
DECOY: DEflection-Driven HLS-Based Computation
Partitioning for Obfuscating Intellectual PropertY

Jianqi Chen1, Monir Zaman1, Yiorgos Makris1, R. D. (Shawn) Blanton2, Subhasish Mitra3 and Benjamin Carrion Schafer1
1Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX, USA

2Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
3Department of Electrical Engineering and Department of Computer Science, Stanford University, Stanford, CA, USA
{jianqi.chen, monir.zaman, yiorgos.makris, schaferb}@utdallas.edu, rblanton@andrew.cmu.edu, subh@stanford.edu

Abstract—Among various competing designs targeting similar
functionality, the key differentiator typically consists of a small
amount of custom Intellectual Property (IP). To protect this
IP from reverse engineering, designers need effective solutions
for hiding the unique aspects of their implementations. In
this work, we introduce a general framework for partitioning
the computation performed by a design into a part whose
implementation is commonly known (and encountered across
many designs), and a part which is unique to this design.
The former can then be built using conventional techniques
(including untrusted manufacturing facilities) while the latter
needs to be protected using additional obfuscation techniques.
The existence of several other known implementations of the
(same or similar) target function serves as a decoy which deflects
efforts seeking to reverse-engineer the unique implementation.
We demonstrate our framework using a hardware accelerator
case study where (a) partitioning is performed through High
Level Synthesis (HLS), (b) the commonly known portion of the
accelerator is implemented as an Application Specific Integrated
Circuit (ASIC), and (c) the unique portion of the accelerator is
implemented on an embedded Field-Programmable Gate Array
(eFPGA).

I. INTRODUCTION

Today’s globalized fabless model leads to serious security
and trustworthiness concerns [1], as companies have to reveal
their Intellectual Property (IP) to potentially untrusted entities:
Electronic Design Automation (EDA) software, photolithog-
raphy mask manufacturers, silicon foundries, test houses and
distributors. Untrusted entities may illegally use and/or repro-
duce such IP for economic or other benefits. This happens at an
exact moment when System-on-Chip (SoC) designs are relying
on IP more than ever, for example inside hardware accelerators
for better energy and speed, higher accuracy of results or
unique algorithmic capabilities. Accordingly, in this paper
we address the following problem: given a commonly known
function and its specific design implementation, which contains
a critical IP for product differentiation and success, how do we
protect this critical IP from being exfiltrated by unauthorized
parties in various stages of this global ecosystem?

Our solution relies on the following observation: Com-
peting designs targeting similar functionality generally
use similar blocks; only a small portion serves as the
differentiating IP that gives a design its competitive edge.
For example, while hardware accelerators targeting a particular
domain contain similar types of computation engines and
memory controllers (or even interconnect architectures), what
sets them apart is the small amount of custom logic that

enables enhanced functionality or combines these building
blocks in unique or superior ways.

Based on this observation, we present a general framework
called DECOY, which exploits functional similarities across
various competing designs to provide mechanisms for hiding
the differentiating IP from untrusted portions of the supply
chain. Depending on the threat model and the location and ca-
pabilities of the adversary, existing obfuscation solutions (e.g.,
post-manufacture programming, multi-chiplets, logic locking,
layout camouflaging, split manufacturing, split design-flow)
can be used for hiding. The novelty of DECOY is in its way
of selecting the portion of the design that must be protected
(obfuscated). DECOY considers multiple known implementa-
tions of similar functionality and identifies their commonality
with the target design. The unique implementation aspects of
the target design are then selected for protection (obfuscation).
The key advantage of this approach is that access to an
operational device (i.e., oracle) does not substantially help
the attacker: indeed, existence of multiple (known) options
for reinstating the missing functionality deflects exact IP
exfiltration (which might now face an exhaustive search).

The key contributions of this paper include:

• A general framework for obfuscating the IP that gives
a design its competitive edge by deflecting reverse-
engineering attacks through similar commonly-known
(possibly inferior) implementations, serving as decoy.

