Berger Code-Based Concurrent Error Detection
in Asynchronous Burst-Mode Machines

Sobeeh Almukhaizim and Yiorgos Makris
Electrical Engineering Department, Yale University
New Haven, CT 06520, USA

Abstract

We discuss the use of the Berger code for Concurrent Error
Detection (CED) in Asynchronous Burst-Mode Machines
(ABMMs). We present a state encoding method which guar-
antees the existence of the two key components for Berger-
encoding an ABMM, namely an inverter-free ABMM im-
plementation of the circuit and an ABMM implementation
of the corresponding Berger code generator. We also pro-
pose improved solutions to two inherent problems of CED
in ABMMs, namely checking synchronization and detection
of error-induced hazards. Experimental results demonstrate
that Berger code-based CED reduces significantly the cost of
previous CED methods for ABMMs.

1. Berger-Encoded ABMMs

In a Berger-encoded circuit, single errors lead to a
non-codeword as long as they result in transitions in ei-
ther the 0 — 1 or the 1 — 0 direction at the output, but
not both. The authors in [1] show how to enforce this
constraint by redesigning a combinational circuit such
that inverters only appear at the inputs, which guaran-
tees that all single errors will only cause unidirectional
error effects at the outputs. In contrast to the circuits
targeted in [1], ABMMs have combinational feedback
and impose additional constraints in order to guarantee
the existence of a hazard-free implementation [2]. We
demonstrate next how to obtain the two key components
necessary for designing a Berger-encoded ABMM: i) an
inverter-free ABMM implementation, and ii) an ABMM
implementation of the Berger code generator.

In order to generate an inverter-free ABMM im-
plementation, we propose to re-encode the states of
the ABMM such that states are uniquely distinguished
without the need for inverted state bits. MINIMAL-
IST, a comprehensive synthesis tool for ABMMs, uses
dichotomies [3] to represent the constraints that must be
satisfied by the state codes for an ABMM implementa-
tion to exist. A dichotomy, such as (Group:;Groups),
specifies two groups of incompatible states and a so-
lution assigns a logic value, =, to a bit in the state
encoding of all the states in one group, say Groupi,
while assigning T to the same bit in all the states in the
other group, Group,. MINIMALIST encodes the states
such that every state is distinguished from incompat-

3-9810801-0-6/DATEQ06 © 2006 EDAA

ible states through a positive (negative) identifier; i.e.
a bit that is assigned a logic ‘1" (logic ‘0") to solve the
dichotomy, respectively. In order to eliminate invert-
ers, we augment the state encoding with the opposite
value of a state bit if the corresponding state bit is used
as a negative identifier to solve some dichotomy. The
new bit now becomes a positive identifier for the same
dichotomy, eliminating the need for inverters.

In order to derive the specification of the Berger code
generator, we start from the specifications of the origi-
nal ABMM and we substitute the output burst with the
corresponding Berger code. Subsequently, MINIMAL-
IST is used to synthesize the ABMM implementation of
the Berger code generator.

2. Berger Code-Based CED for ABMMs

In order to perform Berger code-based CED for
ABMMs, two additional challenges need to be ad-
dressed [4]: identification of appropriate checking time
(checking synchronization) and detection of errors that
only cause hazards (detection of error-induced haz-
ards). Methods to address both of these problems were
described in [4]. In this section, we propose improved
solutions, which reduce the overhead and enhance the
efficiency, and we demonstrate the complete Berger
code-based CED method for ABMMs.

Checking Synchronization: Based on the the defi-
nition of ABMMs, the output of the Berger-encoded
ABMM is steady during an input burst and only
changes after the input burst is complete. When the
input burst is complete, however, the ABMM and
the Berger code generator operate asynchronously and
their result is only guaranteed to be stable when the
tirst bit of the new input burst arrives. Thus, the Berger
code checker should be activated (deactivated) during
(in between) input bursts. In order to control the re-
sult of the checker, we use a Transition Prediction Func-
tion (TPF) which signifies the end of an input burst.
Since the TPF controls the checking, its implementation
should be hazard-free to ensure that no false positives
or false negatives occur. Therefore, the TPF is also im-
plemented as an ABMM. The TPF obtains a logic value
of ‘1" when the current input burst and state combina-
tion results in a state transition and/or a change at an
output, and a logic value of ‘0" otherwise.

