
Test Requirement Analysis for Low Cost Hierarchical Test Path Construction

Yiorgos Makris
EE Department - Yale University

yiorgos.makris@yale.edu

Alex Orailoglu
CSE Department - U.C. San Diego

alex@cs.ucsd.edu

Abstract
We propose a methodology that examines design mod-

ules and identifies appropriate vector justification and re-
sponse propagation requirements for reducing the cost of
hierarchical test path construction. Test requirements are
defined as a set of fine-grained input and output bit clus-
ters and pertinent symbolic values. They are independent
of actual test sets and are adjusted to the inherent mod-
ule connectivity and regularity. As a result, they combine
the generality required for fast hierarchical test path con-
struction with the precision necessary for minimizing the
incurred cost, thus fostering cost-effective hierarchical test.

1. Introduction

Hierarchical methods leverage on the ability to target
each module and generate highly efficient local test. This
benefit, however, comes at the cost of module accessibility
from the primary inputs and outputs, which is typically pro-
vided by hierarchical test paths [1, 2, 3, 4]. As depicted in
Figure 1(a), these paths establish transparent access to the
module under test (MUT), through the upstream and down-
stream logic. During hierarchical test path construction, the
module under test is treated as a black box. Implicitly, it is
assumed that all possible vectors and responses need to be
justified and propagated, although this is almost never the
case. Furthermore, transparent accessibility to all modules
is rarely inherent in a design. Consequently, DFT hardware
is employed in the construction of hierarchical test paths.

In an effort to reduce this DFT cost, two directions have
been examined. Along the first direction, several research
efforts [1, 2, 5, 6, 7] have been invested in defining, extract-
ing, and utilizing inherent design transparency. Along the
second direction [4], inherent functionality of the surround-
ing logic is used to constrain local test generation, rendering
translatable test. Not much attention has been paid, how-
ever, to a third option, namely moderating DFT cost through
an informed definition of modular test requirements. This
is depicted in Figure 1(b), where the internal connectivity
of the MUT is examined and its test requirements are de-
fined as input and output bit clusters. This necessitates sev-
eral narrow hierarchical test paths instead of a single coarse
path, increasing the probability of their inherent existence.

In this paper, we assess the impact of test requirement
granularity on the cost of hierarchical test path construc-
tion. Subsequently, we propose a methodology for reduc-

ing this by fine-tuning the generality of test requirements
and thus the number and the granularity of necessary hier-
archical test paths. Furthermore, regular module connec-
tivity is exploited to define compact and parametrized test
requirements. Cell-level analysis and symbolic path com-
position result in the definition of test requirements as a set
of input and output bit clusters. Cell-level analysis supports
compactness, while bit clusters enhance accuracy and sym-
bolic paths guarantee generality. Although we only con-
sider combinational modules, the proposed method consti-
tutes the first step towards low cost hierarchical test path
construction based on test requirement analysis.

Related work is discussed in Section 2. The severity im-
posed by test requirements on hierarchical test path con-
struction is examined in Section 3. The proposed test re-
quirement identification methodology is introduced in Sec-
tion 4 and the appropriate cell granularity is discussed in
Section 5. Adjustment to cell connectivity is examined in
Section 6. Examples are given in Section 7 and severity
metrics along with results are provided in Section 8.

2. Related Work

Hierarchical test path construction typically employs
transparency. Transparency has been defined as surjec-
tive functions for justifying test vectors and injective func-
tions for propagating test responses. Surjective and injec-
tive functions are referred to in the literature as S-Paths and
F-Paths respectively [5], while bijective functions, satisfy-
ing both properties, are referred to as I-Paths and T-Paths
[6]. Several variations of surjective, injective, and bijec-
tive functions, including Ambiguity Sets [1], Transparency
Modes [2], and Transparency Properties [7], have also been
used in order to improve efficiency and reduce cost.

