1C-4s

SPIN-PAC: Test Compaction for Speed-Independent Circuits

Feng Shi
Electrical Engineering Dept.
Yale University
New Haven, CT 06520, USA

Abstract— SPIN-PAC is a static test compaction method for
Speed-Independent circuits. We demonstrate how the test sets
can be compacted by combining multiple consecutive test vectors
within a test sequence into a vector pair of higher Hamming dis-
tance, and by eliminating or pruning independent test sequences.
We discuss the exponential nature of optimally solving this prob-
lem, we propose an efficient algorithm to approximate it, and we
evaluate its performance through experiments.

|. INTRODUCTION

Asynchronous circuits have recently attracted increased interest
because of their potential for high performance, low power, design
reusability, and elimination of clock distribution and skew prob-
lems. Widespread acceptance of asynchronous circuits, however, re-
quires the development of efficient CAD tools to support their de-
sign and test. Yet such tools are neither as abundant nor as effi-
cient as their counterparts for synchronous circuits. In addition, sev-
eral classes of asynchronous circuits are developed based on different
timing assumptions, each requiring customized design and test algo-
rithms. In this work, we focus on test methods for the class of Speed-
Independent circuits and, more specifically, we address the problem
of test compaction.

Speed-Independent circuits [1] are a class of asynchronous circuits
which are guaranteed to work under the unbounded gate delay model,
or regardless of gate delays, assuming negligible wire delays. Speed-
Independent circuit design requires explicit knowledge of the behav-
ior protocol allowed by the environment, normally specified in the
form of signal transition graphs (or Petri Nets). However, no restric-
tions are imposed on the order or speed that inputs, outputs, and state
signals change, except that they must behave according to the proto-
col.

Recently, a number of efforts have been devoted to Speed-
Independent circuit testing. In [2], SPIN-SIM, a fault simulator
for Speed-Independent circuits was developed, which adopts a 13-
valued algebra, maintains the relative order of causal signal transi-
tions, and unfolds time frames judiciously in order to improve simu-
lation accuracy. In [3], a random test generation algorithm for Speed-
Independent circuits was developed, which reduces the probability
that the circuit finds itself in non-deterministic states and helps it
recover when this happens. In [4], SPIN-TEST, a simulation-based
gate-level ATPG system for Speed-Independent circuits was devel-
oped, whose core engine is an A* search algorithm employing an ef-
ficient cost function to guide the deterministic test pattern generation
phase.

However, as we explain in Section I, in an effort to deal with the
particularities of asynchronous circuit test generation and to improve
ATPG speed, these test generation methods yield test sets that are
often longer than necessary. The underlying reason is that they gen-
erate a set of independent test sequences that consist of consecutive
test vectors that are only allowed to be unit Hamming distance apart.
To address this problem, we developed an efficient post-generation
(static) test compaction method in order to reduce the number of test

0-7803-8736-8/05/$20.00 ©2005 IEEE.

71

Yiorgos Makris
Electrical Engineering Dept.
Yale University
New Haven, CT 06520, USA

vectors without sacrificing fault coverage. Our method, which is de-
scribed in Section 111, employs two techniques: combination of mul-
tiple single-input change (SIC) vectors into a multiple-input change
(MIC) vector pair, and re-ordering of independent test sequences,
which results in their pruning or elimination. The proposed algorithm
first employs a bidirectional search within each test sequence, which
yields multiple alternative subsequences of smaller sizes, wherein SIC
vectors are merged into MIC vectors. Then, the algorithm selects a set
of subsequences of minimal total length, such that all faults detected
by the original test sequences are still detected. This problem is for-
mulated as an integer linear program (ILP), which is approximated
through linear programming and randomized rounding. Experimen-
tal results demonstrating the efficiency of the proposed method are
provided in Section IV.