• Demonstration of this framework for a hardware accel-
erator case study, where identification and partitioning
of the differentiating IP is performed through High
Level Synthesis (HLS), the commonly known portion
is implemented as Application-Specific Integrated Cir-
cuit (ASIC), and critical IP is obfuscated through an
embedded Field-Programmable Gate Array (eFPGA).

II. MOTIVATIONAL EXAMPLE

Fig. 1 shows a motivational example using an auto-encoder
artificial neural network (ANN) with a single hidden-layer.
Fig. 1(a) is a typical implementation (i.e., Cknown) using the
sigmoid activation function, whose ASIC implementation is
shown in Fig. 1(b). Fig. 1(c) shows a superior implementation
(i.e., Cnew) using a rectified linear unit (ReLU) activation
function. ReLU is much simpler to implement in hardware
(i.e., 99% smaller) and, for these types of ANNs, produces
similar accuracy. To hide RELU from the competition, DE-

Input Output

1

2

3

4

1

2

3

4

1

2

Hidden

Activation

Function

Input Output

1

2

3

4

1

2

3

4

1

2

Hidden

Activation

Function

Primary Outputs (POs)

eFPGAASIC

Target HW Platform (ASIC+eFPGA)

Primary Inputs (PIs)

1

2

3

4

1

2

3

4

1

2

Primary Outputs (POs)

ASIC

Primary Inputs (PIs)

Input Output

1

2

3

4

1

2

3

4

1

2

Hidden

Activation

Function

(a) (c)

(b) (d)

Fig. 1. Motivational example (a) Well-known implementation of Auto-
encoder ANN using sigmoid activation function, (b) full implementation on
ASIC, (c) New implementation of same ANN using ReLU activation function,
and (d) implementation on our proposed ASCI+eFPGA platform hiding the
differences between implementations.

COY maps the unique portion of the design onto an eFPGA,
as shown in Fig. 1(d).

While this simple example uses only one well-known
Cknown implementation and assumes that Cknown and Cnew
perform the same functionality, DECOY generalizes to the
case of multiple Cknown versions and similar (rather than
same) Cnew functionality. Thereby, DECOY can prioritize key
IP protection objectives, such as hiding unique functionality,
while at the same time enable exploration of the various trade-
offs between performance, power, area and security. With this
generalization in mind, we formulate our approach as follows:

Input: (1) A well-known behavioral description Cknown for
HLS which leads to a well-known implementation RTLknown,
and (2) A new behavioral description Cnew for HLS which
leads to a proprietary/superior RTLnew.

Objective: Partition Cnew into two parts (leading through HLS
to RTLcommon and RTLunique) such that: (a) RTLcommon
∪ RTLunique can implement RTLnew, and (b) RTLcommon
has the same functionality as RTLnew ∩ RTLknown.

Here, RTLcommon and RTLunique are mapped on an ASIC
and an eFPGA as RTLASIC and RTLeFPGA, respectively.

III. RELATED WORK

Various techniques have been proposed to protect VLSI
designs from the unlawful use and reverse engineering. These
techniques can be broadly classified into either authentication-
based or obfuscation-based.

Authentication-based techniques include the use of physical
unclonable functions (PUFs) [2] for authentication, water-
marking [3] and functional locking [4]–[6].

On the other hand, the obfuscation-based approach trans-
forms a given circuit into a functionally-equivalent circuit that
is significantly more difficult (ideally impossible) to reverse
engineer. Some examples include the dedicated obfuscation of

0010101010011

Cnew

High-Level
Synthesis

Logic
Synthesis

Map, Place
& Route

Bitstream
Generation

RTLnew

Cknown

High-Level
Synthesis

RTLknow

Proposed
extraction

RTLnew(ASIC) RTLnew(eFPGA)

Place &
Route

Layout

ASIC flow FPGA flow

Logic
Synthesis

Heterogeneous System on Chip (SoC)

…

On-chip Bus

HwaccNHWacc2
…

Embedded
FPGA

eFPGA

HWacc1

CPU Memory

Fig. 2. Proposed obfuscation flow and target architecture.