Module
Under
Test

Primary
Inputs

Primary
Outputs

Justify All
Vectors

Propagate All
Responses

Test Requirements
(MUT=Black Box)

DFT Cost for
Hierarchical Test
Path Construction

Hierarchical
Test Path
Through

Upstream
Logic

Hierarchical
Test Path
Through

Downstream
Logic

(a)

Module Under Test

Primary
Inputs

Primary
Outputs

Fine-Grained
Bit Clusters

to be
Justified

Fine-Grained
Bit Clusters

to be
Propagated

Test Requirements
(Analyze MUT)

Reduced DFT Cost
for Construction of

Fine-Grained
Hierarchical Test

Paths

(b)

CELL CELL

Figure 1. Granularity of Test Requirements

Proceedings of the 11 th Asian Test Symposium(ATS’02)
1081-7735/02 $17.00 © 2002 IEEE

MODULE

TS1={00, 11}
TS2={01, 10}
TS3={00, 01}
TS4={10, 11}

TS5={00, 01, 10}

MODULE

TEST SET

(A1, A1) : 1 Free Variable
(A1, A1') :1 Free Variable
(V, A1) : 1 Free Variable
(V, A1) : 1 Free Variable

(A1, A2) : 2 Free Variables

PATH REQUIREMENT

(a)

(b)

TS6=
{001, 010, 101, 110}

TS7=
{010, 100, 110, 001}

TEST SET

(A1, A2, A2') :
2 Free Variables

(A1, A2, A3) :
3 Free Variables

PATH REQUIREMENT

Figure 2. Test Requirement Severity Examples

Although test requirement identification has been exam-
ined in related fields, the objective for hierarchical test path
construction is different than the traditional concept of C-
Testability [8] commonly used in Built-In Self-Test and It-
erative Logic Array Test. The objective of test requirement
identification for BIST [9, 10, 11, 12], for example, is to de-
rive a compact test set that can be easily generated on chip.
The objective of test requirement identification for ILA test
[13, 14, 15] is to exploit regularity and combine test ap-
plication across cells. In contrast to these approaches, the
objective of the proposed methodology is to identify test re-
quirements that reduce the severity imposed on hierarchical
test path construction and the corresponding DFT overhead.

3. Hierarchical Test Path Severity

Hierarchical test methods employ symbolic paths for
performing local to global test translation. Symbolic paths,
however, impose strenuous functionality requirements on
surrounding modules, directly impacting the incurred DFT
overhead. As a result, hierarchical test methods are crit-
icized for the unnecessary generalization of test require-
ments. But is it always the case that symbolic paths impose
more strenuous requirements than a set of exact vectors?

Answering this question requires an understanding of the
severity incurred by an exact test vector set on hierarchical
test path construction. Given a set of k-bit test vectors and
depending on the number and the distribution of values ap-
pearing on each subset of these k-bits, certain restrictions
are imposed on the number of primary inputs required and
the degrees of freedom necessary between them. Bits that
are always equal or always inverse throughout the test set
only require one free variable. The free variables required
is not always equal to the vector width. But at a certain set
density point, the full width is required; essentially, once
more than half of the possible values are in the set, no bit
can be inferred, necessitating k free variables.

Consider for example the 2-input module of Figure 2(a)
and the provided alternative test sets. Test requirements for

CELL
. . .

m n
. . .

k l

'A'

'A'

'X'

'X'

'X'

'X'

'A' 'A''A' 'A'

MODULE

(a)

Surjective Path Injective Path

Surjection Activation
Constants

Injection Activation
Constants

CELL . . .m n. . .k l

P={Test Pattern Values} 'X'

'X'

'X'

'X'

Vj VpVt Vr

MODULE

(b)

R={Test Response Values}k>=l n>=m

k>=l n>=m

Figure 3. Proposed vs. Exhaustive Methodology

each bit may be either a constant ′0′ or ′1′ value symboli-
cally represented by ′V ′, or a free variable represented by
′A′. Bits that are not required in a test set are represented by
′X ′. For TS1, a hierarchical test path with one free variable,
A1, at its inputs is sufficient to satisfy the test requirements.
This is also valid for test set TS2. For TS3 and TS4, a hier-
archical test path with one free variable, A1, and a constant
at its inputs is again sufficient. Once a test set with 3 vectors
is reached, however, such as TS5, a 2-bit hierarchical test
path with no but correlation is necessary. This is almost as
severe as requiring two free variables, A1 and A2. A 2-bit
path is what hierarchical test methods establish in this case.

