vrp(p))) || ~ min(cos )

<1+ 0(2/p?).

(1.19)
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With these results we can prove Theorem 4.1 as
follows:
Proof:

qu Lpfl(é/)

% & DL R T,
p q q' q
Lﬂq* qu' qu+

Fig. 3. Parallel bisecting planes.

As described in the paper, we chose the neighboring
points Ps = P N B(p,0), § > 10e for projection.
According to Lemma 1.4, for V74(p), any influencing
projected point ¢ € P satisfies ||[I(q) — p|| < 2e.
Consider Vg € Pj, according to Lemma 2.2, 2.3 and
42, we have Z(pq,T,)) < Z(pq,T,) + £(T},,T,) =
052 +0(r/p) and Izt —1 = O(5)+0(17AL),
When ¢ is small enough, we have (7, N B(p,2¢)) C
II(M N B(p,r)). Thus we know for Vg € P; that
satisfies ||p — II(¢)|| < 2¢, ||p — ¢ < r = 10e holds.
That is, all neighboring points that could influence
Vrs(p) are included in P. = P N B(p,r). According
to Lemma 1.2, we know that all points which may
influence Vra(p) are also included in P,.

On the estimated tangent plane 7}, we are building
4 sets of Voronoi diagrams to get the converging
approximation of the Voronoi cell area, as shown in
Fig. 3.

For each point ¢ € Ps, ¢ # p, we consider the bisect-
ing plane L,, between points p and ¢. We also build
the bisecting plane L, for the point-pair {p, I1(q)}.

As shown in Fig. 3, it is obvious that Lpﬁ( a) 1T,
and the straightAline Lrig) = Loptice) ﬂTpAis also the bi-
secting line on 7}, for the point-pair {p,11(¢)}. {l g}
are also the lines that compose 0V'r,(p), which is the
boundary of the Voronoi cell of p on T},. Notice that
for some points q € Ps, L,y N OVrs(p) = 0. That is,
it is not necessary that all bisecting lines contribute to
the boundary of Vr;(p).

Consider the lines l,, = L,, N T}. Since we have
qﬁ(q) € Tp and pg L L,,, we know that [,, L pg
and l,, L ¢II(q). Thus l,, L pIl(q). Because Ly +
pll(q), we know that [, | L ,fi(g)- Then for each I,
we can build the plane L, satisfying l,, C Ly, and

Lpg |l Lpﬁ(q)'

As shown in Fig. 3, we denote 6 = Z(L,,), Lpg)-
According to Lemma 4.2 (in appendix section 4), we
have

0 =Z(Lys1(g)> Lpa) (1.20)
=Z(pIl(q), pq) (1.21)
</(pg, Tp) + (T, Ty). (1.22)

According to lemma 2.2 (in appendix section 2), we
have

sin Z(pq, T,) < O(-). (1.23)

£
p
According to lemma 2.3 (in appendix section 2), we
have

AT, T,) <OC). (124)

By combining (1.23), (1.24) with (1.22), we have

sinf < O,(;) n 0(%), (1.25)
tan g = 517 (1.26)
cos
<0 ( (e+r)/p ) (1.27)
T— (1127
<0 (5”> (1.28)
p* — (e +1)?
<0 <€+T> . (1.29)
p—e—r

We consider the points on the Voronoi cell bound-
aries: m € 0Vraq(p), as shown in Fig. 3. According to
Lemma 2.2, we have sin(£(pm,T,)) < O(g/p), since
|lp — m|] < ¢ from Lemma 1.1. When all angles are
small, we have

sin(Z(pm, T},)) (1.30)
<sin(Z(pm, Tp) + £(Tp, T})) (1.31)
<sin(Z(pm,T))) + sin(£(Ty, T},)) (1.32)
<sin(Z(pm,T})) + £(T}, Tp) (1.33)
<= 41 (1.34)