1. MOTIVATION

Test patterns generated for asynchronous circuits have to be
hazard-free, or the circuit may enter a nondeterministic state and the
fault will not be detected. In [3, 4], random and deterministic meth-
ods were developed to generate hazard-free test patterns for Speed-
Independent circuits. In both methods, SPIN-SIM [2], an accurate
fault simulator is used to guarantee that the patterns are indeed hazard-
free. Furthermore, in [3], the random test generation algorithm re-
stricts tests to SIC vectors which have a significantly lower probabil-
ity of invoking a hazard. In addition, it monitors the circuit state and
automatically resets the circuit once it goes into a nondeterministic
state, in order to avoid generating useless test patterns. Therefore, the
generated test patterns are a set of independent test sequences, which
can be applied in any order. Similarly, in the deterministic test gen-
eration algorithm presented in [4, 5], only SIC vectors are considered
in order to not only avoid non-deterministic states, but also to reduce
the search space and accelerate the ATPG process. Although this re-
striction does not sacrifice fault coverage, as demonstrated in [3], it
often leads to longer test sequences. Furthermore, test sequences are
generated for a targeted fault and the process is repeated for the next
fault from the reset state. Consequently, vectors are again grouped
into independent test sequences, which can be shuffled arbitrarily.

These two features, namely the independence of test sequences and
the SIC restriction for consecutive vectors within each test sequence,
provide a lot of opportunity for test compaction. This can be demon-
strated through a simple Speed-Independent circuit example. Suppose
that we are generating test patterns for the example circuit in Fig. 1,
which has similar functionality to a D flip-flop. Assume that the initial
state is phi = 1 and D = 0, and that all internal feedback lines are at
0. The test sequence generated by SPIN-TEST for the fault [Q_C2]
stuck-at one is shown in Fig. 2(a). Since the initial state of Q is zero,
we have to set @) to one and then to zero through a test sequence of
seven SIC vectors, including initialization, in order to detect this fault.
But in fact, the fault can still be detected if vector 5 is eliminated and
the two SIC vectors are replaced by a single MIC vector, as shown in
Fig. 2(b). The possibility of eliminating or pruning independent test
sequences can also be illustrated using this example. Suppose that
we generate three test sequences to detect the three faults: @ stuck-at

ASP-DAC 2005

[yl C1]

[yl_C2]

’tD mapl

Fig. 1. Example Speed-Independent Circuit

No. phi D No. phi D

1 10 -

2 11 o100

3 0 1 ;; é i
SIC seq. 4. 1 1 1

5 1 0 -

6 0 0 . 00

7 10 6: 10

Fig. 2. Compaction of SIC Using MIC Vectors

TABLE
TEST SEQUENCE PRUNING/ELIMINATION
Q/T [D/T [WiCi/t
S1 0 0 1
Sa 0 3 1
S3 2 6 1

1, D stuck-at 1, and [y1_C1] stuck-at 1. The first sequence, Si, is
10, the second one, S2, is 10 — 00 — 10, and the third one, Ss,
is the one shown in Fig. 2(b), where the first bit represents the value
of phi and the second bit represents the value of D. The faults that
each sequence can detect are illustrated in Table I. A positive number
represents the vector within the corresponding sequence after which
the fault is detected, while a zero implies that the fault cannot be de-
tected by the sequence. The total cost of these three sequences is 10
vectors (i.e. the sum of the maximum entries on each row). Clearly,
the fault detected by sequence S; can also be detected by either one
of the other sequences, hence S; can be dropped. Furthermore, fault
D/1 can also be detected by Sa, so the last 4 vectors of Ss can be
pruned. As a result, we can keep only the sequence S> and the first
two vectors of S3, which reduces the total number of vectors to 5.
Notice that if we kept only S3, all faults would still be detected but by
a longer test sequence, i.e. 6 vectors.

I11. PROPOSED TEST COMPACTION METHOD

Based on the above observations, given a set of test sequences
there is a large number of possible subsequences of interest. The
compaction problem at hand is to select among them a set that pre-
serves the fault coverage of the original sequences and, at the same
time, minimizes the total number of vectors. The proposed test se-
quence compaction method for asynchronous circuits takes place in
two phases. In the first phase, each test sequence is processed and a
number of alternative subsequences are generated, wherein SIC vec-
tors are combined into MIC vectors. In the second phase, a set of
subsequences of minimal total length is selected from the expanded
set of subsequences generated in the first phase.

A. Compacting SIC Sequences Using MIC Vectors

The process of replacing SIC subsequences with MIC vectors en-
tails finding which SIC vectors can be skipped. Skipping one or more

72

Select a sequence S of n SIC vectors
{V1, V2, ...Vn} (n>2)

v

Generate a subsequence {V1, V2} and
put it into the queue

Is the queue empty?

