
978-1-7281-8952-9/20/$31.00 c©2020 IEEE

Hardware-Based Detection of Spectre Attacks:
A Machine Learning Approach

Yunjie Zhang and Yiorgos Makris
Electrical and Computer Engineering Department, The University of Texas at Dallas, Richardson, TX 75080, USA

E-mail:{yxz153430, gxm112130}@utdallas.edu

Abstract—The Spectre vulnerability, which has been found in
a variety of processors, enables attackers to take advantage of
speculative execution in modern computer architectures to access
unauthorized memory content through temporal side channels.
Herein, we propose a hardware-based defense mechanism that
can detect Spectre attacks by utilizing the profile of a small frac-
tion of malicious program execution. More specifically, we focus
on malicious attempts to read data from theoretically inaccessible
memory space. The corresponding instruction sequence is divided
into consecutive windows, from which a performance counter-
based tracker extracts descriptive features. These features are,
then, processed by a trained machine learning model to analyze
program behaviors and identify suspicious ones. Our experiment
shows that Spectre attacks on thirteen vulnerable purpose-
built victim code patterns can be detected by our system.
Additionally, testing with benign benchmarks demonstrates that
our framework is able to distinguish Spectre attacks from normal
behavior.

I. INTRODUCTION

As online applications and services have become an in-
dispensable part of our society, our private data has also
become the target of intense cyber-attacks. Malware is ma-
licious software that is able to compromise security checking
strategies and bypass defense mechanisms to launch Denial-
of-Service (DoS) attacks or steal private data. Recently, the
Spectre attack [1] demonstrated the ability to access private
information without possessing appropriate privileges. Instead,
it does so by leveraging a side-channel found in speculative
execution which, essentially, constitutes a violation of the
memory isolation property. Accordingly, methods for mon-
itoring program execution and identifying behavior that is
related to the launch of a potential Spectre attack are of
great value. Generally speaking, defending against the Spectre
attack can be achieved by inserting fence instructions before
any speculative execution. However, this straightforward way
which disables the branch predictor causes large performance
overhead [2]. Thus, in most Spectre-defense solutions, the
effective fence insertion strategy is applied only after Spectre
behavior or vulnerabilities have been detected.

Current Spectre attack detection and defense mechanisms
can be categorized into software-based methods and hardware-
based methods. Binary analysis-based methods, such as oo7
[3] and spectector [4], have been developed in the former
category. These methods utilize binary analysis to protect
potentially vulnerable parts of binaries and detect tampered
speculative memory accesses. However, binaries have to be
screened before being executed; thus, these methods cannot

detect or take immediate action against an on-going Spectre
intrusion.

On the other hand, since Spectre attacks which target specu-
lative execution have to be launched on processors, hardware-
based defense methods that block Spectre execution by taking
advantage of its special cache-related behavior can also be
devised. Yan et al. [5] proposed InvisiSpec, which detects
data loads that might violate memory consistency and utilizes
an extra buffer wherein it stores potentially unsafe loaded
data. A similar strategy, which involves the use of a separate
storage space, can be found in [6]. In another architecture
design named DAWG [7], the cache side-channel is blocked
by partitioning cache ways to limit data leakage and by
providing strong isolation across protection domains. Despite
their effectiveness, these hardware-based methods are designed
to either exclusively or mainly defend against Spectre attacks.
This limits their utility towards general security-related tasks,
since they are not able to detect malicious behaviors other than
Spectre without additional hardware modifications.

In order to address these shortcomings, we propose a
hardware-based methodology that (i) performs real-time Spec-
tre attack identification during its execution and does not
require any markers or modifications in binaries, and (ii)
utilizes a machine learning-based method to analyze program
behavior, which can also be applied toward tasks such as
workload forensics and process identification. To achieve these
goals, instead of relying on memory hierarchy modifications,
we focus on instructions of a program and divide its execution
flow into separate concurrent small and large windows. More
specifically, a small window contains short-term execution
information, while a large window maintains long-term execu-
tion records. Descriptive features can be extracted from both
types of windows and further analyzed with machine learning
algorithms in order to detect an on-going Spectre attack.

