
A Transistor-Level Test Strategy for C2MOS
MOUSETRAP Asynchronous Pipelines

Feng Shi
Electrical Engineering Dept.

Yale University
New Haven, CT 06520, USA

Yiorgos Makris
Electrical Engineering Dept.

Yale University
New Haven, CT 06520, USA

Abstract
We discuss a transistor-level test methodology for C2MOS

asynchronous pipelines. Unlike their static CMOS counter-
parts, wherein testing for stuck-at faults and compliance to a
few timing constraints typically suffices, dynamic asynchronous
pipelines present new challenges which require more elaborate
test solutions. More specifically, many gate-level input/output
stuck-at faults of a static pipeline style translate into transistor-
level stuck-open/stuck-short faults in the dynamic C2MOS ver-
sion. Therefore, test methods for transistor-level faults are
required for dynamic asynchronous pipelines. To this end,
we propose a methodology for testing both gate-level stuck-
at faults and transistor-level stuck-open/stuck-short faults in
C2MOS pipelines. The proposed method does not employ ad-
ditional hardware and is capable of detecting both gate-level
and transistor-level faults, as we demonstrate on the C2MOS
version of MOUSETRAP.

1. Introduction

Starting with the classic delay-insensitive micro-pipeline
[27], an array of alternative asynchronous pipeline styles have
emerged over the last fifteen years. As a first improvement, a
four-phase micro-pipeline control approach was proposed in [4]
to boost performance by employing faster single-phase trans-
parent latches. From then onwards, many variants of micro-
pipelines have been developed using alternative control and
latch structures [25, 30, 13, 26, 5, 18]. In order to improve per-
formance, most of these asynchronous pipelines employ fine-
grained stages and aggressive timing, i.e. they give up the ro-
bustness of delay-insensitivity and require that certain timing
constraints are met in order to operate correctly. In addition,
even more aggressive structures of fine-grain asynchronous
pipelines have also been proposed [25, 29, 23, 24, 3], wherein
latches are eliminated altogether. These designs usually employ
dynamic logic for the datapaths and exploit the inherent latch-
ing properties of dynamic gates. Therefore, by avoiding explicit
pipeline latches, the performance is further improved, area is
saved, and power consumption is reduced. Delay-insensitive
codes such as dual-rail data code have also been adopted [3]
to indicate the data state and eliminate the need for a dedicated
request signal. Among the various issues related to the develop-
ment of high-speed asynchronous pipelines, this work focuses
on testability.

A number of methods have been proposed in the past for
testing asynchronous pipelines [14, 9, 15, 10, 17, 16]. Most

of these methods focus mainly on testing the classic micro-
pipeline [27], which is a delay-insensitive architecture, i.e. it
operates correctly under arbitrary gate and wire delays, except
that the standard bundled data timing convention still needs to
be observed when datapaths are included. Since then, how-
ever, a new generation of high-speed asynchronous pipelines
have been developed, introducing a new set of test challenges
which make the above asynchronous test methodologies obso-
lete. Testing methods for some of these new architectures have
been proposed in [22], however, they are only for the static
CMOS style and are inadequate to handle dynamic gate-level
pipelines such as C2MOS MOUSETRAP.

In this paper, we propose a test method for gate-level
C2MOS MOUSETRAP pipelines. Our method proposes an
equivalent static model of a C2MOS logic for test generation
and exploits a previously developed tool-suite for the static
CMOS asynchronous pipelines [22] to generate test patterns
for gate-level stuck-at faults in C2MOS asynchronous pipelines.
Moreover, we present a test method for transistor-level stuck-on
and stuck-open faults in C2MOS logic, which we demonstrate
on the C2MOS MOUSETRAP pipeline.

The rest of this paper is organized as follows. In sec-
tion 2, we briefly review previously proposed test methods for
asynchronous pipelines. In section 3, we introduce the ba-
sics of gate-level C2MOS MOUSETRAP pipelines and we dis-
cuss their test challenges. In section 4, we describe our test
method for stuck-at faults in C2MOS asynchronous pipelines.
In section 5, we propose test methods for transistor-level stuck-
open/stuck-short faults in C2MOS MOUSETRAP pipelines.

2. Previous Work

Several researchers have studied the problem of testing asyn-
chronous pipelines in the past. Pagey et al. [14] proposed a
test generation method for stuck-at faults in traditional micro-
pipelines. However, timing faults resulting in bundling con-
straint violation are not considered. Khoche et al. [9] and
Petlin et al. [15] developed full-scan approaches for testing
micro-pipelines. Their methods are able to test not only for
stuck-at faults, but also for delay faults resulting in bundling
constraint violation. However, full-scan methods increase the
test application time and incur hardware overhead which may
be prohibitive for fine-grain asynchronous pipelines. King et
al. [10] developed a method which generates test sequences for
faults inside the C-elements of the micro-pipeline control stages
and applies them through the circuit. Roncken et al. [17, 16]
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Figure 1. A General C2MOS Logic Gate

proposed a partial scan method to test both datapaths and hand-
shake components in asynchronous pipelines. Test patterns are
generated not only for gate I/O stuck-at faults, but also for
bridging faults. In addition to voltage testing, IDDQ testing
is also performed to improve test quality. Furthermore, a hand-
shaking component, HOLD, is introduced to hold the circuit
in between a handshaking request and its acknowledgement, in
order to regain adequate test control. Shi et al [22] developed a
general tool-set for testing stuck-at faults in static CMOS asyn-
chronous pipelines, especially ultra-high-speed pipelines which
exploit timing constraints to achieve high performance. More-
over, they introduced a fault model and a simple design-for-test
(DFT) method to support testing for timing constraint viola-
tions, which are critical to the correct operation of ultra-high-
speed asynchronous pipelines. However, these methods were
developed for static CMOS asynchronous pipelines and do not
address the problem of testing transistor-level faults in the dy-
namic pipelines.