Similarly, for the 3-input module of Figure 2(b), TS6

can be satisfied with two free variables, A1 and A2, at its
inputs. However, TS7 requires three free variables, A1, A2,
and A3. A careful observation reveals that unlike in TS6,
in TS7 every 2-bit subset obtains more than half of the pos-
sible values, thus necessitating a 2-bit hierarchical test path
with uncorrelated bits. Since this holds for every subset, the
severity is equivalent to a full 3-bit path.

Evidently, there is a threshold for the number and dis-
tribution of vectors in a test set, over and above which the
severity of the corresponding hierarchical test path is equal
to that of the full symbolic path. Generalizing the above
observations leads to the following condition:

• Hierarchical Test Path Severity Threshold: The hi-
erarchical test path severity of a set of k-bit vectors is
equivalent to a k-bit symbolic path if every subset of
bits obtains more than half of the possible values.

This condition signifies when exact test vectors can be
relaxed into symbolic test requirements, providing a starting
point for the proposed test requirement identification.

4. Proposed Methodology

The proposed methodology targets each basic cell in a
module and requires that free variables be justified to all the
inputs and propagated from all the outputs. These symbolic

Proceedings of the 11 th Asian Test Symposium(ATS’02)
1081-7735/02 $17.00 © 2002 IEEE

A
B
C

D

FULL ADDER CELL

B

C

D

NON-RESTORING DIVIDER CELL

A

S

S

C
D

E

A

B

MULTIPLY-ADD CELL

RESTORING DIVIDER CELL

B

C

A

E

S

D

Vectors:

ABC
100
010
001
101
110
000

Responses:

DE
10
01
00

Vectors:

ABCS
0X01
0100
1000
0X10
1101
0X11
1100

Responses:

DE
01
00
10

Hierarchical Test
Path Severity:

Justify 'AAAA' at ABCS
Propagate 'AA' from DE

Hierarchical Test
Path Severity:

Justify 'AAA' at ABC
Propagate 'AA' from DE

Vectors:

ABCS
1000
0000
0101
1100
1010
0010
0100

Responses:

DE
01
00
10

Hierarchical Test
Path Severity:

Justify 'AAAA' at ABCS
Propagate 'AA' from DE

Vectors:

ABCS
010X
111X
110X
0110
0111

Responses:

DE
01
00
10
11

Hierarchical Test
Path Severity:

Justify 'AAAA' at ABCS
Propagate 'AA' from DE

ABCS
0001
1000
0011
1011
1001

E

E

Figure 4. Cells Satisfying the Severity Threshold

requirements are translated into module inputs and outputs
to be controlled and observed. As shown in Figure 3(a), in-
puts or outputs of the cell that are also inputs or outputs of
the module are directly assigned a free variable ′A′. How-
ever, there are also l cell inputs and m cell outputs that need
to be justified and propagated through the surrounding cells.
A transparency composition scheme [16] is employed, iden-
tifying a surjective path from k module inputs to the l cell
inputs, where k ≥ l, and an injective path from the m cell
outputs to n module outputs, where n ≥ m. The resulting
justification requirements for the module inputs are either a
constant ′0′ or ′1′, or a free variable ′A′, while the propaga-
tion requirements for the module outputs are free variables
′A′. The remaining inputs and outputs are assigned to ′X ′.

The transparency-based scheme is a relaxed test require-
ment analysis. In Figure 3(b) for example, the cell inputs
that are also module inputs should be assigned to P , the
set of required vectors. Similarly, the cell outputs that are
also module outputs should be assigned to R, the set of re-
quired responses. For the l cell inputs and m cell outputs
that are justified and propagated through the surrounding
cells, exact analysis is more complicated. Assume that Vj ,
Vj ⊆ 2l, is the set of values that need to be justified to these
l inputs of the cell. Similarly, assume that Vp, Vp ⊆ 2m,
is the set of values that needs to be distinguishably propa-

gated from these m outputs of the cell. Essentially, a set
Vt, Vt ⊆ 2k, and a set Vr, Vr ⊆ 2m, such that |Vj | = |Vt|
and |Vp| = |Vr|, are required, with the module implement-
ing a function f from Vj to Vt and a function g from Vp to
Vr. Then, Vt and Vr would be the remaining test require-
ments at the module inputs and outputs. Such a value-based
reasoning for identifying the sets Vj , Vt, Vp, and Vr, pro-
viding exact test requirements, is overly time-consuming.
Therefore, the transparency-based scheme described above
is employed, resulting in a simpler and faster identification
of test requirements