DSP circuits by performing high-level transformations during
the design stage [7].

Mapping selective portions of an applications onto FPGAs
has until now been mainly studied in the context of hardware
acceleration [8] and [9] or energy reduction [10]

In terms of using FPGAs, or FPGA-based inspired structures
for obfuscation, the authors in [11] presented a method to
extract different paths at the gate-level netlist and map these
gates to non-volatile spin transfer torque (STT) based recon-
figurable LUTs. Although a promising approach, commercial
production of these hybrid circuits is not yet feasible. In [12],
the authors proposed a mechanism for structurally obfuscating
sensitive parts of a design given in Verilog through a custom,
dedicated fine-grained reoconfigurable fabric. The benefits of
having their own custom ultra-fine grained fabric vs. other
types of reconfigurable fabric are, nevertheless, not clear,
considering the overhead in the bits required to reconfigure
such a FPGA. Very recently, the authors in [13], studied the
effect of LUT sizes on the obfuscation strength. Closer to
our work, in [9], the authors use an embedded FPGA to cost-
effectively obfuscate predetermined portions of a design, given
as a behavioral description for HLS.

To the best of our knowledge, this is the first work that
addresses the issue of obfuscation, driven by the existence of
known other implementations [14].

IV. TARGET HARDWARE PLATFORM

As shown in Fig. 1(d), the target hardware platform en-
visioned in this work is composed of: (i) an ASIC portion
onto which the common logic between the well-known im-
plementation and the new implementation of an application is
mapped, and (ii) an eFPGA portion to map the distinct logic,
which is unique to the new implementation. The latter portion
of the design can be fully obfuscated in the eFPGA because
the silicon foundry does not have access to the bitstream that
configures the eFPGA during the fabrication process. Several
fine-grained eFPGA providers allow full customization of the
reconfigurable fabric [15], [16]. Fig. 2 shows the complete
overview of the proposed VLSI design flow and the target

Cknown Cnew

Step 1: High-Level Synthesis

Techlib
fmax

RTLknown RTLnew

Step 2: Data-Flow Graph
Generation

DFGknown DFGnew

Step 3: Max-Subgraph
Generation (DFGknowꓵ DFGnew)

Step 4: Split RTL (ASIC, eFPGA)

Stage Output

Step 5: eFPGA Logic
Optimization

Fig. 3. Overview of complete proposed flow (DECOY).

architecture, mainly targeting hardware accelerators in the
SoC.

The target architecture is a hardware accelerator mapped as
an ASIC onto a heterogeneous SoC, although it could also be a
standalone block as well. The overall flow starts by comparing
two implementations of the same application, given as untimed
behavioral descriptions for HLS. The main contribution of this
work is to partition the new implementation that needs to be
hidden into the target hardware platform, such that the newly
developed part of the design is mapped onto the eFPGA and
the well-known part onto the ASIC. The RTL for the eFPGA
is then passed to the FPGA synthesis flow, which ends up
generating a bitstream file for the eFPGA, while the RTL for
the ASIC follows a traditional ASIC flow, as shown in Fig. 2.

V. PROPOSED METHOD

Fig. 3 shows an overview of the proposed method, which
we call DECOY, while algorithm 1 describes the core steps of
the proposed method in detail (Steps 2 to 4). Our method takes
two behavioral description (Cknown and Cnew) as input, that
implement the same functionality in different ways. Cknown
is the traditional implementation, while Cnew is the new
implementation that a company wants to hide from the com-
petition. Our proposed method then synthesizes (HLS) each
behavioral description and obtains the two RTL descriptions
that can efficiently execute them (RTLknown and RTLnew).
HLS typically generates a circuit that is composed of a finite
state machine (FSM) and a datapath. The FSM serves as the
dataflow controller. The datapath consists of functional units
(FUs, e.g., adders, multipliers and dividers), muxes, decoders
and memory from the user-specified HLS libraries.