To build a model that (i) combines short-term and long-
term execution information, (ii) exhibits great generalization
ability (i.e., performs well on previously unseen data), and
(iii) learns from complex relationships among features, we
follow the successful paradigm of applying the Wide-&-Deep
[8] approach in recommendation systems. In this approach,
wide linear models and deep neural networks are jointly used
to make predictions. In our work, we modify the Wide-&-
Deep model to fit our task, where short sequences of features
extracted from successive small windows are handled by the
‘Deep’ part, while the feature vector of the large windows

1

20
20

 A
sia

n
Ha

rd
w

ar
e

O
rie

nt
ed

 S
ec

ur
ity

 a
nd

 T
ru

st
 S

ym
po

siu
m

 (A
sia

nH
O

ST
) |

 9
78

-1
-7

28
1-

89
52

-9
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 |

 D
O

I:
10

.1
10

9/
AS

IA
N

HO
ST

51
05

7.
20

20
.9

35
82

55

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:45:00 UTC from IEEE Xplore. Restrictions apply.

is processed by the ‘Wide’ part. Our work is evaluated on a
modified version of gem5, an open-source, multi-architectural
simulator, using Mibench as benign workloads (harmless pro-
grams). Experimental results gathered from applying attacks
on variants of Spectre victim codes show an overall detection
accuracy of 99.8% when the Wide-&-Deep model is deployed.

II. RELATED WORK

Spectre, as a type of attack that exploits speculation, con-
trols the branch predictor to speculatively execute code that
will read data stored in illegal addresses before the jump con-
dition is checked. The attack achieves this objective by forcing
the branch predictor to make consistent correct predictions , so
as to predispose the branch predictor toward making the same
decision for the coming branch. Although illegal speculative
executions will be blocked and control flow will be directed
back to legal memory space right after an invalid cache
access, by doing so the attack will have already successfully
stored sensitive data in the cache. These data are stored as
addresses, instead of their corresponding content; nevertheless,
this provides a temporal side-channel for reading their value,
as accessing these addresses whose value constitutes secret
data is now much faster than un-cached addresses. A variety
of defenses have been proposed to identify one or several of
the Spectre steps introduced above. In general, these methods
can be categorized into software-based and hardware-based.

A. Software-based Approaches

Microsoft’s Visual C++ compiler offers a Spectre mitigation
option, Qspectre [9], to enforce serial execution in binaries by
inserting lfence instructions in detected victim locations.
Retpoline [10] is also able to mitigate Spectre vulnerabilities
in compiling stages. It replaces possibly unsafe indirect calls
with a Retpoline sequence preventing the CPU from jumping
to predicted targets. The method in [3] applies a binary
analysis [11] which utilizes taint analysis, address analysis and
speculation modeling to detect potentially vulnerable codes
in binaries and insert fences to block speculative execution,
which is the necessary condition of launching Spectre attacks.
These methods, which analyze code or compiled binaries
before being executed, are effective in defending against one or
multiple Spectre variants; however, they are not able to detect
the launch of a Spectre-attack after they have been applied.

B. Hardware-based Approaches

In contrast to software-based methods, hardware-based de-
fense mechanisms that mitigate Spectre by interfering with
critical stages of its attack can be applied during program
execution. Among the hardware-based solutions that have
been proposed, the implementations in [5] and [6] add extra
buffers to the micro-architecture. In the former (InvisiSpec),
instead of directly committing changes to cache hierarchy,
potentially speculative loads are stored in a separate buffer
which makes them invisible to other parts of the system. This
temporary invisibility property of this data is enforced until it
has been validated as a safe load. In the latter (SafeSpec), a

Logging
Module

Window
Division

Feature
Extraction

Software

Hardware

experiment
objective

analysis
module

Feature
Extraction

Feature
Concatenation

Feature ExtractionLarge Window

Small Window

Figure 1: Overview of the proposed system architecture.

similar strategy is followed, using a secure buffer to handle
speculative state. If speculative instructions are identified as
commitable, content stored in this buffer can be moved to
normal structures. On the other hand, if a speculative exe-
cution fails, e.g., a branch predictor has given an incorrect
prediction, the speculative side-effects are eliminated and no
information leaks to normal structures. Methods that modify
cache structure have also been considered. DAWG [7] provides
a cache way partitioning scheme, in which the cache is di-
vided into different security domains to prevent sensitive data
leakage. However, these mechanisms are exclusively designed
for mitigating Spectre attacks and require specialized micro-
architectural changes; thus, they cannot be directly applied to
other security tasks that are not related to speculative execution
or cache access. Machine learning-based method [12] can
also effectively detect Spectre by applying neural network in
hardware performance counters analysis; nevertheless, it is not
generalized for tasks other than Spectre detection.