20 p
g0(2> (1.35)

holds since we have r = 10e. Then we have the bound
of the distance from m to T},:

d(m,T,) < e -sin(Z(pm, T,)) < O(?/p). (1.36)

Suppose q € Ps5, g # p is the influencing point for
m € IVrpm(p), ie., |lp—m| = ||¢ — m|. By combining
(1.29) with (1.36), we have the bound of the distance
from m to the plane L,

d(m, Lpy) = tan@ - d(m, T},) (1.37)
<0 (5 tr ) o) ass)
p—e—r p
<O< e2(e+r) ) (139)
T \plp—e-1))° '



. 2(e+r
Thatis, 3c € R, ¢ > 0, d(m, Lpy) < c- %.

Next we build 2 planes for each g € Ps, ¢ # p: Lpg+

and Lpq— that satisfy Lpgi || L, | Lpg—, and
d(Lpg+, Lpg') = d(Lpg—, Lpg') (1.40)
2
. M, (1.41)
plp—e—r)
d(p, Lpg-) < d(p, Lpg') < d(p; Lpg+)-  (142)
Since L,p,) L T,, we know that L, L T}, Ly, L

T,. As shown in Fig. 3, we also have

lp =4
M- Low) =5 st

As shown in Fig. 3, we build the points ¢/, ¢¥,
g~ according to Ly, Lpq+ and Lyq—, so that these
planes are the bisecting planes between the point-
pairs {p,q¢'}, {p,q*} and {p, ¢}, respectively.

It is obvious that ¢/, ¢, ¢~ reside on the same line
of pIl(g). Then we can build the Voronoi diagrams
over T, with points {p} U {q"}, {p} U {¢'} and {p} U
{¢" }. Denote the Voronoi cell of p of these diagrams
as Vrt(p), Vr'(p) and Vr~(p). According to Lemma
1.2 and Lemma 1.4, we can ignore other points ¢ ¢ P
without affecting these Voronoi cells for p. Thus we
will only use points q € Ps, ¢ # p.

Since the point cloud P is an (e, s¢)-sample of M,
we have se < [|p — ¢|| < 10e. When ¢ is small enough,

we always have c - ;(p(a:Tr) < O0(e) < !pcosqg. Thus p

will not stay in between L,,_ and L,,. Then we can
have:

(1.43)

lp—11(q)]| = lp — ql| - cosb, (1.44)
lp—d'll =2-d(p,Lpg) = |lp — ql|/ cosd, (1.45)
2
4 e*(e+r)
p—q¢ ||=lp—4q|l/cosl0+2 ¢ ———,
| = I/ p—c—7)
(1.46)
e2(e+r)
p—q ||=|p—gql|/cosb -2 -¢cc ————.
| = I/ p—c—7)
(1.47)

For Vm € OVra(p) N Ly, and its corresponding
influencing point ¢, we have

d(m, Lpg') < d(Lpg— Lpg'), (1.48)
d(m, qu’) < d(qu+> qu’)a (1.49)
[m —pl| = [lm —ql. (1.50)

So we know that m stays in between L,,_ and L,
of point ¢. This can lead to:

1, (1.51)

(1.52)

lm —pll < [lm —q
[l = pll = [m =g~

Recall that here ¢ is the influencing point of m €
dVra(p). Since II is bijective projection, it is obvious
that TI(AV 7 (p)) = OL(Vraq(p)). So we have Vi €
OI(Vrm(p)), 3q € Ps, such that [ — p|| > [l — g~ .

This means that dIL(Vr o (p)) N (Ve (p) —OVr~ (p)) =
0.