5. Cell Granularity

Success of the proposed methodology depends on the
choice of cell granularity, which is based on several fac-
tors. First of all, the selected cell should satisfy the sever-
ity threshold condition. Repetitive structures should also
be considered, since they result in regular and parametriz-
able requirements. Finally, the size and the number of cells
should be taken into account. An examination of several
basic cells reveals that they constitute the appropriate gran-
ularity level for hierarchical test requirement identification.
Due to the dense connectivity structure within such basic
cells, as compared to the sparser inter-cell connectivity,
gate-level test requirements satisfy the severity threshold
condition of Section 3. Figure 4 shows examples of four
cells and the corresponding gate-level tests1 which satisfy
the severity threshold condition. Cells of this granularity
are the basic components of arithmetic circuits [18]. Basic
cells allow exploitation of regularity and reduction of anal-
ysis complexity. With the exception of boundary cells, only
prototypical cells are analyzed and test requirements are de-
fined in a parametrized way. Furthermore, regular require-
ments incur regular DFT, which can be combined across the
requirements of several cells and be highly optimized.

6. Test Requirement Granularity Adjustment

While test requirement identification at a finer granular-
ity than the basic cell level does not provide hierarchical
test path severity reduction, the derived test requirements
across several cells may also satisfy the threshold condi-
tion. Therefore, granularity should be adjusted accordingly,
resulting in a compact set of test requirements that are as
symbolic as possible but do not increase hierarchical test
path severity. The proposed methodology adjusts granular-
ity to inter-cell connectivity through a structural analysis of
the requirements and the paths. If the paths required for ac-
cessing and testing a cell fully incorporate additional cells,
then the cells are combined into a larger block.

1Tests were generated using ATALANTA [17] with random fill off.

Proceedings of the 11 th Asian Test Symposium(ATS’02)
1081-7735/02 $17.00 © 2002 IEEE

CinA0B0A1B1A2B2A3B3
 A A A V V X X X X
 X A A A A V V X X
 X X X A A A A V V
 X X X X X A A A A

FA#1

A0 B0

Z0

C1Cin FA#2

A1 B1

Z1

C2 FA#3

A2 B2

Z2

C3 FA#4

A3 B3

Z3

Cout

Test Justification Requirements: Test Propagation Requirements:

FA#1:
FA#2:
FA#3:
FA#4:

 Z0Z1Z2Z3Cout
 A A X X X
 X A A X X
 X X A A X
 X X X A A

FA#1:
FA#2:
FA#3:
FA#4:

CARRY-RIPPLE ADDER

Figure 5. Test Requirements of Carry-Ripple Adder

74181 ALU

 M'CnA0A1A2A3B0B1B2B3S0S1S2S3
 V V A X X X A X X X A A A A
 V V V A X X V A X X A A A A
 V V V V A X V V A X A A A A
 V V V V V A V V V A A A A A
 A A A X X X A X X X A V V V
 A A A A X X A A X X A A V V
 A A A A A X A A A X A A A V
 A A A A A A A A A A A A A A
 A A A A A A A A A A A A A A

Test Justification Requirements: Test Propagation Requirements:

Cell#1:
Cell#2:
Cell#3:
Cell#4:
Cell#5:
Cell#6:
Cell#7:
Cell#8:
Cell#9:

 G'CoP'F3'F2'EqF1'F0'
X X X X X X A A
X X X X A X A X
X X X A A X X X
X A X A X X X X
X X X X X X X A
X X X X X X A X
X X X X X A X X
X X X X A X X X
A A A X X A X X

Cell#1:
Cell#2:
Cell#3:
Cell#4:
Cell#5:
Cell#6:
Cell#7:
Cell#8:
Cell#9:

Cell
#5

Cell
#6

Cell
#8

Cell
#7

Cell
#9

F0' F1' F2' F3' Eq P' Co G'

Cell
#1

Cell
#2

Cell
#3

Cell
#4

M' Cn S0S1S2S3A0B0 A1B1 A2B2 A3B3

Figure 6. Test Requirements of 74181 ALU

7. Examples

We demonstrate the proposed method on several exam-
ple modules to verify its ability to identify symbolic, yet
accurate test requirements, adjusting their granularity to
the inter-cell connectivity of the module. In addition, the
methodology exploits inherent cell regularity, in order to
parametrize and compact the identified test requirements.