III. METHODOLOGY

An overview of the proposed system architecture can be
found in Figure 1. A hardware-based logging module collects
data directly from low-level hardware to avoid any software-
based tampering. As mentioned in the previous section, Spec-
tre attacks are launched through two stages, namely misleading
the branch predictor and off-loading the secret data. The
number of execution cycles required for each stage varies,
depending on the platform being compromised as well as the
amount of data to be off-loaded. This uncertainty makes it
challenging to establish a fixed observation window wherein
all descriptive information from both stages can be extracted.
In fact, patterns of malicious behaviors extracted from a
relatively short execution profile may be similar to those
of benign behaviors. For example, frequent array boundary
checks and mis-predicted speculations can also be found in
mathematical calculation programs. This does not imply that
the information extracted from short observation windows
cannot be used for detecting Spectre attacks. It does, however,
imply that such information may need to be placed in broader
context, thereby necessitating combination with information
extracted from a larger scale observation window. Therefore,
our approach employs a window-division mechanism that
splits the instruction flow into large and small windows.

2

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:45:00 UTC from IEEE Xplore. Restrictions apply.

Descriptive features are continuously extracted from both of
these window types and analyzed by a machine learning model
which is trained to perform Spectre behavior identification. For
the purpose of training, the collected feature vectors for each
window are sent to a separate secure software analysis module,
where optimization of the model and selection of appropriate
weights are performed. After training, the analysis module
can be deployed directly on chip as a separate hardware
module, thereby eliminating the need for offloading data across
platforms. Once a malicious Spectre behavior is detected,
fence instructions can be inserted before branch speculative
execution in the current process. We discuss our algorithm in
detail in the following sections.

A. Logging Mechanism

In order to reduce the amount of data to be transmitted and
processed, we utilize a counter-based mechanism that summa-
rizes the number of chosen events within a fixed number of
clock cycles. As a single event (e.g., execution of a certain
type of instruction) is counted independently of its context,
this counter-based mechanism does not require analyzing re-
ordered instruction sequences due to speculative execution.
Previous successful application of counter-based methods in
online malware detection and workload identification [13],
[14] have revealed the effectiveness of analysis based on
program signatures extracted from counters of architecture-
level events. In order to generalize our work to other x86
machines, instead of tracking control signals that may differ
among platforms, e.g., cache misses and system exceptions,
we only extract features related to instructions at the fetch
stage. Apart from zero-operand instructions, such as nop and
cflush, most instructions can be divided into two parts,
namely operators and operands. The former determine the
operation type, e.g., addition, while the latter specify the data
to be manipulated and their addressing types.

In practice, code snippets of Spectre attacks can be hidden
in any normal program instead of being a complete process by
themselves. Thus, it cannot be guaranteed that similar memory
space or registers are allocated to the same snippets; instead,
these can hide in different programs during compilation.
In other words, the compiled Spectre attack function can
have the same functionality with various addresses and/or
register usage. Based on this premise, we focus exclusively
on operators and discard operand information, which also
helps in reducing the amount of logged data. A hash-based
structure then converts operators into a corresponding index
for the following step of feature extraction, which provides
each operator with a unique identifier.

B. Window Division Mechanism

Our Spectre detection analysis is performed using features
extracted at the granularity of a window. In our system, all
basic small windows share the same window size which is
the number of instructions fetched within a single window.
The same principle is also followed for large windows. Our
window extraction mechanism is geared toward collecting both

Process Instruction Flow

Small Window

Large Window

Figure 2: Instruction flow divided into two window types.

Instruction

Operators Hash

operator0 code0

operator1 code1

…… ……

operatork-2 codek-2

operatork-1 codek-1

Index Feature Vector

code0 counter0

code1 counter1

…… ……

codei counteri +1

…… ……

codei

Figure 3: Feature vector generation for each window.

long-term and short-term information. Features are extracted
separately from each window type.