P €VIT(0)p € N(Vrm(p)),

VT (p) S H(Vim(p)). (1.53)

Let us assume that II(Vru(p)) € Vrt(p) does not
hold, then Im € (Vra(p)), such that ||II(m) — p|| >
|TI(m) — || for some g € Ps. As shown in Fig. 3, m
resides in the p-side of plane L,,. Since m also resides
on the g*-side of plane L,,, we have mind(m,T},) >
d(Lpg', Lpgt) - cot 6. Recall that we construct L,q4 so
that d(Lyg, Lygy) > maxd(m’,T,) - tan6 for ¥Ym' ¢
Vra(p). Thus we have mind(m,T},) > maxd(m/,T})
for Vm' € Vrap(p). Thus we have m ¢ Vra(p),
which is contradictory to the assumption. So we have
II(Vra(p)) € Vrt(p) holds.

Vr'(p)
v (D))

Fig. 4. The nestling of Vr=(p), Vr*(p), and
(V7 a(p))-
As shown in Fig. 4, we have
Ve (p) CT(Vram(p) € Vit (p), (154)
which means that:

vol(Vr~(p)) < vol(f[(VTM (p))) < vol(Vr™(p)).
(1.55)

Since we have se < ||p — ¢|| < r = 10¢, by combining
equations (1.44), (1.45), (1.46), and (1.47), we can have

lp=a'l _

lp—d| — <1 “I‘O( 2/p ) (1.56)
=Ll > 1- 06, (1.57)
;Zg—_ﬁq(q|>|| = gy STHOEN. s

We get the above last equation from Lemma 1.2 and
similar calculation as in equation (1.35). According to
Lemma 3.3 (in appendix section 3), we have

vol(VrT(p))

ol(Vi(p) <O/, 1)
vol(Vr—(p))
W 1| <O(*/p?), (1.60)
vol(Vr'(p))
(Vo) 1|| < O(?/p?). (1.61)



Finally we have

vl (I(Vra(p))

vol(Vr4(p)) < O0E/p). (162

By combining equation (1.62) with Lemma 1.5, we
have

vol(Vrm(p))

vol(Vr4(p)) (1.63)

- 1H < 0(2/p?).

|

1.2 Proof of Theorem 4.2: Convergence of Inte-
gration Approximation

At Converge At Converge
P P Lemma 1.9

Fig. 5. Proof structure of Theorem 4.2.

=AM

As shown in figure 5, the proof of Theorem 4.2 is
organized as follows: An intermediate discrete LBO
At, is defined first in equation (1.64). A% is the
approximation result by computing the integration
directly over the manifold. In Lemma 1.9 we show
that A% is converging to A . With the Voronoi cell
area convergence result in Theorem 4.1, we then show
that our discrete LBO Al (with Voronoi cell area
estimated on the tangent plane) is converging to Al,,
which means that A%, is converging to A as well.

Recall that in our algorithm, the approximation
LBO A%, is defined as:

_lla=p)?

where Vr;(q) is the Voronoi cell of the point ¢ over
T,. In order to prove that A%, is converging to the LBO
A pq, we introduce the following intermediate LBO:

. _lla=pl? pu2

Apf(p) 477752

qEP&
(1.64)

It is obvious that the only difference between A%, and
A%, is that we use Vr;(q) instead of Vra(g) as in
(1.64), because it is impossible to get vol(Vra(g)) in
most real applications.

Definition 1.6: For Vp € P, recall we have Ps =
P N B(p,d). Define

N, = M B(p,5) (1.65)
Nyp = Ugep; Vra(q) (1.66)

— MM B(p, 1.16) (1.67)
N> = M B(p,0.95) (1.68)

given § > 10e.

According to Lemma 2.5, the continuous LBO A
can be computed as the integration over the whole
manifold M. Our essential idea is to approximate
such integration locally over Ny, instead. And the
following Lemma 1.8 shows that such local approx-
imation is reasonable, which can lead to the conver-
gence of A%, to Ay, as shown in Lemma 1.9. In order
to prove Lemma 1.8, we need to show that Ny, is
bounded in between N, and N,5 which are indepen-
dent of the sampling size ¢, which is addressed in the
following Lemma 1.7.