The first module, shown in Figure 5, is a simple 4-bit
carry-ripple adder [18], comprising 4 full-adder cells, such
as the one shown in Figure 4. Consider for example the test
requirements for FA�3. According to the proposed method-
ology of Section 4, ′A′s are assigned to the inputs and out-
puts of the cell that are also inputs and outputs of the mod-
ule, in this case A2, B2, and Z2. The ′A′ requirement on
C2 is satisfied through a surjective path from A1, B1, while

 Z1Z2Z3Z4Z5Z6D1D2D3
 A V V A V V V V A
A V A A V V V A A
A A A V V V A A V
 V A V V A V V V A
 V A V A A V V A A
 V A A A V V A A V
 V V A V V A V V A
V V A V A A V A A

 V V A A A V A A V
 A A X X X X A X X
 A A A V X X A V X
 X A A A V X A V X

Cell
#3

Z2

Cell
#2

Z3

Cell
#1

Z4

Test Justification Requirements: Test Propagation Requirements:

Cell#1:
Cell#2:
Cell#3:
Cell#4:
Cell#5:
Cell#6:
Cell#7:
Cell#8:
Cell#9:

Cell#10:
Cell#11:
Cell#12:

Q1Q2Q3S4S5S6
A A X A X X
A A A X X X
A A X X X X
X A A X A X
X A A A X X
X A A X X X
X X A X X A
X X A X A X
X X A A X X
A X X X X X
X A X X X X
X X A X X X

RESTORING ARRAY DIVIDER

' 0'

D1 D2 D3
Cell
#10

Z1

Cell
#6

Cell
#5

Cell
#4

Z5

' 0'

D1 D2 D3
Cell
#11

Cell
#9

S4

Cell
#8

S5

Cell
#7

Z6

S6

' 0'

D1 D2 D3
Cell
#12

Q1

Q2

Q3

Cell#1:
Cell#2:
Cell#3:
Cell#4:
Cell#5:
Cell#6:
Cell#7:
Cell#8:
Cell#9:
Cell#10:
Cell#11:
Cell#12:

Figure 7. Test Requirements of Array Divider

the ′A′ requirement on C3 is satisfied through an injective
path to Z3, activated by any constant value ′V ′ on A3, B3.
The remaining inputs and outputs, Cin, A0, B0, Z0, Z1, and
Cout are assigned ′X ′s. The identified test requirements are
symbolic but also compact, thus close in precision to exact
test. In addition, module regularity allows test requirement
parametrization; therefore, the analysis is performed only
for the prototypical cell and the boundary cases.

The second module is the 74181 ALU [13], which unlike
the adder is neither homogeneous, nor regular. The connec-
tivity and the test requirements for each cell are shown in
Figure 6. Based on the granularity adjustment methodology
of Section 6, the propagation requirements for the cell pairs
(�1, �5), (�2, �6), (�3, �7), and (�4, �8) are merged. Further-
more, establishing a surjective path to the 10 inputs of cell
�9 requires a hierarchical test path to all 14 inputs of the
ALU. Consequently, the justification requirements for cells
�1 through �8 are all subsets of the justification requirements
for cell �9 and are discarded. The final set of test require-
ments for the ALU is thus adjusted to the module connec-
tivity and is shown in boldface.

The third module is a restoring array divider [18] com-
posed of cells such as the one shown in Figure 4. The circuit
and the test requirements are shown in Figure 7. The in-
herent module regularity allows parametrization of the test
requirements. Consider, for example, the test requirements
for cell �5. The four inputs of the cells are justified through
a surjective path from D3, Z4, and Z5 and a surjective path
from D2 and Z2. The two outputs of the cell are propagated
through injective paths to outputs Q2, Q3, and S4. These
inputs and outputs are consequently assigned a test require-
ment ′A′. The remaining inputs all require constant values

Proceedings of the 11 th Asian Test Symposium(ATS’02)
1081-7735/02 $17.00 © 2002 IEEE

to establish the injective and surjective paths and are, there-
fore, assigned a test requirement ′V ′, while the remaining
outputs are assigned a test requirement ′X ′. The granularity
is once again adjusted using the methodology of Section 6,
and the final set is shown in boldface.