To avoid using extra buffers in our system, the construction
of both small and large windows follows the First In, First
Out (FIFO) rule that a new window will not be initialized
until the previous one has been completely handled by the
feature extraction module. An example is given in Figure 2,
where there is no overlap between neighbouring windows. We
note that large windows do not result in a larger feature vector
size, as the same counter-based mechanism is applied to both
types of windows. In each run, a random offset, as well as the
starting point of the initial window and the feature extraction,
are added at the beginning of each process to eliminate any
possible bias introduced by the compiler.

C. Feature Extraction

As mentioned above, large windows and small windows
contain execution information collected from different time
scopes. This makes it feasible to extract features reflecting both
long-term and short-term execution history. Herein, we apply
two operator counters to instructions captured in both types of
windows and we use operator frequencies summarized in these
counters as our basic features. This counter-based mechanism
has an advantage over raw instructions when the window size
exceeds a threshold value. Given the total number of operator
types Ntype, the minimum number of bits required to represent
an operator sequence is ceil(log2 Ntype)×Nw, where Nw is
the size of a window and ceil represents the ceiling operation.
On the other hand, the bits needed to construct a vector of
operator frequencies is Ntype×ceil(log2 Nw). The threshold
Nw can be determined experimentally, seeking to minimize
the logging overhead of the counter-based mechanism. An-
other bottleneck of applying a smaller window size is the
computational time, i.e., the time elapsed during data analysis,
which should be less than the time for constructing a window
to avoid the need for a buffer to cache unprocessed data.

Another advantage offered by the counter-based mechanism
is that the feature vector can be constructed during execution
and does not require utilization of a hardware structure to
store previous instructions. As shown in Figure 3, a hash

3

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:45:00 UTC from IEEE Xplore. Restrictions apply.

windowa

i j k

Feature
extraction

Feature
extraction

Feature
extraction

Feature
extraction

i
j

k

a

Feature Vector i

Feature Vector j

Feature Vector k

Feature Vector a Feature Sequence (i, j, k) F.V. a

Small Window

Large Window

Figure 4: Feature concatenation strategy.

table is employed to decode each operator into a unique
identifier, which will be used as the index of the operator
counter. Contrary to previous window-like work [15], [16],
where an instruction is not processed until a complete window
is generated, here an instruction can be directly handled by the
decoder and flushed immediately thereafter.

Additionally, we stack together multiple feature vectors
of small windows to achieve a feature vector sequence, in
order to record the dynamic pattern of execution among
longer sequences of instructions. Figure 4 gives an example
where, besides one set of counters capturing the finger-
print of each small window, another two sets of buffers are
used to store the features of the last two small windows.
Assuming that the length of feature sequences is K and
that the feature vector of the ith window is F.V.i = <
Op.0, Op.1, Op.2, ..., Op.Ntype−1 >, a feature vector sequence
< F.V.i, F.V.i−1, F.V.i−2, ..., F.V.i−k+1 > is generated for
every K small windows. Also, another set of counters capture
a fingerprint F.V.i for each large window.

D. Analysis Module

As our Spectre detection method is performed at the
granularity of a single window, a basic window identifier is
required to perform binary classification using the features
extracted from each window, with the positive class corre-
sponding to Spectre-related behavior. The features extracted
from the previous modules consist of two parts, namely feature
vector sequences from small windows and feature vectors
from large windows. Previous efforts [13], [14] employing
simple machine-learning models, e.g., linear regression, Sup-
port Vector Machines, etc., have been shown to be quite
effective in identifying malicious programs. Moreover, these
straightforward types of machine learning algorithms have
been able to overcome the problem of over-fitting caused by
insufficient or unbalanced training datasets. In this context, this
could happen, for example, because the occurrence frequency
of malicious programs is much lower than that of normal
programs, making it hard to collect large amounts of pertinent
training data. However, these simple prediction models are
unable to capture the more subtle and intricate relationships
among short-term and long-term features, therefore neces-
sitating more complex models. Similar prediction tasks can
be found in research dealing with recommendation systems,
such as friends recommendation in social networks and news-
pushing systems. Using the nomenclature of these domains,
our features are categorized into wide and deep types, based on

LSTMLSTM LSTMLSTM

Output

Feature Vector

……

Logistic
Regression

F.V. i F.V. i+1 …… F.V. i+k-2 F.V. i+k-1

Wide ModelDeep Model

Output Output Output

Figure 5: Structure of our model.

scope and complexity. Therefore, in our work we use Google’s
Wide-&-Deep [8] scheme, which handles these feature types
with different machine learning models.