3. Test Requirements of C2MOS MOUSETRAP

Clocked-CMOS (C2MOS) is an attractive approach to imple-
menting gate-level pipelining, which achieves extremely high
throughput by partitioning the datapath into the finest-grained
stages, each consisting of only a single level of logic with no
explicit latches. Figure 1 illustrates the general structure of a
C2MOS logic gate. The clock input, En, directly controls the
gate through two transistors, one in the pull-up and one in the
pull-down network. The gate is enabled and evaluated when
En is asserted. When En is de-asserted, it simply holds its
value. Moreover, an inverter pair providing weak feedback is
typically attached to the gate output to yield a more robust hold
operation. C2MOS logic is adapted to gate-level asynchronous
pipelines by replacing the clock with handshaking signals to
eliminate explicit latches.

A C2MOS implementation of MOUSETRAP [25] (or
Minimal-Overhead Ultra-high-SpEed TRansition-signaling
Asynchronous Pipeline) is illustrated in Figure 2. The struc-

ture of a MOUSETRAP asynchronous pipeline includes both
control and processing logic. C2MOS identity gates, such as
the one shown in Figure 3, serve as latches in the control logic,
while C2MOS logic gates in the processing logic provide both
logic and latching functionality to eliminate explicit latches.
The schematic of the XNOR gates in the control logic is also
shown in Figure 4. We note that the above is only one of the
possible implementations. A dual-rail implementation was also
proposed in [25].

MOUSETRAP pipeline works under a hybrid protocol [25]
– transition signaling for the handshaking signals, and level sig-
naling for the latch enable signal. In its initial state, the pipeline
is empty with all the done, req, and ack signals at a low level,
and all its latches in transparent mode. The pipeline commu-
nicates with the environment through transition signaling, that
is, each transition, whether up or down, is treated as a distinct
event. When the first request (i.e. a rising transition on reqN−1)
flows through the pipeline stage N − 1, doneN−1 changes to
one and EnN−1 changes to zero, which closes the latches in
stage N − 1 in order to lock the stage and block any new re-
quest. The same process is applied to the data, which is “bun-
dled”, i.e. it arrives before the request. Then reqN rises after
a certain delay which matches the delay of the processing logic
in this stage, and both doneN and ackN change to one. As a
result, EnN changes to zero to close the latches and lock the
results, and EnN−1 changes to one which opens the latches in
stage N − 1 to accept a new request. After a successive request
(i.e. a falling transition on reqN−1) flows through stage N − 1,
doneN−1 changes to zero and EnN−1 changes to zero to close
the latches, and the same process is repeated. Note that for
each data item there are two transitions on each En signal, one
to capture it and one to release it. Therefore, the XNOR gate
serves as a phase converter which converts the done and ack
signals of transition signaling into level control for the transpar-
ent latches. MOUSETRAP is a fine-grain pipeline in the sense
that the depth of the data processing logic can be very shal-
low, comprising in the extreme case just a single level of gates.
MOUSETRAP achieves high performance by using simple and
fast transparent latches, while avoiding the extra switching ac-
tivity of a 4-phase communication [4] to simplify the control
circuitry.

MOUSETRAP pipelines sacrifice the robustness of a delay-
insensitive design style and employ aggressive handshaking
protocols in order to achieve high performance. This high per-
formance, however, is obtained at the cost of certain timing
constraints that need to be observed for the circuit to function
correctly. As a result, traditional testing becomes a more com-
plicated task because not all control stuck-at faults result in
pipeline stalling, as in the traditional micro-pipeline architec-
ture [14, 1, 12]. Moreover, delay faults that result in violation
of the aforementioned timing constraints also need to be con-
sidered. Unlike in the delay-insensitive micro-pipeline, where
such faults only result in performance degradation, functional
correctness is jeopardized if timing constraints are violated in
MOUSETRAP. An intrusive DFT method for testing whether
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these timing constraints are violated in the static MOUSE-
TRAP was proposed in [22]. However, intrusive DFT may
be unacceptably expensive in terms of both area and perfor-
mance overhead, since high-speed pipelines, such as MOUSE-
TRAP, achieve high performance partially due to their very
fine-grain pipeline stages. To alleviate this problem, a non-
intrusive method for testing timing constraint violations is pro-
posed in [8]. Since timing constraints are identical in the static
and dynamic MOUSETRAP, these methods are readily avail-
able for the C2MOS version and we will not address them any
further in this paper.

The main focus of this paper is on addressing gate-level and
transistor-level faults in both the handshaking and the process-
ing logic of the C2MOS version of MOUSETRAP. The method
in [22] uses a customized ATPG tool to generate test vectors
for stuck-at faults. However, the C2MOS version of MOUSE-
TRAP presents new test challenges over and above its static
CMOS counterpart. More specifically, traditional test meth-
ods for stuck-at faults are inadequate for testing the dynamic
behavior of C2MOS logic. For instance, a stuck-at-0 fault on
input En of the C2MOS gate shown in Figure 1 is, in fact, a
transistor stuck-open fault, which cannot be handled through
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Figure 4. Schematic of An XNOR Gate

conventional methods for stuck-at faults. Therefore, testing for
transistor-level stuck-open and stuck-short faults is necessary in
C2MOS pipelines.