The proposed method, then, continues by building a Data
Flow Graph (DFG) of the datapath for the two design im-
plementations (DPknown and DPnew). Next, it compares
between the dataflow graphs and extracts the common func-

tional units (FUs). These common FUs serve as the starting
points for extracting the common logic between the two
implementations. The proposed method, then, continues by
grouping RTL components from these common FUs. The main
idea is to generate the largest common subgraphs between the
two DFGs, starting from the common FUs. These common
subgraphs are, in turn, mapped onto the ASIC, while the rest
of the DPnew is mapped onto the eFPGA. In summary, the
proposed method can be divided into 5 steps as follows:

Step 1: High-Level Synthesis: This first step takes the
application as input in its well-known form (Cknown) and
its new implementation that needs to be hidden (Cnew). The
inputs are synthesized to equivalent RTL codes and Cnew is
mapped as the hardware accelerator onto an SoC. In order
to accelarate the execution of this application, the HLS is
set to maximize performance by unrolling loops, and inlining
functions.

Step 2: Data Flow Graph Extraction: This step generates
the DFGs for the two RTL descriptions obtained in step 1
(DFGknown and DFGnew) by parsing the generated RTL
codes from PIs to POs (algorithm 1: lines 1 to 3). In this
case, DFGknown and DFGnew are modelled as a graph
G(V,E), where a node v ∈ V represents a RTL component
V = {FU,mux, decoder, encoder,RAM}, where FU =
{+, ∗, >,<, ...}. The connection between these components
is represented by an edge e(vi, vj) ∈ E with vi driving
vj . Because the typical circuit after HLS is composed of
FSM + Datapath, our method also includes the FSM in
the DFG.

Step 3: Max-Subgraph Generation: This third step parses
both DFGs and constructs the largest common subgraph be-
tween the two DFGs. The construction method starts by identi-
fying in the two dataflows (DFGknown and DFGnew) a com-
mon set of FUs (algorithm 1: line 5), such that FUcommon =
{rtl1, rtl2, . . . , rtlN} ∈ DFGknown ∩DFGnew. The method
then randomly chooses one of the common RTL components
(rtli) and builds the largest common subgraph (algorithm 1:
lines 10 to 24). Although max-subgraph generation has been
shown to be an NP-complete problem [17], the RTL code
does not generally contain a larger number of components,
as opposed to building max-subgraphs at the gate netlist-
level. Thus, our method uses a depth-first method to traverse
the two DFGs, in order to build the max-subgraph. The
method continues with the next common RTL component
(rtli+1) and repeats the same process, unless this common
RTL component has already been included in one of the
subgraphs (algorithm 1: lines 7 to 9).

Step 4: RTL Partition: This step splits the RTL description
of the new design (RTLnew) into the ASIC and eFPGA part,
based on the max-subgraph generated in step 3, where the
the common subgraph is mapped onto the ASIC portion of
the design, while the rest of the circuit is mapped to an
eFPGA (algorithm 1: line 26). The method then proceeds
to synthesize these descriptions separately, given the ASIC

Algorithm 1: ASIC+eFPGA partitioning approach
input : RTLknown, RTLnew

RTLknown: Known RTL implementation of application
RTLnew: Novel RTL implementation of same application

output: RTLpartitioned = RTLASIC ∪RTLeFPGA

RTLpartitioned: Split design between ASIC and FPGA

1 /* Step 2: DFG Generation*/
2 DFGknown = parse rtl(RTLknown)
3 DFGnew = parse rtl(RTLnew)

4 /* Step 3: Max-subgraph generation*/
5 FUcommon = search FUs(DFGknown, DFGnew)

6 /* Generate Common RTL components subgraph */
7 for (rtli ∈ FUcommon) do
8 DFS(rtli)
9 end