8. Severity Metrics and Experimental Results

The following two metrics are introduced to reflect the
severity imposed by the test requirements of a module on
test path existence and test path identification. The underly-
ing assumption is that the likelihood of path existence and
the complexity of path identification decrease, as the gen-
erality of the path increases. Path generality increases with
the width and with the values to be attained at each bit.

Test Path Existence Severity, reflecting the possibil-
ity that hardware will be needed to establish transparency
paths due to the generality of test requirements, is defined as

TPES(Module) =
∑

∀ Paths

TPES(Path), where (1)

TPES(Path) =
∏

∀ Bits

TPES(Bit), and (2)

TPES(Bit) =




1 if ′X ′

2 if ′V ′

4 if ′A′


 (3)

Test Path Identification Severity, reflecting the possibility
that testability hardware will be needed due to the transla-
tion complexity of exact test requirements, is defined as

TPIS(Module) =
∑

∀ Paths

TPIS(Path), where (4)

TPIS(Path) =
∏

∀ Bits

TPIS(Bit), and (5)

TPIS(Bit) =




1 if ′X ′

2 if ′A′

4 if ′V ′


 (6)

As an example, Figure 8 calculates the controllability
and observability TPES and TPIS of a 4-bit carry-ripple
adder for the test requirements imposed by symbolic paths
and by compacted gate-level test. Figure 9, further cal-
culates the metrics for the requirements imposed by non-
compacted gate-level test and by the proposed methodol-
ogy. The controllability metrics C-TPES and C-TPIS for
the four approaches are summarized in Tables 1 and 2, while
the observability metrics O-TPES and O-TPIS are summa-
rized in Tables 3 and 4. Results are also reported in these
tables for the restoring divider and the ALU example cir-
cuits of the previous section. As demonstrated, the coarse-
ness of the symbolic paths results in very high TPES values,

TEST PATTERNS - TEST RESPONSES

A3A2A1A0B3B2B1B0Cin CoutZ3Z2Z1Z0

0 0 0 0 1 0 1 1 0 0 1 0 1 1
0 1 0 1 0 1 1 0 1 0 1 1 0 0
1 0 0 1 0 0 1 1 0 0 1 1 0 0
1 1 1 0 0 1 1 0 1 1 0 1 0 1
0 1 0 1 0 0 0 1 0 0 0 1 1 0
1 0 1 0 1 1 1 0 0 1 1 0 0 0
0 0 0 1 1 1 0 0 0 0 1 1 0 1
0 1 1 0 1 0 0 1 0 0 1 1 1 1

4-bit
Carry Ripple

Adder

M

A[3:0] B[3:0]

CinCout

Z[3:0]

Symbolic Paths

1 Justification Path: "AAAAAAAAA"

C-TPES(M)=49=262144
C-TPIS(M)=29=512

1 Propagation Path: "AAAAA"

O-TPES=45=1024
O-TPIS=25=32

Compacted Test

8 Justification Paths: "VVVVVVVVV"

C-TPES(M)=8*29=4096
C-TPIS(M)=8*49=20197152

7 Propagation Paths: "VVVVV"

O-TPES=7*25=224
O-TPIS=7*45=7168

8 Distinct Vectors - 7 Distinct Responses

Figure 8. Symbolic Paths and Compacted Test

Proposed Methodology

4 Justification Paths:
"XXVAXXVAA"
"XVAAXVAAX"
"VAAXVAAXX"
"AAXXAAXXX"

C-TPES(M)=22*43+22*44+22*44+44=2560
C-TPIS(M)=42*23+42*24+42*24+42=656

4 Propagation Paths:
"XXXAA"
"XXAAX"
"XAAXX"
"AAXXX"

O-TPES=42+42+42+42=64
O-TPIS=22+22+22+22=16

TEST PATTERNS - TEST RESPONSES
(RANDOM FILL TURNED OFF)