No

Dequeue a subsequence {V1, ..., Vt}

Output {V1, ..., Vt}

Generate the subsequence
S1{V1, .., Vt, Vt+1}
and perform fault simulation

I

Generate the subsequence
S2{V1, ..., Vt-1, Vt+1} (skip Vt)
and perform fault simulation

Does S2 lead to the same
response in the good circuit as S1?

Put S2 into the queue

Does S2 detect the
same faults as S1?

\ 4
Parse S1 backwards
(Fig. 5) to compact further

v

Put the generated sequence(s)
into the queue

<

Fig. 3. Flowchart of Forward Compaction

SIC vectors may lead to several consequences. The best case is when
no hazards are invoked and all faults originally detected are still de-
tected. In this case, the SIC vectors can be summarily skipped. The
worst case is when hazards are invoked and the circuit is led to an
undetermined state, hence many —if not all- faults detected originally
cannot be detected any longer. In this case, the new test sequence
is, typically, ineffective and should be discarded since it does not as-
sist test compaction. In other cases, skipping some SIC vectors does
not influence the final state of the circuit, but some originally de-
tected faults may not be activated and/or observed, so they are not
detected any longer. In this case, both the original and the compacted
sequences are kept, since they are both candidates for being selected
in the final set of subsequences of minimal length during the second
phase of the algorithm.

The most straightforward method to compact a SIC sequence with
MIC vectors would be to try all possible subsequences generated by
skipping any possible combination of SIC vectors. Given a SIC se-
quence of n vectors, the first vector can typically not be skipped, since
it is an initialization vector. The last vector can also not be skipped,
since otherwise the sequence would be incomplete. Therefore, the
total number of possible subsequences is 2"~ 2, which is exponential
in the length of the sequence. To avoid examining all possible sub-
sequences, which would be impossible for a long test sequence, we
propose an approximation algorithm which is illustrated in Fig. 3.

Given a test sequence S = {Vi1, Va2, ..., Vo },n > 2, the proposed
algorithm first considers skipping V> by comparing the output/state
of the good circuit for subsequence S2 = {V1, V3} and subsequence

Reset+

Fig. 4. An Example State Diagram

S1 = {V1, Va2, Va}. If they are different, V> is not skipped and S> is
discarded, otherwise, S» is kept. In the latter case, fault simulation
is performed for S; and S» to see if S, can detect the same faults
as Sp. If so, Sy is discarded since Ss is shorter and can completely
replace S:. Otherwise, S is also kept. Subsequently, the algorithm
extends each stored subsequence by one vector and considers skip-
ping the second-to-last vector using the same procedure. This process
is repeated until all stored subsequences include the last vector in S.

When a subsequence whose second-to-last vector is not skipped is
stored into the queue, a backward parsing process takes place to fur-
ther skip consecutive SIC vectors. The need for this backward parsing
process is illustrated in the following example. Consider the partial
state diagram of an asynchronous circuit, shown in Fig. 4. As may
be observed, regardless of the relative rising order of signals a, b, and
¢, the circuit will eventually reach state S8. Assume that the circuit
is implemented such that when it is at state S0 and it receives a MIC
vector in which all of a, b, and c rise, it goes to state S8, therefore, the
three SIC vectors can be compacted by this MIC vector. However, if
the original subsequence is a+, b+, and ¢+, the first two vectors can-
not be compacted during the forward parsing phase of the proposed
method, since the circuit does not reach the same state with the input
a+, b+ as with the input b+, a+. Therefore, after b+ and c+ are
compacted and the next vector cannot be compacted, the proposed
method uses the backward parsing phase to compact a+.

The flowchart of the backward phase is illustrated in Fig. 5. When
the second-to-last vector cannot be skipped during the forward pars-
ing procedure, and before the subsequence is stored into the queue,
the backward parsing procedure is invoked. If the second-to-last
vector is MIC, which means that some SIC vectors must have been
skipped, the algorithm tries to further skip the third-to-last vector. If
the new sequence and the original sequence generate the same out-
put/state on the good circuit, the new sequence replaces the original
one. However, if the new sequence cannot detect the same faults as
the original one, the latter is also kept, since it may still be a potential
contributor to the best compaction result yielded by the second phase
of compaction. This procedure is repeated until no more consecutive
SIC vectors can be skipped. After the backward parsing phase, all
the resulting subsequences are stored into the queue, and the forward
parsing procedure resumes.