10 Function DFS (rtli):
11 if rtli /∈ RTLcommon then
12 RTLcommon ← RTLcommon

⋃
{rtli}

13 else
14 return
15 end
16 for rtlj connected to rtli in DFGnew do
17 for rtlk connected to rtli in DFGknown do
18 if rtlj = rtlk and rtlk is not visited then
19 mark rtlk as visited
20 DFS(rtlj)
21 end
22 end
23 end
24 return
25 /* Step 4: RTL Partition*/
26 RTLunique = extract RTL(DFGnew, RTLcommon)
27 RTLpartitioned ← RTLunique ∪RTLcommon

28 return RTLpartitioned

and eFPGA libraries, to obtain the final gate-level design and
eFPGA bitstream. The overhead associated with our proposed
method is fully made observable at this point. In Fig. 3, it
can be observed that the adders, multipliers and one mux
are shared between the two implementations and are, hence,
mapped onto the ASIC, while the FSM, the subtractors and
the other mux are not, and are, hence, mapped to the eFPGA.

Step 5: eFPGA Logic Optimization: This last step aims
at reducing the logic mapped onto the eFPGA, as this is
the main source of area, delay and power overhead. For
this, a proposed optimization pass makes use of a well-
known optimization technique used in HLS: resource sharing.
In resource sharing, multiple operations in the C code are
mapped onto the same FU in order to reduce the area of
the final circuit, albeit increasing the resultant latency. Thus,
this optimization pass selects all the FUs mapped onto the
eFPGA, each defined by a 2-tuple with the type and number
of FUs, e.g., FUeFPGA = {(+, x), (∗, y), . . . , (/, z)}, where
the eFPGA has x adders, y multipliers and z dividers. The
optimization pass back-annotates the number of FUs allowed
in the FU constraint file of the HLS tool, such that only
a single FU of each type mapped onto the eFPGA is al-
lowed, leading to: FUeFPGA = {(+, 1), (∗, 1), . . . , (/, 1)}.
In case FUs of the same type but different bitwidths are
present, then only the FU of the largest bitwidth is kept.
This minimizes the total area of the eFPGA by forcing the
HLS process to maximize resource sharing. The resultant

performance degradation will depend on the number of FUs
saved. The C code is, in turn, re-synthesized (HLS) with the
new constraint file, and steps 2 and 3 are repeated. This should
lead to a new partitioning with fewer components mapped
to the eFPGA and, hence, smaller area and power overhead
(Csplit min). The designer can then decide which of the two
configurations to choose from, based on his/her preferences.
In Fig. 3, it can be observed that after step 4, the eFPGA
contains three subtractors, thus, FUeFPGA = {(−, 3)}. After
this optimization pass, the number of subtractors allowed is
only one, i.e., FUeFPGA = {(−, 1)}, which reduces the total
eFPGA area usage.

VI. SECURITY ANALYSIS

In its ASIC + eFPGA incarnation, DECOY defends
against efforts to exfiltrate the proprietary IP in both of the
following scenarios: (a) when the adversary only possesses
an unprogrammed device (and all its design details); and (b)
when, in addition, the adversary also possesses a programmed
device that can be interrogated (i.e., oracle) but from which
the program cannot be extracted. In fact, access to an oracle
does not offer an advantage in this case, as the adversary
already has access to known implementations of the missing
logic. Therefore, the traditional SAT-attack formulations may
not be effective in this case. Indeed, the ability to identify
all functionally equivalent solutions for the obfuscated IP
(i.e., through an ALL-SAT formulation) and select among
them the correct one (e.g., through parametric analysis) would
be required. Such attack solutions, however, can be com-
putationally prohibitive (and are yet to be developed and
investigated by the hardware security community). Even for
instances where ALL-SAT may be tractable, such as small
or simple IP for which the cardinality of the solution set
(i.e., number of possible implementations) is small (e.g.,
polynomial), the general DECOY framework provides novel IP
protection opportunities. For example, DECOY can drive not
only the selection of the protected IP functions but also (i) their
transformation based on ALL-SAT hardness criteria, such as
the existence of multiple known implementations of identical
or similar functionality, and (ii) their partitioning to trusted and
untrusted portions of the supply chain, through split design
flow, split manufacturing, or multi-chip(let) implementations.