Lemma 1.7 (Bound of Ny p):

N, € Ny, C N,

(1.69)

p

Fig. 6. The nestling of N, NI;*, and Ny,,.

Proof: This nestling relationship is shown in Fig-
ure 6.

First we prove N, C Ny,: For Vm € N, there
exists dg € P, such that m € Vra(q). Accordmg to
Lemma 1.1, we have ||¢ — m|| < e.

e —dall < llp—mll + llg =m| <0.95 + ¢ <9,

.q € P, V?"M(q) C Nyp, m € Nyyp,.

Next we prove Ny, € N,: For Vm € Ny, there
exists g € Ps, m € Vra(q). Recall that ||¢ —m| < ¢

(e7m(f(@) = f(p)) vol(Vr4(4))), and [|p — q|| < 6, so we have [[p—m| < [lp—q| + llg -

m||§5+5§1.1§.Thusm€N;. O
Lemma 1.8 (Approximation using Ny ,):

M _ llp—yll
/Nve £ )y - /Me

14

F(y)dpy = o(t"),
(1.70)

f(@) = £(p)) vol(Vra(q)))-

for any positive natural number !.
Proof: Similar to the proof of Lemma 2.4(in this
material), which is Lemma 1 in [4]:

_lp—yl _lp=yl
/ e T f(y)duy — / e T f(y)dp,
Nvp M
_lip—wl
=‘ / e f (),
M-=Ny,
a2
<vol(M) s (f@)e 5 a71)
zEM,z¢ Ny
2
<vol(M) sup  (If(@))e T =o(t),  (172)
reEM,x¢N,
where dy = inf,¢n,,, [|[p—z[/, and dz = inf o~ lp— ||



Lemma 1.9 (Convergence of AL, to Apy):

lim |ALf = Aptf]lee =0, (1.73)

where t(¢) = ¢2+¢, and ¢ > 0 is any positive fixed
number.

Proof: Note that ¢ = t**¢. According to Lemma
1.1, we know Vy € Vray(q), ly —ql| < e or |ly —q| <
O(e). According to Lemma 2.5, we can approximate
A p using integration over M. Thus we have:

Him A% f(p) — /N et (f(y) — f(p))du,
1.74)
“i [ gl U@ - 10
q€EPs

el (f(y)—f( >>]duy\ (1.75)
:thg(l)|q;8/v 47rt2

e (1(0) - F0) — e (1) - £)

+e T (fy) — f0) — e T (Fly) — F(0))diy|

1.76)

— lim Hyszz

tﬁO|q;6/V [

ly—pll? Hq Pk (f(CI) —f(y))

(el 1)(f(y) — F(p))dpy| (1.77)
<lm Y /V (Rl

qEPs rmiq

‘e S 1|+ o(e)dy, (1.78)

. (fmax,/\/[ - fmin,/\/l) ! ‘67% - 1’ + 0(6)
< Jim t

1 _ly—»pl?

/N e du, (1.79)

) (fmax7,/\/[ - fmin,./\/l) ‘67%5) - 1‘ + 0(5)
< Jimy t

- Constant (1.80)
<lim w (1.81)
~ lim O@™*) ;L oE™) _ (1.82)

where fmax,m and fmin am stands for the maximum
and minimum of function f on manifold M. In the
above derivation, we applied ||¢—p| — |ly — ¢l < ||y —
pll <llg—pl+ly—dal lly—dal <e [fy) - flg)| =
O(ly — q|) (since f € C?) and following inequality on
equation (1.77) to get equation (1.78).

|y = plI*> = llg — pII?| (1.83)
=[(ly —pll +llg—=2l) - (ly —pll = llg = pl)| (1.84)
<(ly=pll+llg—pl)-c (1.85)
<Q@llg—pll+lly—qll)-e (1.86)
<2llg—pll+¢)-¢ (1.87)
<25 -e+¢e? < O(e). (1.88)

By applying the following inequality to equation
(1.79), we get equation (1.80).