To handle feature vector sequences collected from small
windows, we utilize a Recurrent Neural Network (RNN) with
Long Short-Term Memory (LSTM) [17], which has been
widely applied in Natural Language Processing (NLP) tasks.
As shown in Figure 5, the output vector of RNN, together
with the dense feature vector collected from the previous
large windows, are handled by a logistic regression model, the
output of which indicates the likelihood of a Spectre attack.
We note that the dimension of the RNN output vector impacts
the overall performance, as vectors of larger dimensions carry
more information than smaller-dimension ones, a point which
we further explore in our experiments.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate experimentally our Spectre
attack identification method and we explore optimal model
configuration for this task. Our experiments are conducted on
gem5, a multi-architecture simulator configured to work with
branch prediction and out-of-order execution functionality. Our
experimental results demonstrate ability of detecting Spectre
attacks with high accuracy. Additionally, compared with pre-
vious work exclusively concentrating on Spectre attacks, our
system can be extended to other security-related tasks.

A. Minimum Initial Window size

In our experiments, we use Spectre attacks with thirteen
different vulnerable code patterns [1] as our target to protect
from, alongside the MiBench testbench suite as benign pro-
cesses. Applications in the Mibench suite are executed with
several different arguments so as to eliminate any possible
bias introduced by a fixed execution pattern. Since gem5 is
an open-source project, it provides us with great flexibility
to implement the logging module and the feature extraction
module needed for our method. Here, we embed a tracer
to track the instruction flow and a counter to record the
total number of instructions that have been handled by the
counter-based feature extractor. Each time an instruction is
fetched from memory or cache, it raises a signal to the feature
extraction module, instructing it to decode its operator and
increment the corresponding counter. Data analysis and result
evaluation are performed with TensorFlow on Python 3.6.

The x86 ISA is designed to support legacy instructions,
which are no longer being used. Therefore, instead of es-
tablishing our hash-table through the x86 specification, we

4

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:45:00 UTC from IEEE Xplore. Restrictions apply.

0.9

0.92

0.94

0.96

0.98

1

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Window Size (× 1000) AUC Accuracy

Figure 6: Accuracy and AUC of wide model.

focused only on the instructions that are commonly used
by modern compilers. To identify these instructions, we first
used a randomly-selected 10% of collected training samples to
initialize the hash-table before using the operator counters. We
collected their execution profile and identified a total of 326
types of operators that appeared during execution. A default
operator type was also added to handle operators that have not
been covered by the above selection process. Combining the
equations discussed in Section III-C, we are able to estimate
the minimum Nw by solving the inequality:

ceil(log2Ntype)×Nw < ceil(log2Nw)×Ntype (1)

where ceil(log2 Ntype) is equal to 9. The least value of Nw,
i.e., 512, is chosen as the first initial value candidate. On the
other hand, the average run time of processing a set of feature
vectors is 0.62us which sets another constrain on the window
size. Assuming a clock frequency of 3.0 GHz and cycles per
instruction (CPI) to be 1, the minimum number of instructions
required to build a small window is estimated to be 1.8× 103.
Thus, to simplify the design of the counter, we adopt the
closest power of two, i.e., 2048, as our initial window size, so
that we leave adequate margin for data processing.

B. Identification Accuracy

There are several parameters in our system which need to be
optimized, including the sizes of two window types, the output
dimension of the RNN and the length of the sequential input,
making it unrealistic to enumerate and experiment with all
possible configuration options. Thus, we first seek the optimal
size for the large window by exclusively evaluating the ‘Wide’
part of our model and then we seek the optimal set-up for the
‘Deep’ part.