VII. EXPERIMENTAL RESULTS

To test the effectiveness of the proposed method, we im-
plemented two versions of well-known applications in C. The
first design corresponds to the known implementation of the
application (Cknown), while the second design represents the
new implementation (Cnew). This version is also in all cases
the more efficient version. In particular, consider a convo-
lutional neural network (CNN) using sigmoid as activation
function (Cknown) and a CNN using ReLU (Cnew). This
CNN is designed for traffic sign recognition, which takes
in 1280×720 grayscale images and outputs the location of
the traffic sign and the corresponding speed limit. The only
difference between the two implementations is that Cnew

uses ReLU as activation function and Cknown uses sigmoid.
The second application is sorting algorithms, where we used
insertion-sort as Cknown for arrays of 100 elements and
quick-sort as Cnew. The third application used is 4×4 matrix
inversion using the adjoint method as Cknown and using LU
decomposition as Cnew. Moreover, a 16-point discrete Fourier
transform using a naı̈ve algorithm (Cknown) and fast Fourier
transform (Cnew) is used. Finally, a naı̈ve string matching
algorithm (Cknown) vs. Rabin-Karp algorithm (Cnew) is also
used in our experiments.

The HLS tool used is CyberWorkBench from NEC [18].
We use Design Compiler for ASIC and Quartus II for FPGA
design synthesis. The Nangate 45nm technology is used for the
ASIC and Stratix III as the target FPGA device that mimics
the proposed eFPGA. We targeted the Stratix III because it is
reported to be fabricated in the same technology node. The
experiments are conducted on an Intel i7-6700 3.40GHZ CPU
with 16 GB memory, running CentOS 7.

Table I summarizes the experimental results when both
versions are synthesized targeting highest-performance as the
main design objective. This is also the most natural way
to implement these applications, as the final goal is to map
them as hardware accelerators in an SoC. The CknownASIC
column reports the area, number of RTL components, latency
and delay of the known implementation, fully-mapped onto
the ASIC. The CnewASIC column reports, for reference, the
same information when the new version is fully mapped onto
an ASIC.

Finally, in Table I, the Csplit max column represents vari-
ous design metrics for the DECOY method when maximum
number of FUs are allowed during Cnew synthesis. Similarly,
the Csplit min column reports the overall design metrics for
the DECOY method when eFPGA logic optimization (step
5) is applied. We use µm2 for ASIC area and ALUTs for
FPGA area representation. To better illustrate the results,
Fig. 4 graphically compares the normalized area, latency,
delay, throughput, power and energy overheads of the four
implementations, while the last entry in each figure shows the
average results. For area, the ALUTs were converted into µm2

following the indications of [19].
Several interesting observations can be drawn from these

results. First, the new implementation of the well-known
application (Cnew) always leads to better performance than the
traditional implementation. The average throughput increases
by 2.62×. This is inline with the main motivation behind the
proposed method. Moreover, although mapping portions of the
new design to the eFPGA leads to performance degradation,
it can be observed that the throughput of the proposed split-
design is still higher than the throughput of the original
implementation. On average by 1.42× for Csplit max and
1.19× for the Csplit min.

Second, the area overhead of DECOY can be relatively
large, depending on the amount of overlap between the original
implementation and the new one. This area overhead can be
substantially reduced, anyway, through the proposed resource
sharing optimization pass (step 5), as described in Section V.