4. Testing Stuck-At Faults
We start by discussing a strategy for testing stuck-at faults,

which remain fundamentally important in the dynamic C2MOS
style. Specifically, we describe a simple conversion of the dy-
namic C2MOS circuit into an equivalent static CMOS circuit
for the purpose of test generation. This equivalent model allows
the reuse of a previously developed test generation method for
the static CMOS style [22], in order to generate test vectors for
the dynamic C2MOS style.

4.1. Static Model for Test Generation
Consider the input and output stuck-at faults in a general

C2MOS gate, such as the one illustrated in Figure 1. As may
be observed, the stuck-at 0/1 fault at input En (Ēn) is equiva-
lent to the transistor-level fault n1 (p1) stuck-open/short (stuck-
short/open). Therefore, we defer the description of the test gen-
eration method for these faults to section 5. In order to gen-
erate test vectors for all other stuck-at faults, we transform the
C2MOS logic gate into an equivalent form composed with static
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CMOS gates and a latch, as illustrated in Figure 5. In this equiv-
alent static form, the two transistors which latch the gate output
are removed and the pull-up/pull-down networks are connected
directly to form a static CMOS logic gate. Additionally, an ex-
plicit latch is appended to the output to hold the output value
when the enable signal is low. Since the circuit of Figure 5
exhibits the same functionality as the circuit in Figure 1, we
replace any C2MOS gate with its equivalent static form to gen-
erate test patterns for stuck-at faults on logic inputs and outputs.
Test generation on the equivalent static form is performed using
the method proposed for static CMOS asynchronous pipelines
in [22], which we briefly describe in the following subsection
for the purpose of completeness.

4.2. Test Generation for Static CMOS Style
The test generation method of [22], which is demonstrated

on the static CMOS version of the MOUSETRAP pipeline, di-
vides the circuit in two parts, the handshaking logic (control)
and the processing logic (datapath). Each part is then treated
individually to reduce the complexity of automatic test pattern
generation. In order to test the handshaking logic, an extended
version of a tool-suite that was recently developed for testing
speed-independent circuits [19, 20, 21] is employed. In order to
test the processing logic, simple combinational ATPG suffices
by exploiting the transparent latches that are used in MOUSE-
TRAP. Results are reported for the traditional micro-pipeline
and for both the linear and non-linear MOUSETRAP pipelines.
We refer the reader to [22] for the details of these methods, the
key points of which are summarized below.

4.2.1. Testing the Handshaking Logic
Unlike in the traditional robust micro-pipeline, a stuck-at fault
in the handshaking logic of MOUSETRAP does not necessar-
ily halt the pipeline. This happens because the correct oper-
ation of MOUSETRAP relies upon certain timing constraints,
hence it is not delay-insensitive. The test generation method
that we propose in [22] is based on a tool-suite that we re-
cently developed for testing speed-independent circuits. This
tool-suite performs simulation (SPIN-SIM [19]), ATPG (SPIN-
TEST [20]), and test compaction (SPIN-PAC [21]). Its heart

is SPIN-SIM, a logic and fault simulator that efficiently de-
tects hazards by extending Eichelberger’s classical method [6]
to overcome its limitations. In order to improve simulation ac-
curacy, SPIN-SIM adopts a 13-valued algebra [2, 11], main-
tains the relative order of causal signal transitions, and unfolds
time frames judiciously. In addition, complex gates are han-
dled through replacement by pseudo-gates that are equivalent
with respect to functionality, timing, and faulty behavior. SPIN-
TEST uses SPIN-SIM and an A* search algorithm in order to
perform fault-simulation-based ATPG. Finally, SPIN-PAC em-
ploys heuristics to combine multiple single-input-change (SIC)
vectors into a single multiple-input-change (MIC) vector, as
well as an Integer-Linear-Programming (ILP) formulation to
compact test sequences via pruning or elimination.

Although we initially developed this tool-suite for speed-
independent circuits, we later extended it to handle other
classes of asynchronous circuits, such as Delay-Insensitive and
Quasi-Delay-Insensitive, by replacing them with their equiv-
alent speed-independent forms. We also extended SPIN-SIM
to simulate asynchronous pipelines with particular timing con-
straints. SPIN-SIM has an inherent feature that comes in handy
for this purpose. More specifically, it uses time-stamps to
keep track of the relative signal order while simulating speed-
independent circuits. This relative signal order is taken into
account when evaluating a gate during simulation and increases
dramatically the simulation accuracy by eliminating false haz-
ard identification. Based on this capability, timing constraints
were easily incorporated as additional relative orders of signals.
As a result of these extensions, the SPIN-TEST simulation-
based ATPG and the SPIN-PAC test compaction methods are
also available for a broader class of asynchronous circuits, in-
cluding CMOS static asynchronous pipelines.

4.2.2. Testing the Processing Logic
The proposed method for testing stuck-at faults in the process-
ing logic is similar to that proposed by Pagey et al. for testing
micro-pipelines [14]. When a MOUSETRAP pipeline is empty,
all request and acknowledge signals are at a low level and all
the latches are transparent. Therefore, all the processing logic
blocks are connected in a cascade and can be treated as a single
logic block for the purpose of testing. Suppose that C repre-
sents the whole block of logic obtained by interconnecting all
logic blocks in the pipeline stages in a cascade. Then, any com-
binational ATPG tool can be used to generate test patterns for
stuck-at faults in C. The test patterns are subsequently applied
to the input of the pipeline when the pipeline is empty and with-
out sending any request signals. The responses are observed at
the output of the pipeline and compared to the expected fault-
free responses.