B. Selecting Among Independent Test Sequences

The first phase of the algorithm yields a number of independent
test sequences and the faults that each of them covers. The rest of
the problem is to select among them the set of minimal length that
detects all faults. This instance of test compaction was first formu-
lated in [6], where it is shown to be NP-hard and an approximate
solution is computed through Genetic Algorithms. While significant
levels of compaction within reasonable time are experimentally ob-
served, no indication of proximity to the optimal solution is provided

73

Given a sequence S={V1, ...,Vk-1, Vk}

s the second-to-last
vector a MIC?

Compute circuit state/output for S

A 4

Generate a new sequence S1 by skipping
the third-to-last vector

|

Compute circuit state/output with S1

Are the two circuit
sytputs/states the same?

Does S1 detect all the
faults detected by S?

A 4 End

Output S

Fig. 5. Flowchart of Backward Compaction

through this method. An alternative is described in [7], wherein an
exact method (i.e. not an approximation algorithm) that computes
the optimal solution using a set of problem-size reduction rules and
a branch-and-bound algorithm is proposed. Even though this algo-
rithm works well for most benchmarks, it also lacks any provable,
sub-exponential running time guarantee.

SPIN-PAC addresses these issues by employing the method pro-
posed in [8]. The problem is modelled as an integer linear program
(ILP), the polynomial time reduction rules of [7] are applied, and the
remainder problem is approximated through linear program relaxation
and randomized rounding [9].

IV. EXPERIMENTAL RESULTS

SPIN-PAC has been developed in C, based on the fault simulation
engine of SPIN-SIM [2] and on Ipsolve [10]. The input circuit netlist
is in ISCAS89 format and the stuck-at fault list can be defined through
a file or generated automatically by the tool. We experimented with
SPIN-PAC on a set of Speed-Independent circuits synthesized by Pet-
rify [11]. Experiments were performed on a workstation with dual
Xeon 1.7GHz processors and 1 gigabyte of RAM. For each bench-
mark, we generated a test sequence for each fault using the deter-
ministic test generation tool SPIN-TEST [4]. Then, SPIN-PAC was
applied to compact these test sequences. The results are illustrated
in Table Il. The name of each benchmark circuit is listed in the first
column and the number of faults in each circuit is listed in the sec-

TABLEII
TEST COMPACTION RESULTS

Circuit No. of No. of Tota Percentage of No. of Test Total Length Compaction | CPU
Name Faults Test Length Sequences Compacted Sequences of Tests Rate Time
Sequences | of Tests | Using MIC vectors (%) | After Compaction | After Compaction (%) (ms)
alloc-outbound 41 41 95 34.2% 3 11 88.4% 17
chul33 31 31 60 19.4% 3 8 86.7% 33
chul50 33 33 68 18.2% 2 6 91.2% 18
converta 34 34 80 11.8% 2 10 87.5% 18
dff 24 24 85 8.3% 1 7 91.8% 50
ebergen 44 44 108 9.1% 3 17 84.3% 101
half 15 15 24 0% 2 5 79.2% 18
hazard 32 32 88 34.4% 5 19 78.4% 17
mp-forward-pkt 34 34 66 8.8% 4 11 83.3% 17
mrl 87 87 256 27.6% 4 26 89.8% 1134
nak-pa 48 48 96 10.4% 4 12 87.5% 17
nowick 28 28 66 50.0% 2 8 87.9% 18
ram-read-shuf 55 55 115 40.0% 4 13 88.7% 68
rev-setup 25 25 54 36.0% 3 10 81.5% 17
rpdft 34 34 91 50.0% 5 14 84.6% 33
sbuf-ram-write 69 69 215 60.9% 6 21 90.2% 318
sbuf-send-ctl 56 56 139 19.6% 3 14 89.9% 101
seqd 63 63 168 14.3% 4 22 86.9% 268
vbeba 56 56 123 5.4% 2 9 92.7% 234
Average 24.1% 86.9%