TABLE I
EXPERIMENTAL RESULTS SUMMARY

Convolutional Neural Network using ReLU vs. Sigmoid
Cknown Cnew Csplit max Csplit min

ASIC ASIC ASIC FPGA ASIC FPGA
Area* 186,320 82,749 81,885 472 81,885 472

rtldp ** 1,726 1,405 1,404 1 1,404 1
Latency [clk cycle] 238,803,508 21,000,394

Delay [ns] 14.76 11.13 18.1 18.1
Quick Sort vs. Insertion Sort

Cknown Cnew Csplit max Csplit min

ASIC ASIC ASIC FPGA ASIC FPGA
Area* 12,909 29,755 8,972 2,895 11,314 2,088

rtldp ** 224 457 169 288 216 237
Latency [clk cycle] 5,390 1,088 1,442

Delay [ns] 2.3 4.49 6.94 7.56
Matrix Inversion using LU Decomposition vs. Adjoint Method

Cknown Cnew Csplit max Csplit min

ASIC ASIC ASIC FPGA ASIC FPGA
Area* 78,295 31,327 27,799 4,419 23,271 3,339

rtldp ** 503 217 185 32 135 17
Latency [clk cycle] 293 41 44

Delay [ns] 14.11 9.95 35.33 40.34
Fast Fourier Transform vs. Naive Discrete Fourier Transform

Cknown Cnew Csplit max Csplit min

ASIC ASIC ASIC FPGA ASIC FPGA
Area* 258,887 61,996 27,682 6,805 43,143 4,703

rtldp ** 718 449 278 171 311 134
Latency [clk cycle] 200 97 114

Delay [ns] 13.13 10.81 12.33 13.62
Rabin-Karp String Matching vs. Naive Algorithm

Cknown Cnew Csplit max Csplit min

ASIC ASIC ASIC FPGA ASIC FPGA
Area* 7,072 7,533 5,508 944 3,582 656

rtldp ** 122 144 107 37 82 32
Latency [clk cycle] 5,433 3,421 3,650

Delay [ns] 3.26 4.9 16.89 15.56

*unit of area: µm2 for AISC, ALUTs for FPGA.
**number of RTL components in datapath.

On average the area increased by a factor of 7.48× and
5.79× for Csplit max and Csplit min, respectively. This area
increase only affects the hardware accelerator, which is a
single component in an otherwise large SoC. Moreover, the
eFPGA can be easily reused for other tasks as it is fully
reconfigurable at runtime.

Finally, in terms of power and energy consumption, it can
be observed that the proposed method also leads to power
and energy overheads due to the larger power consumption of
the eFPGA compared to the ASIC. On average, the power in-
creases by 4.55× for Csplit max and 3.65× for Csplit min, and
the energy by 1.91× and 1.75× for Csplit max and Csplit min,
respectively, when compared to Cknown. One advantage of
using the eFPGA is that the power density decreases. It has
been reported that this leads to lower temperatures in the chip
and, hence, to longer life times [20].

In summary, our method is an interesting solution for hiding
a new implementation of a well-known application such that
the overhead is still manageable, especially considering the
added security offered.

VIII. CONCLUSION

DECOY obfuscates IP by separating a target design into
a portion that overlaps with one or more commonly known
implementations (targeting similar functionality) and a por-
tion that provides a competitive edge. Its effectiveness was
demonstrated through a single HLS-based incarnation of this
method, wherein the former is mapped onto an ASIC while
the latter is programmed on an eFPGA. To understand the

cnn sort matrix inv dft str match avg
0

0.5

1
N

or
m

al
iz

ed
A

re
a

Cknown Cnew Csplit max Csplit min

cnn sort matrix inv dft str match avg
0

0.5

1

N
or

m
al

iz
ed

L
at

en
cy

cnn sort matrix inv dft str match avg
0

0.5

1

N
or

m
al

iz
ed

D
el

ay

cnn sort matrix inv dft str match avg
0

0.5

1

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

cnn sort matrix inv dft str match avg
0

0.5

1

N
or

m
al

iz
ed

Po
w

er

cnn sort matrix inv dft str match avg
0

0.5

1

N
or

m
al

iz
ed

E
ne

rg
y

Fig. 4. Normalized area, latency, critical path delay, throughput, power, energy of Cknown, Cnew mapped on ASIC, and Csplit max, Csplit min mapped
on ASIC and eFPGA.

full scope of DECOY, however, several research directions
must be further explored. These include (i) implementation of
other incarnations of DECOY wherein the above separation
is achieved through split design and split design flow, split
manufacturing, multi-chip(let) integration, and explorations of
the various trade-offs, (ii) analysis of the impact of amount,
granularity, and dispersion of such separation on IP protec-
tion (and corresponding security vs. cost tradeoffs), and (iii)
investigation of new attacks which can distinguish a specific
implementation among many functionally equivalent versions,
as well as mitigation strategies to thwart such attacks.