Circuit Original Inverter-Free Code Generator T.PE Checker [5] H. D. Circuit Synchronizer Total

Name 1/S(Bits)/O Lit. Gates Lit. Gates k Lit. Gates Lit. Gates Lit. Gates Lit. Gates Lit. Gates Lit. Gates
concur-mixer 3/3(4)/3 26 16 50 28 1 22 13 29 17 4 2 22 12 15 8 150 84
martin-q-element 2/2(2)/2 14 9 20 11 1 3 1 1 0 3 2 14 8 10 5 59 31
opt-token-distributor 4/6(6)/4 74 41 115 61 2 32 18 1 0 5 3 29 16 20 11 210 113
pe-send-ifc 5/5(5)/3 110 58 153 79 2 128 67 134 79 5 3 22 12 15 8 465 252
tangram-mixer 3/2(2)/2 17 10 24 15 2 17 10 1 0 4 2 14 8 10 5 78 44
pl 13/11(8)/14 458 238 615 320 3 200 108 135 76 1 5 104 59 70 41 1143 613
while_concur 4/44)/3 41 24 59 33 1 19 11 31 18 4 2 22 12 15 8 158 88
rf-control 6/6(6)/5 75 37 114 63 1 24 14 29 17 5 3 37 21 25 14 242 136
hp-ir 3/2(2)/2 13 8 23 14 1 1 5 33 19 3 2 14 8 10 5 102 57
while 4/3(4)/3 27 16 47 27 1 5 2 1 0 4 2 22 12 15 8 102 55

Table 1. Experimental Results for Berger Code-Based CED

Change in Inputs

1 1

? 1(Delayed) lf 1(Delayed)

|,, l-: l‘l:: ||(De\ayed] l-: ||(De\nyed|

Figure 1. Hazard Detection Circuit

[E I1 1(Delayed)
In

I1 (Delayed)

Change,

I1
In

In(DeIayed) In(DaIayed)

™1

Figure 2. Change Detection Circuit

Change,

Detection of Error-Induced Hazards: In order to de-
tect error-induced hazards, we designed the circuit il-
lustrated in Fig. 1, which monitors the number of tran-
sitions that occur on an output. Hazard detection is
based on the fact that no more than one transition, ei-
ther rising or falling, is allowed on an output after ev-
ery input change. Therefore, the change detection cir-
cuit of Fig. 2 is added to reset the value of feedback
loop signal whenever an input changes. Subsequently,
the feedback loop in Fig. 1 monitors the output and
latches a logic ‘1’ value if it makes a transition. If a sec-
ond transition occurs on the same output bit, then the
hazard signal is asserted.

Complete Berger Code-Based CED Method: The pro-
posed CED method is illustrated in Fig. 3. First,
the ABMM is Berger-encoded as described in Sec-
tion 2. Then, the ABMM implementation of the
TPF is added to enable/disable the checker based on
the aforementioned checking synchronization method.
Subsequently, the hazard detection circuit, including
the change detection circuit, is added to detect error-
induced hazards. Finally, a few glue-logic gates (G1-
G3) are used to generate the error output.

Change
Detection Circuit

Transition
Prediction Function

Hazard
Detection Circuit

Output
Inputs Inverter-Free " CH> E
" Circuit E B ror
|—> _| C
K
Output E
Berger Code k)
Predictor

Figure 3. Berger Code-Based CED
3. Experimental Results & Conclusions

The results for Berger code-based CED are summa-
rized in Table 1. For a few circuits, the cost of the
TPF is zero. This is attributed to the simplicity of the
specification of these controllers, wherein every input
burst is composed of a single input change and, hence,
the TPF always indicates a transition. On average, the
inverter-free ABMM implementation increases the area
cost by 50% over the area cost of the original ABMM
implementation. Compared to the CED methods in [4],
Berger code-based CED reduces the area cost, on aver-
age, by more than 16%.

References

[1] N. K. Jha and S.-J. Wang, “Design and synthesis of self-
checking VLSI circuits,” IEEE Transactions on Conputer-
Aided Design of Integrated Circuits and Systems, vol. 12, no.
6, pp. 878-887, 1993.

R. M. Fuhrer and S. M. Nowick, Sequential Optimization of
Asynchronous and Synchronous Finite-State Machines: Algo-
rithms and Tools, Kluwer Academic Publishers, 2001.

G. De Micheli, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “Optimal state assignment for finite state ma-
chine,” IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 4, no. 3, pp. 269-285,
1985.

S. Almukhaizim and Y. Makris, “Concurrent error detec-
tion in asynchronous burst-mode controllers,” in Design
Automation and Test in Europe Conference, 2005, pp. 1272-
1277.

X. Kavousianos and D. Nikolos, “Novel single and dou-
ble output TSC berger code checkers,” in VLSI Test Sym-
posium, 1998, pp. 348-353.

[2]

[3]

[4]

[5]

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