A3A2A1A0B3B2B1B0Cin CoutZ3Z2Z1Z0

0 1 1 X 0 0 1 X X 0 1 0 X X
X 0 1 1 X 0 0 1 X X X 1 0 X
0 1 0 X 0 0 0 X X 0 0 1 X X
0 0 0 X 0 1 0 X X 0 0 1 X X
0 0 1 X 0 0 1 X X 0 0 1 X X
X 0 1 0 X 0 0 X 0 X X 0 1 X
X 0 0 0 X 0 1 X 0 X X 0 1 X
X 0 0 1 X 0 0 1 X X X 0 1 X
X X 0 1 X X 0 0 1 X X X 1 0
X X 0 1 X X 0 0 0 X X X 0 1
X X 0 0 X X 0 1 0 X X X 0 1
X X 0 0 X X 0 0 1 X X X 0 1
0 1 X X 0 1 X X X 0 1 X X X
1 0 X X 1 0 X X X 1 0 X X X
1 0 X X 0 0 X X X 0 1 X X X
0 0 X X 1 0 X X X 0 1 X X X
1 1 X X 0 1 X X X 1 0 X X X

Non-Compacted Test
17 Distinct Justification Paths:

(8 have 3 Xs, 4 have 4 Xs, 5 have 5 Xs)

C-TPES(M)=8*2 6+4*25+5*24=848
C-TPIS(M)=8*4 6+4*45+5*44*24+42=38144

7 Distinct Propagation Paths:
(3 have 2 Xs, 4 have 3 Xs)

O-TPES=3*23+4*22=40
O-TPIS=3*43+4*42=256

Full
Adder

Full
Adder

Full
Adder

Full
Adder

A0 B0

Z0

A1 B1

Z1

A2 B2

Z2

A3 B3

Z3

C1 C2 C3Cin Cout

Figure 9. Non-Compacted Test and Our Method

although their generality ensures low TPIS values. On the
other hand, the accuracy of exact test ensures low TPES val-
ues, yet results in high TPIS values due to the complexity of
exact translation. If the test is not compacted the problem
is slightly alleviated but the TPIS values are still orders of
magnitude higher than the TPES values.

The proposed methodology resolves the problem by
combining the generality required for fast hierarchical test
path construction with the accuracy necessary for ensuring
translatability. As a result, the TPES and TPIS values are
of the same order of magnitude2 and close to the minimal
values. Thus, the identified test requirements significantly
reduce the overall burden imposed on hierarchical test.

2Except for controlling the ALU, where the full path is required.

Proceedings of the 11 th Asian Test Symposium(ATS’02)
1081-7735/02 $17.00 © 2002 IEEE

Table 1. Comparison of C-TPES Metrics
C-TPES Symbolic Compacted Non-Compacted Proposed
Metric Paths Test Test Method

Adder 262144 4096 848 2560
Divider 262144 9216 7360 49152
ALU 238435456 425984 65280 238435456

Table 2. Comparison of C-TPIS Metrics
C-TPIS Symbolic Compacted Non-Compacted Proposed
Metric Paths Test Test Method

Adder 512 20197152 38144 656
Divider 512 4718592 3662468 98304
ALU 16384 6979321856 230430714 16384

9. Conclusions

Accurate modular test requirement identification is crit-
ical to the cost-effectiveness of hierarchical test, since the
severity imposed on the corresponding hierarchical test
paths is directly related to the anticipated testability hard-
ware overhead. A thorough understanding of the severity
imposed by exact test patterns as compared to symbolic
test provides the basis for defining appropriate test require-
ments. The proposed methodology identifies a set of fine-
grained, yet adequate input and output bit clusters to be jus-
tified and propagated respectively, through which symbolic
test can be applied to each basic cell in the module. Through
an efficient cell-based transparency extraction approach, the
proposed method adjusts the granularity of the identified
test requirements to the module connectivity. Furthermore,
the identified test requirements are independent of partic-
ular test sets and can be parametrized to exploit inherent
repetitive structures and regularity in the design, thus reduc-
ing the analysis time and the corresponding storage. Most
importantly, the identified test requirements combine the
generality required for fast hierarchical test path construc-
tion with the accuracy necessary for minimizing the corre-
sponding hierarchical test path severity. Thus, the overhead
incurred for constructing adequate hierarchical test paths is
reduced, fostering competitive hierarchical test.