REFERENCES

[1] SEMI, “IP Challenges for the Semiconductor Equipment and Materials
Industry,” 2012. [Online]. Available: http://stg7.semi.org/sites/semi.org/
files/docs/2012 IP White Paper V2 SupAdd.pdf

[2] C. Herder, M. Yu, F. Koushanfar, and S. Devadas, “Physical Unclonable
Functions and Applications: A Tutorial,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1126–1141, Aug 2014.

[3] Min Ni and Zhiqiang Gao, “Watermarking System for IC Design IP
Protection,” in International Conference on Communications, Circuits
and Systems, 2004.

[4] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy
of Integrated Circuits,” in Proceedings of the conference on Design,
automation and test in Europe, 2008.

[5] M. Yasin et al., “What to Lock?: Functional and Parametric Locking,”
in GLSVLSI, ser. GLSVLSI ’17, 2017, pp. 351–356.

[6] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC Piracy Using
Reconfigurable Logic Barriers,” IEEE Design & Test of Computers,
vol. 27, no. 1, pp. 66–75, Jan. 2010.

[7] Y. Lao and K. K. Parhi, “Obfuscating DSP Circuits via High-Level
Transformations,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 23, no. 5, pp. 819–830, May 2015.

[8] N. Shirazi, W. Luk, and P. Y. K. Cheung, “Automating production of
run-time reconfigurable designs,” in FCCM, 1998, pp. 147–156.

[9] Hu et al., “Functional Obfuscation of Hardware Accelerators Through
Selective Partial Design Extraction Onto an Embedded FPGA,” in
GLSVLSI, 2019.

[10] S. Liu, R. N. Pittman, A. Forin, and J.-L. Gaudiot, “Achieving Energy
Efficiency Through Runtime Partial Reconfiguration on Reconfigurable
Systems,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 12, no. 3, pp. 72:1–72:21, 2013.

[11] T. Winograd, H. Salmani, H. Mahmoodi, K. Gaj, and H. Homayoun,
“Hybrid STT-CMOS Designs for Reverse-engineering Prevention,” in
Proceedings of the Annual Design Automation Conference, June 2016.

[12] Shihab et al., “Design Obfuscation through Selective Post-Fabrication
Transistor-Level Programming,” in DATE, 2019.

[13] Kolhe et al., “Security and complexity analysis of lut-based obfuscation:
From blueprint to reality,” in ICCAD, 2019, pp. 1–8.

[14] S. Dupuis and M.-L. Flottes, “Logic locking: A survey of proposed
methods and evaluation metrics,” Journal of Electronic Testing, vol. 35,
no. 3, pp. 273–291, 2019.

[15] Achronix, “Speedcore eFPGA,” 2019. [Online]. Available: www.
achronix.com

[16] Quicklogic, “ArticPro eFPGA,” 2019. [Online]. Available: www.
quicklogic.com

[17] V. Kann, “On the approximability of the maximum common subgraph
problem,” in Annual Symposium on Theoretical Aspects of Computer
Science. Springer, 1992, pp. 375–388.

[18] NEC, “Cyberworkbench v.6.1,” 2018.

[19] H. Wong, V. Betz, and J. Rose, “Comparing FPGA vs. Custom Cmos
and the Impact on Processor Microarchitecture,” in FPGA, 2011.

[20] P. Sundararajan, A. Gayasen, N. Vijaykrishnan, and T. Tuan, “Thermal
Characterization and Optimization in Platform FPGAs,” in ICCAD,
2006.