5. Testing Transistor-Level Faults
In this section, we propose a test method for transistor-level

faults in the dynamic C2MOS style. While the gate-level stuck-
at fault model is used as the predominant fault model for static
logic, it is well known that it does not exactly represent the
input/output behavior of a faulty MOS logic circuit [28, 7]. This
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problem is amplified in dynamic logic, wherein some stuck-at
faults are in fact transistor-level faults and cannot be handled
using traditional test methods. This is the case, for example,
for the stuck-at faults on inputs En or Ēn of a C2MOS gate.
For such circuits, transistor stuck-open and stuck-short faults
constitute a more realistic model to investigate.

5.1. Notation
The following notation is introduced to assist in presenting

our methods for testing stuck-open and stuck-short faults:
We denote as PSO1 (PSS1) a stuck-open (stuck-short) fault

on the PMOS transistor p1 in a C2MOS gate such as the one
shown in Figure 1. We also denote as NSO1 (NSS1) a stuck-
open (short-short) fault on the NMOS transistor n1. We denote
as a PSO2 (PSS2) a stuck-open (stuck-short) fault on the PMOS
transistor in inverter inv1 in a C2MOS gate. Finally, we denote
as NSO2 (NSS2) a stuck-open (stuck-short) fault on the NMOS
transistor in inverter inv1.

In order to describe the test patterns for testing stuck-open
and stuck-short faults, we also need to define the following test
vectors and sequences:

Test vector Vr changes the current value on the request in-
put on the left side of the pipeline (req1 in the pipeline shown
in Figure 6), but keeps the value on the acknowledge input on
the right side of the pipeline (ack4 in Figure 6) unchanged.
Test vector Va keeps the current value on the request input on
the left side of the pipeline (req1 in Figure 6) unchanged, but
changes the value on the acknowledge input on the right side of
the pipeline (ack4 in Figure 6). For example, suppose that the
current values of the inputs are 01, where the first bit represents
the value of the request input on the left side and the second bit
represents the value of the acknowledge input on the right side.
Then, applying a vector Vr would set the inputs to 11, while
applying a vector Va would set the inputs to 00. Similarly, if
the current input values are 11 and a Va is applied followed by
a Vr, then the vector Va would be 10 and the vector Vr would
be 00.

We define test sequence SA(n) as a sequence of n vec-
tors, which is formed by alternating Vr and Va vectors start-

ing with a Vr. For example, SA(3) = {Vr, Va, Vr}. We
also define test sequence SB(n) as a sequence of n vectors,
which is formed by concatenating n Vr vectors. For exam-
ple, SB(4) = {Vr, Vr, Vr, Vr}. Similarly, we define sequence
SC(n) as a sequence of n vectors, which is formed by concate-
nating n Va vectors. For example, SC(3) = {Va, Va, Va}.

5.2. Testing Stuck-Open Faults
We present the proposed method for testing stuck-open

faults in C2MOS MOUSETRAP in the following way. First, we
briefly discuss how to test a general C2MOS logic gate. Based
on this, we propose test sequences for the faults in the hand-
shaking logic and a method for testing faults in the processing
logic.

5.2.1. C2MOS Logic Gate
As illustrated in Figure 1, the difference between a C2MOS gate
and a static CMOS gate is in the two transistors which switch
on/off the pull-up/pull-down networks, respectively, and in the
inverter pair which is attached to the gate output. Therefore, we
first discuss testing of single stuck-open faults in these particu-
lar locations.

Consider the PSO1 fault in the C2MOS gate shown in Fig-
ure 1. In order to activate this fault, node o needs to be first set
to logic zero and then both the pull-up network and transistor
p1 need to be turned on. If the gate is fault-free, node o changes
to logic one, otherwise, if p1 is stuck-open, node o remains at
zero, hence the fault is activated. Propagation of the fault effect
is not an issue, since it can be observed at the gate output. It is
obvious that the second step is equivalent to testing a stuck-at-1
fault on the output of the gate. Therefore, the test patterns for
such stuck-open faults are generated in two phases. In the first
step, a test sequence which sets the gate output to one is found.
In the second step, a test sequence which tests for a stuck-at-1
fault at the gate output is generated. The traditional test genera-
tion methods for stuck-at faults may be used during the second
phase.

For example, in order to test for the PSO1 fault in the iden-
tity gate shown in Figure 3, we first set A to one and En(Ēn)
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to one (zero). This causes the output to become one and in-
ternal node o to become zero. Then, we apply test vector
A = 0, En(Ēn) = 1(0), which is able to detect a stuck-at-1
fault on the output. In the fault-free gate, p1 and p2 are switched
on and node o and the output change to one and zero respec-
tively, but in the faulty gate p1 is open and node o and the output
remain at zero and one respectively. Therefore, the fault is de-
tected.

Consider now the NSO2 fault in the C2MOS gate shown in
Figure 1. In order to test this fault, node o is first set to zero,
hence the output changes to one. Then, node o is set to one,
which causes the output to fall in the fault-free circuit. How-
ever, if the stuck-open fault exists, the output remains high and,
therefore, the fault is detected. Based on the above discussion, it
may be easily observed that any test sequence which detects an
NSO2 fault also detects a PSO1 fault and vice versa. Therefore,
the NSO2 fault and PSO1 fault in the same gate are equivalent.