In this initial experiment, we collected a dataset containing
32 Spectre and 68 Mibench execution profiles, where 70% of
the samples are selected as the training set and the rest are
used as the testing set. During dataset splitting, we enforced
the constraint that execution profiles collected from the same
program are not allowed to appear in both the training and the
testing dataset, in order to avoid the controversial snooping
situation where a program used for evaluation of the model
has already been seen during the model training stage. Samples
collected from Spectre and Mibench are labeled as positive and
negative samples, respectively.

Our wide model uses a logistic regression classifier to
process the large window features collected from Spectre
attacks. In order to assess the robustness of our method against
an unbalanced dataset, we use Area Under the ROC Curve
(AUC) and accuracy as our evaluation metrics. These two

0.9

0.92

0.94

0.96

0.98

1

2 5 8 11 14 17 20

A
cc

u
ra

cy

Sequence Length
16 32

64 128

Figure 7: Accuracy and AUC of deep model.

metrics are summarized in Figure 6 for each window size. The
results reveal that the overall Spectre identification accuracy
starts to improve significantly once the window size exceeds
1.4× 104, but stops improving after it reaches 3.8× 104. It
can also be noticed that the overall performance slightly drops
when the window size is greater than 4.4× 104. Therefore, the
most effective value of 3.8× 104 is adopted as our optimal
size for large windows.

Finding the optimal configuration for the deep part of our
model follows a different strategy. The output dimension of the
RNN determines the bottleneck of the information that should
be carried, i.e., a larger output dimension can represent longer
sequences and/or larger input feature vectors. We seek the
minimum output dimension and its corresponding sequence
length for the deep part of our model by changing sequence
lengths with various fixed output dimension setups. Our goal
and expectation is to achieve similar or better performance
than the logistic regression model used in the wide part. The
sequence length here refers to the number of consecutive
feature vectors which we rely on to make a prediction. The
unified size of each small window is set to 2048, the minimum
possible window size required for run-time processing of the
data, as per our previous analysis. Since it is not realistic to
go over all possible combinations of output dimension and
sequence length, we manually selected 16, 32, 64 and 128
as candidate output dimensions. The testing results are shown
in Figure 7. In all cases, except for output dimension of 16,
prediction accuracy reaches higher than 97.2% when sequence
length is set to 8. Thus, the second smallest dimension of
32 and a sequence length of 8 are adopted as the optimal
configuration for the deep model.

Next, we combine the wide and deep model parameter
choices from the above fine-tuning process to build a more
effective and representative model that memorizes both long-
term background in its wide parts and short-term changes in
its deep parts. The output vector of the deep model and the
input feature vector of the wide model jointly identify Spectre-
related behaviors through a logistic regression output layer. We
conducted multiple iterations of our experiment, each time
randomly selecting 70% of the processes in the dataset as
our training set, while keeping the remaining 30% as the
testing set. Results from 5 random iterations with the same
model structure are summarized in Table I. The table provides
the accuracy metric (i.e., correctly predicted samples over all
predictions), the false positive (FP) and the false negative
(FN) rates. We remind that, in our case, Spectre samples
are defined as the positive class. As may be observed, this

5

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:45:00 UTC from IEEE Xplore. Restrictions apply.

straightforward method of combining the wide and deep parts
provides significant improvement over using separate models.

C. Model Generalization

Besides running experiments exclusively on detecting Spec-
tre, we also applied our model in detecting other behaviors,
in order to assess its capability to handle more general tasks.
Using the same dataset collected from running MiBench and
Spectre, we discarded malicious Spectre samples and sought
to perform process identification on the rest of the samples.
More specifically, in each experiment iteration, a randomly
selected process is labeled as our detection target (i.e., positive
samples) and the other processes are labeled as negative
samples. A Wide-&-Deep model of similar structure to the one
utilized for Spectre detection is, again, employed in this binary
classification problem, to evaluate its generalization ability.

The accuracy of this approach for identifying each of the
processes that we experimented with is summarized in Figure
8. As may be observed, our model exhibits excellent pro-
cess identification performance, reaching an overall accuracy
of 94.3%. We also investigated the source of the accuracy
loss and concluded that it stems from our feature extraction
stage, where we collect features from execution profiles of
all privileges, without distinguishing system-level instructions
from user-level ones. Execution of system calls, such as
basic I/O function printf, have a similar execution pattern
in different processes, thereby contributing to this drop in
classification accuracy. Despite this drop, the high accuracy
achieved confirms that, besides Spectre detection, our model
can assist with other security-related tasks as well. Thus, it
outperforms previous solutions which specifically target only
Spectre and cannot be used for more general tasks.