/ Le’”nyHQd (1.89)
_/ L 8]y (1.90)
ﬁ(va) 47Tt Y Y ’

1 ly—p)? -
< —e @ |J(®)|,du (1.91)
Joow ame @y
- 1 ly—p)?
< max (|J(P —e @ d 1.92
< max (V@) | 7o o (192)
< max (]J(®)],) = Constant. (1.93)

Here J stands for the Jacobian Matrix.

By combining Lemma 25 and Lemma 1.8
(in this material) with equation (1.82), we have
lim. o |ALf — Arflloo = 0 proved. |

With Lemma 1.9, we can prove Theorem 4.2 as
follows:

Proof:
According to Theorem 4.1, we have
vol(Vra(p)) H €2
———— — 1| =0(=). 1.94
vol(Vr7 (9)) G 09
Thus:
At 2
%ﬂp) —1||=0(5), (1.95)
Apf(p) P
which means:
lim |Apf(p) = Apf(p)lle =0 (1.96)
—0
By combining (1.96) with Lemma 1.9, we have this
theorem proved. O

2 REFERRED LEMMAS

This appendix section shows the Lemmas that we
referred from other papers. These Lemmas are used
in our proof of convergence in appendix section 1.
Lemma 2.1 (Lemma 3.1 in [5]): Given two points
p,q € M with ||p — ¢|| < p/3, the angle between their
normals n, and n, satisfies Z(n,,n,) < p”ﬂpq!;”
Lemma 2.2 (Lemma 6 in [6]): For any point p,q €
M with ||p — ¢|] < p, we have that sin Z(pq,T,,) <
“q2pp lla=rll "and the distance from ¢ to T}, is bounded by

lg—pl*
2p

, where p is the local feature size of p, T}, is the
tangent plane at p.



Lemma 2.3 (Theorem 3.2 in [1]): Suppose P is an e-
sample of M. For p € P with local feature size p and
real tangent plane 7},. Compute T}, as in Algorithm
PCDLaplace [1], Z(T,,T,) = O(r/p) for r < p/2 and
r > 10e.

Lemma 2.4 (Lemma 1 in [4]): Given any openset
B Cc M, p € B, for any positive natural number I,

_ o=yl _llp—wll
/ e” T f(y)dpy — / e”w fy)dpy, = ofth).
BCM M
Lemma 2.5 (Lemma 5 in [4]):
. 1 _ =12
A f(p) :tlg% W(/m e f(p)dpy—

e swn,).
M

3 LEMMAS ABOUT VORONOI CELLS

In this paper we are using the Voronoi cells Vr:(p)
on the estimated tangent planes 7},. This appendix
section shows some results that are related to Voronoi
cells over 2-planes and are used for our convergence
proof of Theorem 4.1.

Lemma 3.1: For plane L and point set P C L,
consider the Voronoi diagram of P over L. Let p € P.
Suppose the Voronoi cell of p is Vr(p) and the cell
boundary is 0Vr(p). Vp € OVr(p), |lp — |l < e.

If we fix point p and move all the other points ¢ € P
as: ¢ =p+(q—p)-t, t >0, Then the area of the new
Voronoi cell V7/(p) has such property:

vol(Vr'(p))

ol(Vr(p))

3.1)
Proof:

Suppose the plane L is parameterized in (u,v)
coordinates with p being the origin. For point ¢; € P
and corresponding displaced point ¢}, we have their
coordinate relationship: (u},v}) = t(u;, v;).

So we can build the mapping f : L — L as m' =
fim) = f(u,v) = (tu,tv), where m,m’ € L. Thus we
have

Vm € L, ||m" = p|| = t|jm — p|,
Vm € L, ||m" — gil| = tllm — gl

It's obvious that m € Vr(p) <+ m’ = f(m) € Vr'(p).
Then we have

Suppose l,, and [,, are the bisecting planes be-
tween the point-pairs {p, ¢} and {p,¢'}. Vm € V+'(p),
we have ||m — p|| < |lm — ¢'||. That is, m resides on
the p-side of [,,s. As shown in figure 7, it is obvious
that [,, resides on the p-side of [,,. Thus we have
m € Vr(p).