In summary, the following theorem holds for testing the
PSO1/NSO2 faults in a C2MOS gate:

Theorem 1. The PSO1 fault is equivalent to the NSO2 fault in a
C2MOS gate. Both are detected by first applying a test sequence
which sets the gate output to one and then a test sequence which
tests for a stuck-at-1 fault on the gate output.

An NSO1 fault can be tested similarly. In the first step, a test
sequence which sets the gate output to zero is found. Then, in
the second step, a test sequence which tests for a stuck-at-0 fault
at the gate output is generated. Moreover, it can be similarly
proved that this fault is equivalent to the PSO2 fault in the same
gate. Therefore, a test sequence generated for NSO1 faults can
also be used for PSO2 faults and vice versa.

Again, the following theorem holds for testing the
NSO1/PSO2 faults in a C2MOS gate:

Theorem 2. The NSO1 fault is equivalent to the PSO2 fault
in a C2MOS gate. Both are detected by first applying a test
sequence which sets the gate output to zero and then a test
sequence which tests for a stuck-at-0 fault on the gate output.

The stuck-open faults on the transistors in the pull-up or
pull-down networks in the C2MOS logic shown in Figure 1
are tested through the following method. For the purpose of
test generation, a C2MOS logic gate can be transformed into
the equivalent static form comprising a static CMOS gate and a
latch, as illustrated in Figure 5. Although the two circuit forms
have the same functionality, they are not exactly equivalent in
terms of test generation for transistor faults in the pull-up and
pull-down networks, because of the different location of the
latch. However, the following theorem can be used to convert
a test sequence for a fault in the equivalent static form to a test
sequence for the fault in the C2MOS form.

Theorem 3. If sequence S detects a stuck-open fault in the
pull-up/pull-down networks of the equivalent static form of a
C2MOS gate, then S′ detects the corresponding fault in the
C2MOS gate, where S′ is derived from S by inserting patterns
when necessary to make sure that the latch is open every time
the gate is evaluated.

Therefore, transistor-level faults in the pull-up/pull-down
network of a C2MOS gate can be tested through the test pat-
terns derived from those generated for static CMOS logic.

As a final note, we point out that the stuck-open faults on the
transistors in the “keeper” inverter are relatively difficult to test
for. Since this inverter only provides weak feedback to keep
the output voltage when the enable signal is low and both the
pull-up and pull-down networks are disconnected, a stuck-open
fault may interrupt the feedback but does not cause any imme-
diate logic error. Therefore, normal voltage test methods are
not capable of detecting such faults, calling for more sophisti-
cated test methods or Design-for-Testability (DFT) techniques,
which are beyond the scope of this paper.

5.2.2. Handshaking Logic
We now turn our attention to test generation for stuck-open
faults in the handshaking logic, such as those in the identity
gates or the XNOR gates, which cannot be handled using the
traditional methods for synchronous circuits because the circuit
has feedback paths. Consider the stuck-open fault on transistors
p2/n2 in the identity gate shown in Figure 3. It can be proved
that the stuck-open fault on p2/n2 is equivalent to the stuck-
open fault on p1/n1. In order to activate the stuck-open fault on
p2, signals En and A are first set to one and transistor n1 and
n2 are switched on, which sets node o to zero. Then, both A
and Ēn are set to zero to pull node o to one. In the faulty cir-
cuit, however, transistor p2 is stuck-open and node o remains at
zero, thus the fault is activated on the gate output. Since these
are the exact same test requirements as for the stuck-open fault
on p1, the two stuck-open faults are equivalent. Similarly, the
stuck-open fault on n2 is equivalent to that on n1. Therefore,
the test sequence for testing PSO1 or NSO1 faults can be used
to test for these faults, as summarized in the following theorem:

Theorem 4. A stuck-open fault on transistor p2 of the identity
gate of the MOUSETRAP handshaking logic, which is equiva-
lent to the PSO1/NSO2 faults, can be tested by sequence SA(3).
Similarly, a stuck-open fault on transistor n2, which is equiva-
lent to NSO1/PSO2, can be tested by vector Vr.

Proof. For a NSO1/PSO2 fault, or the stuck-open fault on n2, the out-
put of the identity gate is set to zero in the initial state. Then Vr

activates the fault by setting the req signal to one and the fault effect
propagates to the right side of the pipeline, hence the fault is detected.
For a PSO1/NSO2 fault, or the stuck-open fault on p2, the output of
the identity gate is set to one after test vector Vr is applied. Then Va

acknowledges the pipeline and opens the latch in the last stage. Then,
Vr activates the fault by setting the req signal to zero and the fault
effect is observed on the right side of the pipeline.

For example, in order to test the PSO1 fault in the iden-
tity gate of the second stage of the control circuit illustrated
in Figure 6, we apply the test sequence SA(3) = {Vr, Va, Vr}.
Through the sequence, we first raise req1 to set node done2

to one, which is initially at zero. Then, primary output req4

changes to one accordingly. After that, ack4 is set to one to
acknowledge the request on req4. Then, req1 is set to zero. If
the stuck-open fault exists, done2 remains at one and so does
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primary output req4; otherwise, both done2 and req4 change to
zero. Therefore, the stuck-open fault is detected.

Stuck-open faults in XNOR gates in the control circuit are
more difficult to test for. Figure 4 illustrates the transistor level
implementation of an XNOR gate. Suppose that there is a
stuck-open fault on transistor p1. In order to detect this fault,
node O is first pulled down to zero by setting signal A and B
to 01 or 10. In the second step, signal A and B are set to 00,
which pulls node O to one in the good circuit. However, if p1

is stuck-open, node O will remain at zero, hence the fault is
activated. Note that, in the second phase of test generation, the
fault cannot be treated as a stuck-at-0 fault on the gate output
O. This is because test vector AB = 11 can activate a stuck-
at-0 fault on O, but cannot activate the stuck-open fault on p1.
Now consider how to propagate these test patterns to the XNOR
gate through the handshaking logic. The following is such an
example.