ond column. Note that this number only includes the faults after g-
equivalent [12] collapsing and undetectable faults are excluded. The
third column presents the total number of test sequences generated
by SPIN-TEST to test every fault in each circuit, and the fourth col-
umn lists the total number of test vectors in these sequences. The
fifth column presents the percentage of test sequences for each circuit
wherein SIC vectors can be combined into MIC vectors during the
first phase of SPIN-PAC. For some benchmark circuits such as now-
ick, rpdft, and sbuf-ram-write, over half of the SIC test sequences can
be compacted with MIC vectors, but for other circuits such as half and
vbeba, only very few test sequences can be compacted with MIC vec-
tors. On average, about 24.1% of the test sequences can be compacted
with MIC vectors across all benchmark circuits. The total number of
test sequences and test vectors after the second phase of our method
are listed in the sixth and seventh column, respectively. The eighth
column presents the compaction rate for each benchmark. As can be
observed, a very high compaction rate in the range of 78-93% and
with an average of 86.9% is achieved across all benchmark circuits.
Finally, the total time that SPIN-PAC spent on each benchmark is also
reported in the ninth column of the table.

V. CONCLUSION

Existing ATPG methods for Speed-Independent circuits focus on
minimizing test generation time and maximizing fault coverage.
SPIN-PAC, the static test compaction method proposed in this work,
complements these methods by post-processing the generated tests
and minimizing their length, while maintaining the attained fault cov-
erage. It employs a combination of two techniques that build upon
the particularities of test vectors generated for Speed-Independent
circuits. More specifically, it reduces the number of test vectors by
combining sequences of SIC vectors into MIC pairs and by select-
ing among independent test sequences in order to prune or eliminate
some of them. Given the exponential search space of the problem,
SPIN-PAC combines efficient heuristics to approximate the optimal
solution. Experimental results on benchmark circuits demonstrate
that very high rates of compaction are achieved through the proposed
method.

REFERENCES

[1] C. J. Myers, Asynchronous Circuit Design, John Wiley and
Sons, Inc., New York, 2001.

74

[2] F. Shi and Y. Makris, “Spin-sim: Logic and fault simulation
for speed-independent circuits,” in Proceedings of International
Test Conference, 2004, pp. 597-606.

F. Shi and Y. Makris, “Fault simulation and random test genera-
tion for speed-independent circuits,” in Proceedings of the 2004
Great Lakes Symposium on VLS, 2004, pp. 127-130.

F. Shi and Y. Makris, “Spin-test: Automatic test pattern gener-
ation for speed-independent circuits,” in International Confer-
ence on Computer Aided Design, 2004.

K.-T. Cheng, V. D. Agrawal, and E. S. Kuh, “A simulation-based
method for generating tests for sequential circuits,” |[EEE Trans-
actions on Computers, vol. 39, no. 12, pp. 1456-1463, 1990.

F. Corno, P. Prinetto, M. Rebaudegno, and M. Sonza Reorda,
“New static compacion techniques of test sequences for sequen-
tial circuits,” in European Design and Test Conference, 1997,
pp. 37-43.

M. Dimopoulos and P. Linardis, “Accelerating the compaction
of test sequences in sequential circuits through problem size re-
duction,” |EEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 22, no. 10, pp. 1443-1449,
2003.

P. Drineas and Y. Makris, “Independent test sequence com-
paction through integer programming,” in 21st International
Conference on Computer Design, 2003, pp. 380-386.

(3]

(4]

(5]

(6]

[7]

(8]

[9] P. Raghavan and C. Thompson, “Randomized rounding: A
technique for provably good algorithms and algorithmic proofs,”

Combinatorica, vol. 7, no. 4, pp. 365-374, 1987.

M. Berkelaar, “Linear programming solver,” Available from
http://wwmv. cs. sunysh. edu/ al gorith/inpl enent/
| psol ve/i npl enent . shtnl .

[10]

[11] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: a tool for manipulating concurrent spec-
ifications and synthesis of asynchronous controllers,” |EICE
Transactions on Information and Systems, vol. E80-D, no. 3,

pp. 315-325, 1997.

J. E. Chen, C. L. Lee, and W. J. Shen, “Single-fault fault-
collapsing analysis in sequential logic circuits,” |1EEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 10, no. 12, pp. 1559-1568, 1991.

[12]