References

[1] B. T. Murray and J. P. Hayes, “Hierarchical test generation
using precomputed tests for modules,” IEEE Transactions
on Computer Aided Design, vol. 9, no. 6, pp. 594–603, 1990.

[2] P. Vishakantaiah, J. A. Abraham, and D. G. Saab,
“CHEETA: Composition of hierarchical sequential tests us-
ing ATKET,” in International Test Conference, 1993, pp.
606–615.

[3] J. Lee and J. H. Patel, “Hierarchical test generation under
architectural level functional constraints,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 15, no. 9, pp. 1144–1151, 1997.

[4] R. S. Tupuri, A. Krishnamachary, and J. A. Abraham, “Test
generation for gigahertz processors using an automatic func-

Table 3. Comparison of O-TPES Metrics
O-TPES Symbolic Compacted Non-Compacted Proposed
Metric Paths Test Test Method

Adder 1024 224 40 64
Divider 4096 1088 832 36
ALU 65536 5632 4064 32

Table 4. Comparison of O-TPIS Metrics
O-TPIS Symbolic Compacted Non-Compacted Proposed
Metric Paths Test Test Method

Adder 32 7168 256 16
Divider 64 69632 47888 272
ALU 256 1441792 1013856 320

tional constraint extractor,” in Design Automation Confer-
ence, 1999, pp. 647–652.

[5] S. Freeman, “Test generation for data-path logic: The F-path
method,” IEEE Journal of Solid-State Circuits, vol. 23, no.
2, pp. 421–427, 1988.

[6] M. S. Abadir and M. A. Breuer, “A knowledge-based system
for designing testable VLSI chips,” IEEE Design and Test
of Computers, vol. 2, no. 4, pp. 56–68, 1985.

[7] Y. Makris and A. Orailoglu, “RTL test justification and prop-
agation analysis for modular designs,” Journal of Electronic
Testing: Theory and Applications, vol. 13, no. 2, pp. 105–
120, 1998.

[8] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital
Systems Testing and Testable Design, IEEE Press, 1990.

[9] H. Al-Asaad, J. P. Hayes, and B. T. Murray, “Scalable
test generators for high-speed datapath circuits,” Journal
of Electronic Testing: Theory and Applications, vol. 12, no.
1/2, pp. 111–125, 1998.

[10] I. Voyiatzis, A. Paschalis, D. Nikolos, and C. Halatsis, “R-
CBIST: An effective RAM-based input vector monitoring
concurrent BIST technique,” in International Test Confer-
ence, 1998, pp. 918–925.

[11] K. K. Saluja, R. Sharma, and C. R. Kime, “A concurrent
testing technique for digital circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 7, no. 12, pp. 1250–1260, 1988.

[12] D. Gizopoulos, A. Paschalis, and Y. Zorian, “An effec-
tive built-in self-test scheme for parallel multipliers,” IEEE
Transactions on Computers, vol. 48, no. 9, pp. 936–950,
1999.

[13] E. J. McCluskey and S. Bozorgui-Nesbat, “Design for au-
tonomous test,” IEEE Transactions on Computers, vol. c-30,
no. 11, pp. 866–874, 1981.

[14] T. Sridhar and J. P. Hayes, “Design of easily testable bit-
sliced systems,” IEEE Transactions on Computers, vol. c-
30, no. 11, pp. 842–854, 1981.

[15] H. Elhuni, A. Vergis, and L. Kinney, “C-Testability of two-
dimensional iterative logic arrays,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 5, no. 4, pp. 573–581, 1986.

[16] Y. Makris, V. Patel, and A. Orailoglu, “Efficient trans-
parency extraction and utilization in hierarchical test,” in
VLSI Test Symposium, 2001, pp. 246–251.

[17] “ATALANTA combinational test generation tool,” Available
from http://www.ee.vt.edu/ha/cadtools.

[18] B. Parhami, Computer Arithmetic: Algorithms and Hard-
ware Designs, Oxford University Press, 1999.

Proceedings of the 11 th Asian Test Symposium(ATS’02)
1081-7735/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