Assume that the pipeline in Figure 6 has a stuck-open fault
on transistor p1 in the XNOR gate of the first stage. Suppose
that in the initial state all the latch enable signals are set to one
and all other signals are set to zero. First, input signal req1

is set to one, which causes signal done1, req2, done2, req3,
done3, req4 and ack1 to rise, and signal En3 to fall. After that,
Va is applied to acknowledge the pipeline. Then, req1 is set to
zero, which propagates through the stages. When the low level
propagates through the first stage but before it goes through the
second stage, signal done1 is zero and signal ack2 is still one,
which sets the output of the XNOR gate En1 to zero. This
is the first phase for activating the fault. After the low level
propagates through the second stage, both done1 and ack2 are
zero, which activates the fault in the XNOR gate. In the good
circuit, En1 is high and the first stage is transparent, while in
the faulty circuit, En1 remains low and the first stage is closed.
Then, Va is applied and req1 is set to one again. Output req4

will rise if the circuit is fault-free, otherwise it will remain at
zero. Hence, the fault is detected.

The stuck-open fault on any PMOS transistor other than p1

in an XNOR gate can be tested in a similar way. It is also easy
to prove that the stuck-open fault on p1 is equivalent to that on
p3, and that the stuck-open fault on p2 is equivalent to that on
p4, as summarized in the following theorem.

Theorem 5. A stuck-open fault on any PMOS transistor of an
XNOR gate in the control circuit of a C2MOS MOUSETRAP
pipeline can be tested by test sequence SA(5).
Proof. As illustrated before, if there is a stuck-open fault on transistor
p1 or p3 and the fault is not activated in the initial state, the fault is
activated at the output of the XNOR gate after applying SA(4) and the
pipeline halts. This can be easily checked by applying another Vr and
observing the output. If the fault is on transistor p2 or p4, then it is
activated after applying SA(2) and the pipeline halts. Therefore, the
second Vr is able to indicate whether the fault exists.

A stuck-open fault on an NMOS transistor in the XNOR
gate, however, does not halt the pipeline. For instance, suppose
that there is a stuck-open fault on transistor n1 as illustrated in
Figure 4. In order to activate the fault, node O is first set to one.

Then, test pattern AB = 10 is applied, hence, node O will be
set to zero in the good circuit, while it will remain at one in
the faulty circuit. Suppose that the faulty gate is in the second
stage, input A is connected to done3, and input B is connected
to done2. The first step is easy since when the data item passes
through the next stage or when the circuit is initialized, En2 is
high and the latches are transparent. Then, In order to set done3

to one, req1 is set to one. Signal ack4 is kept at zero to lock
the node done3 at one. Note that at the end of this step, En2

is one since both done2 and done3 are one. After that, req1

changes to zero, which causes done2 to change to zero. Now
the fault is activated since in the fault-free circuit En2 is zero,
while in faulty circuit En2 is one, which prevents the pipeline
from halting. The fault effect is observed after setting req1 to
one and then to zero in the following steps. Signal ack1 is
one in the fault-free circuit since the latches in the first stage
are closed, while it is zero in the faulty circuit. Therefore, the
fault is detected. In general, the following theorem holds for
detecting these faults.

Theorem 6. A stuck-open fault on any NMOS transistor of an
XNOR gate in the control circuit of a C2MOS MOUSETRAP
pipeline prevents the pipeline from being filled, hence, it can be
detected by applying test sequence {SB(N +1), Va, Vr}, where
N is the number of stages in the pipeline.
Proof. The stuck-open faults on n1 and n3 and on n2 and n4 in the
XNOR gate shown in Figure 4 are equivalent. Any such fault can be
activated by first setting the output of the XNOR gate to one, then
setting the input to either AB = 01 or AB = 10. After test sequence
SB(N) is applied to a fault-free pipeline, as illustrated in Figure 7
which is a three stage example, the input state of each XNOR gate
is set to one of the above test patterns, and right before that, the gate
output is set to one. Therefore, if there is any such fault, it may be
activated during this procedure. Thus, the En signal in the faulty stage
will be stuck at one and the latches will not be able to close, therefore,
the faulty pipeline will never be filled. In this case, another Vr is able
to check whether the pipeline is full and, thus, detect the fault. If the
fault is not activated in the above procedure, we apply vector Va. As
illustrated in Figure 8 for an example of a three-stage pipeline, the
input state of each XNOR gate in the fault-free pipeline switches to
the other test pattern after Va is applied, and right before that, the gate
output is set to one. Therefore, the fault must be activated during
this procedure. Another Vr detects the fault by checking whether the
pipeline is full.

5.2.3. Processing Logic
If we test the faults in the datapath logic under the initializa-
tion state of the pipeline, that is, when all the enable signals are
high and all latches are transparent, the datapath logic may be
regarded as a whole static CMOS logic block obtained by cas-
cading the equivalent static logic in each stage. As a result, for
the transistor faults in the pull-up/pull-down networks of the
C2MOS processing logic, traditional test generation methods
for combinational static CMOS logic can be directly employed
to generate test sequences according to Theorem 3. Since the
latches are always open, no transformation is needed for the
generated test sequences. For the remaining faults, the test gen-
eration process takes place in two steps according to Theorem 1
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Figure 7. State of a C2MOS MOUSETRAP after Applying SB(3)
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Figure 8. State of a C2MOS MOUSETRAP after Applying {SB(3), Vr, Va}
or 2, both of which may employ the available ATPG tools for
combinational static CMOS logic.