V. CONCLUSION

We discussed the feasibility of performing hardware-based
real-time detection and defense against Spectre attacks. Com-
pared with previous hardware-based approaches that target
exclusively Spectre attacks, our method can be generalized and
utilized for other security-related tasks, such as process iden-
tification. Furthermore, unlike software-based methods, which
perform detection before malicious code has been compiled or
executed, the proposed method is a run-time solution and can
be applied during code execution. Our system extracts features
from the instruction flow directly through the hardware and
subsequently constructs small and large windows. Features
extracted from these windows are, then, analyzed further
through trained Wide-&-Deep machine learning models, in
order to identify the presence of any Spectre-related behaviors.
We demonstrated our method on a modified version of a multi-
architectural simulator, i.e., gem5, running malicious programs
that contain the Spectre attack, as well as benign code from the
Mibench benchmark suite. Overall, correct Spectre behavior

Table I: Summary of accuracy and FP/FN rates of our model
Test # average test 1 test 2 test 3 test 4 test 5
Accuracy 99.76% 99.60% 99.81% 99.72% 99.86% 99.80%
FP Rate 0.43% 0.19% 0.18% 0.08% 0.15%
FN Rate 0.26% 0.18% 0.25% 0.11% 0.22%

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98
1

Figure 8: Accuracy of process identification.

identification accuracy of 99.8% is achieved when short-term
and long-term counter-based features are jointly considered by
our method.

REFERENCES

[1] P. Kocher, “Spectre mitigations in microsoft’s c/c++ compiler,” https:
//www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html.

[2] J. E. Smith, “A study of branch prediction strategies,” in Proceedings
of the 8th annual symposium on Computer Architecture, 1981, pp. 135–
148.

[3] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and A. Roychoud-
hury, “oo7: Low-overhead defense against spectre attacks via binary
analysis,” arXiv preprint arXiv:1807.05843, 2018.

[4] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“Spectector: Principled detection of speculative information flows,”
arXiv preprint arXiv:1812.08639, 2018.

[5] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Tor-
rellas, “Invisispec: Making speculative execution invisible in the cache
hierarchy,” in 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2018, pp. 428–441.

[6] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. Abu-Ghazaleh, “Safespec: Banishing the spectre of a
meltdown with leakage-free speculation,” in 56th ACM/IEEE Design
Automation Conference (DAC), 2019, pp. 1–6.

[7] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative execution
processors,” in 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2018, pp. 974–987.

[8] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir et al., “Wide & deep
learning for recommender systems,” in Proceedings of the 1st workshop
on deep learning for recommender systems, 2016, pp. 7–10.

[9] A. Pardoe, “Spectre mitigations in msvc,”
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc.

[10] P. Turner, “Retpoline: a software construct for preventing branch-target-
injection,” https://support.google.com/faqs/answer/7625886.

[11] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary
analysis platform,” in International Conference on Computer Aided
Verification, 2011, pp. 463–469.

[12] J. Depoix and P. Altmeyer, “Detecting spectre attacks by identifying
cache side-channel attacks using machine learning,” Advanced Micro-
kernel Operating Systems, vol. 75, 2018.

[13] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised anomaly-
based malware detection using hardware features,” in International
Workshop on Recent Advances in Intrusion Detection, 2014, pp. 109–
129.

[14] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware detection
with performance counters,” in Proceedings of the 40th Annual Interna-
tional Symposium on Computer Architecture (ISCA), 2013, pp. 559–570.

[15] Y. Zhang, L. Zhou, and Y. Makris, “Hardware-based real-time work-
load forensics via frame-level tlb profiling,” in 37th IEEE VLSI Test
Symposium (VTS), 2019, pp. 1–6.

[16] Y. Zhang, L. Zhou, and Y. Makris, “Hardware-based real-time workload
forensics,” IEEE Design & Test, vol. 37, no. 4, pp. 52–58, 2020.

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

6

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:45:00 UTC from IEEE Xplore. Restrictions apply.