Thus Vr'(p) C Vr(p). O

Fig. 7. Moving a point in the Voronoi diagram.

Lemma 3.3: Consider plane L and point set P C L,
as defined in Lemma 3.1. If we fix point p and move
all the other points ¢ € P as: ¢ = p+ (¢ —p) - tg,
tqy > 0, then we have the following result about the
new Voronoi cell Vr/(p):

vol(Vr'(p))

vol(Vr(p)) 3

(min(ty))* < < (max(ty))?.
Proof: From Lemma 3.2, we know that the area of
Vr'(p) will change monotonically with ¢,. So combine

it with Lemma 3.1 we can get this lemma proved. [

4 LEMMAS ABOUT SMALL ANGLES

This appendix section shows the Lemmas about small
angles that we used for the equation (1.22) in the proof
of Theorem 4.1.

Lemma 4.1 (Angles of 3 Planes): Consider 3 planes
Ty, T, and 75 with their corresponding unit nor-
mal vectors ny, ny and ns. Denote Z(n;,ns) = «,
Z(ng,n3) = B, Z(n1,n3) = . Without any loss of
generality, assume «, 3, are all acute angles.

If « < /4, B < 7/4, then we have v < a+ 3 holds.

Proof:

Since we are observing 3 unit vectors, it’s conve-
nient to put them on unit sphere S, as shown in fig-
ure 8 (left). Consider the geodesic distance g(ni,ns),
g(ng,n3) and g(nj,n3) on S. It's obvious that all
these geodesics are part of great circles of S. From
the definition of geodesic distance, we know that

vol(Vr'(p)) = /V ( )duldvl :/V ( )t2dudv = VOI(VT(pﬂnl,ng) < g¢g(n1,n3) + g(n2,n3). Since S is unit
r'(p r(p

L

Lemma 3.2: Consider plane L and point set P C L,
as defined in Lemma 3.1. If we move one point ¢ € P
as: ¢ =p+(¢g—p)-t,0<t <1, then the area of the

new Voronoi cell V7/(p) has such property:
vol(Vr'(p)) < vol(Vr(p)). (3.2)

Proof:

sphere, we also have g(ni,ns) = «, g(ny,n3) = G,
g(ny,n3) = v. So we have v < a + 3 holds. OJ

Lemma 4.2 (Angles of 2 Planes and 1 Vector):
Consider 2 planes 7} and 75 with their corresponding
unit normal vectors n; and n,. Consider another
unit vector n3. Denote Z(ny,ny) = «, £(T3,n3) = 5,
Z(Tl, Ilg) =7.

If « < /4, 8 < 7/4, then we have v < a+ 8 holds.

Proof:



Fig. 8. Unit vectors on the unit sphere: Lemma 4.1
(left) and Lemma 4.2 (middle and right).

Similar to the proof of Lemma 4.1, we put all
vectors on the unit sphere S. Select proper n; and
n, directions to ensure that n; - ny, > 0.

In case ny - ng > 0, as shown in figure 8 (middle),
we have Z(ng,n3) = 7/2 — . From Lemma 4.1, we
know that:

Z(ny,n3) < Z(ny,n2) + £(ng,n3) = 7/2+ o — 3,

Z(ny,n3) > Z(ng,n3) — £(ny,np) =7/2 - — .

Thus we have v = Z(T1,n3) < a+ 5 holds.

In case ny - n3 < 0, as shown in figure 8 (right),
we have Z(ng,n3) = 7/2 + f. Similarly we also have
’y:Z(Tl,ng)SOé—i-ﬁ. [
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