5.3. Testing Stuck-Short Faults
In this section, we first discuss briefly how to test a general

C2MOS logic gate for stuck-short faults. Based on this, we
propose test sequences for the faults in the handshaking logic
and a method for testing faults in the processing logic.

We note that, in the following, we use IDDQ tests to detect
some of the stuck-short faults in C2MOS circuits. However,
IDDQ tests may be obsolete for CMOS processes in 90nm and
beyond due to the excessive leakage currents. In that case, we
can still use voltage-based tests to detect these faults. Yet, such
tests may only potentially detect these faults, i.e. some faults
may be detected, while others may not, depending on the driv-
ing strengths of the pull-up/down networks. Undetected faults,
however, do not necessarily reduce the quality of test, since they
may not impact the correct functionality of the circuit.

5.3.1. C2MOS Logic Gate
Single stuck-short faults in CMOS static logic are usually de-
tected through IDDQ tests, since when the fault is activated,
both the pull-up and pull-down networks are switched on in the
faulty circuit, while only one of them is on in the fault-free cir-

cuit. However, a stuck-short fault on p1 or n1 of the C2MOS
gate in Figure 1, or a PSS1/NSS1 fault, may not be detected
by IDDQ tests. This is because when the fault on p1/n1 is
activated, transistor n1/p1 is always off in both the fault-free
and the faulty circuit. But this does not imply that these faults
are undetectable. In fact, they can actually be detected through
voltage tests, as explained below:

Theorem 7. The following procedure detects a PSS1 (NSS1)
fault in a C2MOS logic gate. First, a test sequence is applied to
set the gate output to zero (one). Then, the latch is closed by
setting Ēn(En) to one (zero). Last, a vector is applied to the
logic input which would set the gate output to one (zero) if the
latch had been open.
Proof. In the first step the gate output is set to zero (one). Then in
the second step both p1 and n1 are switched off in the fault-free circuit,
while p1 (n1) is still on in the faulty circuit. Finally, in the third step the
pull-up (pull-down) network is switched on, and the fault is activated
and observed. The output remains zero (one) in the fault-free circuit,
while it changes to one (zero) in the faulty circuit.

On the other hand, a stuck-short fault on the PMOS transistor
in inverter inv1, or a PSS2 fault, and a stuck-short fault on the
NMOS transistor in inverter inv1, or a NSS2 fault, are easy
to detect through IDDQ tests. For fault PSS2, a test pattern
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which sets node o to one, or the output to zero detects the fault.
For fault NSS2, a test pattern which sets node o to zero, or the
output to one detects the fault. Similarly, the stuck-short fault
on the PMOS transistor in the feedback inverter can be detected
by a test pattern which sets node o to zero, or the output to
one. Also, the stuck-short fault on the NMOS transistor in the
feedback inverter can be detected by a test pattern which sets
node o to one, or the output to zero.

Theorem 8. The PSS2 (NSS2) fault, or the stuck-short fault
on the NMOS (PMOS) transistor in the feedback inverter, in
a C2MOS gate can be detected through IDDQ tests by setting
the gate output to zero (one).

The test pattern for any stuck-short fault in the pull-up/pull-
down network in a C2MOS gate can be generated through the
equivalent static form. First, we generate the test vector v which
detects the corresponding stuck-short fault in the equivalent
static form through IDDQ tests. Then, we apply v to the logic
input of the C2MOS gate, and open the latch by setting En and
Ēn to one and zero respectively. Thus, the fault in the C2MOS
gate is detected.

5.3.2. Handshaking Logic
As in the case of stuck-open faults, stuck-short faults in the
handshaking logic need special attention since, generally, they
cannot be handled by the tools for synchronous circuits. Based
on Theorem 7, the following theorem holds for stuck-short
faults:

Theorem 9. The PSS1 or NSS1 faults in any identity gate in
the handshaking logic can be detected by sequence {SB(N +
1), Va, Vr}, where N is the length of the pipeline.
Proof. If the fault to test for is PSS1 and there are r stages behind the
faulty stage, where r is odd, or the fault is NSS1 and there are r stages
behind the faulty stage, where r is even, then test sequence SB(r + 1)
sets the output of the identity gate under test to zero in case of a PSS1

fault or one in case of a NSS1 fault, and then closes the latch in this
gate. The following Vr activates the fault by changing the value on the
gate output and makes the latch in the faulty stage open in the faulty
circuit. Therefore, the faulty pipeline cannot be filled after SB(N +1)
is applied, hence the fault is detected. Otherwise, the fault is activated
by applying Va after SB(N+1), since after that the value on the output
of each identity gate changes. Then, another Vr is applied to detect the
fault, since the fault-free pipeline is full while the faulty pipeline is not.
Therefore, sequence {SB(N +1), Va, Vr} detects the PSS1 and NSS1

fault in any identity gate.

Then, according to Theorem 8, any stuck-short fault in the
output inverter and the keeper inverter in the identity gates in
the pipeline control circuit can be detected either in the initial
state or by applying Vr.

The stuck-short faults in the XNOR gates in the pipeline con-
trol circuit can be tested in the following way. If the fault is on
a PMOS transistor, such as transistor p1 illustrated in Figure 4,
the test pattern for IDDQ tests is AB = 01. Assume that this
XNOR gate is in the second stage in Figure 6, and input A is
connected to done3, and input B is connected to done2. There-
fore, A is already set to zero in the initial state. Then we set
ack4 to one to lock the value on done3, and we set req1 to one,

which cause done2 to change to one. Therefore, the fault is
activated and detected by IDDQ tests. In general, the following
theorem holds:
Theorem 10. A stuck-short fault on any PMOS transistor of
an XNOR gate in the control circuit of a MOUSETRAP can be
tested through IDDQ tests by test sequence {SB(N), Va, Vr},
where N is the number of stages in the pipeline.
Proof. A stuck-short fault in any PMOS transistor in an XNOR gate
must be detected by either vector AB = 01 or AB = 10. Suppose the
fault is in the i-th stage of the pipeline. Test sequence SB(N − i + 1)
sets the input state of the XNOR gate under test to one of the above
test patterns. If this input state activates the fault, the fault is detected.
Otherwise, the input state of the XNOR gate may switch to the other
vector after Va is applied following SB(N) if it is not in the first stage,
and the fault is detected. The fault may not be activated in this case
for the following reason. If the output value of the XNOR gate is one
when the fault is activated, the latch cannot close appropriately and
the requests stored in the earlier stages may pass through the latch and
cancel each other. If all the requests in the earlier stages disappear, the
fault will not be activated. However, another Vr will activate the fault
in this case. Note that this vector also activates the fault if it is in the
first stage. Therefore, any stuck-short fault in this XNOR gate will be
tested by the sequence {SB(N), Va, Vr}.

If the stuck-short fault is on the NMOS transistor, for ex-
ample on n1/n4, the test pattern for IDDQ tests is AB = 00.
No matter how the XNOR gate is connected to the pipeline, the
fault can be detected in the initial state. If the fault is on n2/n3,
the test pattern is AB = 11 and the fault can be detected after
test sequence SA(2) is applied. The following theorem holds:
Theorem 11. A stuck-short fault on any NMOS transistor of
an XNOR gate in the control circuit of a MOUSETRAP can be
detected by IDDQ tests in the initial state, or by applying test
sequence SA(2).

The stuck-short fault on n2/p2 of an identity gate in the
pipeline control circuit might be difficult to detect by IDDQ
tests. This is the case, for example, if the fault is on p2 in an
identity gate which is in the second stage of the pipeline in Fig-
ure 6. In the initial stage, A = 0 and En = 1. Then, req1 is
set to one, which cause A to rise. Although the fault is acti-
vated, the output of the identity gate might be in a metastable
state since both the pull-up and the pull-down networks are
on. If done2 is resolved to either one or zero, the fault is
detected. Otherwise, the value of En2 is unknown and might
finally become zero, which switches off both the pull-up and
pull-down networks, thus making the fault undetectable. If it
is assumed that the output of the faulty identity gate must not
be in a metastable state, the fault can be detected either in the
initial state, or by applying test sequence SA(2).

5.3.3. Processing Logic
The stuck-short faults in the pull-up/pull-down networks of
C2MOS logic in the datapath can be tested using methods for
traditional static CMOS logic. In the initial state, the pipeline
latches are all transparent, and the whole data path is equivalent
to a combinational static CMOS logic block. Therefore, the
test generation methods for stuck-short faults in combinational
static CMOS logic can be used for these faults.
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For testing any stuck-short fault PSS1 (NSS1) in a C2MOS
logic gate of the processing logic, the following procedure may
be applied. First a test vector v1 which tests a stuck-at-1 (stuck-
at-0) fault on the gate output in the whole equivalent combi-
national logic is applied. Vector v1 sets the output of the gate
under test to zero (one). Then, the latch in this gate is closed by
applying the test sequence SB(r + 1), where r is the number of
stages behind the faulty stage. After that, a test vector v2 is ap-
plied to the logic input which sets the gate output to one (zero)
in the whole equivalent combinational logic. The gate output
remains at zero (one) in the fault-free circuit, while it changes
to one (zero) in the faulty circuit. Therefore, the fault is ac-
tivated. Finally, the fault effect is propagated and observed at
the right side of the pipeline by applying test sequence SC(r).
The fault effect propagates to the data output since v1 is able
to test the stuck-at-1(stuck-at-0) fault in the whole equivalent
static combinational logic.

For any other stuck-short faults in the processing logic, such
as those on the attached inverter pair in any C2MOS logic gate
in the processing logic, any test vector which sets the output
of the gate under test to one or zero, according to Theorem 8,
suffices to detect the fault through IDDQ tests when the pipeline
is in the initial state.

6. Conclusion
Dynamic C2MOS logic, which is often employed to im-

plement ultra-high-speed gate-level asynchronous pipelines,
imposes new test requirements and test challenges over and
above those of the traditional static CMOS styles. Using the
C2MOS MOUSETRAP pipeline as an example, we demon-
strated how to address these test challenges. Initially, we
showed the derivation of an equivalent static model, which
enables test vector generation for stuck-at faults in C2MOS
pipelines through existing tools for static CMOS pipelines.
Since stuck-at faults are insufficient to adequately characterize
the functionality of dynamic logic, we then proposed methods
for testing transistor stuck-open/stuck-short faults in all parts
of the C2MOS MOUSETRAP pipelines. Our methods demon-
strate that transistor-level testing of dynamic C2MOS pipelines
is indeed feasible without the need for additional hardware or
highly specialized ATPG tools.
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