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Abstract—In semiconductor manufacturing, a wealth of wafer-
level measurements, generally termed inline data, are collected
from various on-die and between-die (kerf) test structures and
are used to provide characterization engineers with information
on the health of the process. While it is generally believed that
these measurements also contain valuable information regarding
die performances, the vast amount of inline data collected
often thwarts efficient and informative correlation with final test
outcomes. In this work, we develop a data mining approach to
automatically identify and explore correlations between inline
measurements and final test outcomes in analog/RF devices.
Significantly, we do not depend on statistical methods in isolation,
but incorporate domain expert feedback into our algorithm
to identify and remove spurious autocorrelations which are
frequently present in semiconductor manufacturing data. We
demonstrate our method using data from an analog/RF product
manufactured in IBM’s 90nm low-power process, on which we
successfully identify a set of key inline parameters correlating to
module final test (MFT) outcomes.

I. INTRODUCTION

During the fabrication process of semiconductor devices,

tens of thousands of measurements are collected, from bare

silicon all the way through wafer-level to module final test. The

data collected during wafer processing is collectively known

as inline data, and is designed to provide characterization

engineers with information about defect density [1], [2], [3]

and the electrical/physical properties of the product. This inline

data is collected from a variety of test structures. On-die
structures are located in close proximity to (and may even

interact with) the product, with the objective of accurately

reflecting its electrical properties, but also with the limitation

that available area for such test structures is extremely con-

strained. Kerf structures are located in the wafer kerf, i.e. the

areas of the wafer that are destroyed during the wafer dicing

step. Depending on the specific product, a large number of

test structures (NFETs/PFETs, resistors, capacitors, SRAMs,

etc.) are placed in the kerf. Both on-die and kerf structures are

sequentially measured throughout wafer processing. To reduce

measurement time, however, such inline test structures are not

exhaustively tested. Instead, each group of measurements is

selectively measured across the wafer to provide a represen-

tative sample of the wafer inline measurement statistics.

This incredibly rich dataset is typically used by characteri-

zation engineers to monitor the process, control process vari-

ation, and identify/respond to problematic processing steps,

tools, or off-target process parameters. At first glance, it would

seem an easy task to track down the root cause of yield

degrades or final test parametric variation given the immense

amount of data available from inline test structures. However,

it is important to consider the distinction between information

and knowledge: from inline test structures, a great deal of

information is available to us. Yet without the domain expertise

of a number of engineers who sift through and interpret

correlations with inline parameters for significance, we are

constrained in what we can learn and know about the process.

Indeed, the information sparsity of inline data thwarts

automated correlation identification, especially in low-volume

products. Consider, for example, the case where we are tasked

with establishing a causal link between inline measurements

and final test outcomes on a low-volume product. In this

scenario, we would be provided with inline data from a small

number of wafers, say 100, exhibiting either a yield degrade

or parametric variation at final test. The number of inline

parameters measured during wafer processing would likely

be on the order of 10,000. Yet with such large number of

possible predictor variables (i.e., 10,000) and small number of

observations (i.e., 100), it would be impossible to construct

even a simple linear regression model. In other words, one

needs to effectively filter the predictor matrix in order to

identify any meaningful correlation to final test outcomes.

Furthermore, it intuitively does not make sense to retain the

complete inline dataset when correlating to final test outcomes.

The inline test set includes many types of parameters (i.e.,

simple physical/electrical measurements), some of which may

have no physical connection to the final test outcome (i.e.,

gain, noise figure, IIP3) we are considering. For example,

the inline measurement of SRAM beta/gamma ratios in a

mixed-signal device may appear correlated to final-test gain

of an analog/RF amplifier, but we would not expect a de-

graded SRAM measurement to cause a degraded gain figure.

Thus, implementing a filtering stage is necessary to make the

correlation-mining problem tractable.

Fig. 1. Current Practice For Identifying Correlations to Inline Parameters
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Fig. 2. Overview of Proposed Approach

Characterization engineers traditionally take one of two

approaches to the problem of sifting through inline data

and tracking down correlations between the inline parameters

and final test outcomes, as shown in Figure 1. Bottom-up,

where domain expertise is employed to manually generate

lists of inline parameters and evaluate their correlation to final

test, and top-down, where statistical tools are employed to

automatically identify inline parameters that appear correlated

to final test. Each of these approaches has its limitations.

When attempting to identify inline parameters directly via

the bottom-up approach, subtle correlations which are not

immediately obvious to the domain expert may be overlooked,

especially since these correlations may very well be complex

functions of multiple inline parameters. The extreme complex-

ity of semiconductor manufacturing means that complete a pri-
ori knowledge of all relationships between inline parameters

and final test outcomes is nearly impossible to achieve.

As for the top-down approach, success is limited by the tools

employed: to date, industrial tools for identifying correlation

between final test outcomes and inline parameters are univari-

ate or low-dimensionality multivariate and parametric [4]. The

limited dimensionality of statistical tools currently deployed

in industry limits the correlations that will be uncovered1.

Moreover, use of parametric statistics relies on assumptions

that may or may not be true for the given population. Most

significantly, such statistical methods are very sensitive to

spurious correlations. For example, commonly used statistical

tools such as Analysis of Variance (ANOVA) may identify a

processing step as affecting final test yield with high statistical

significance, but if the suspect step is simply an inspection, say

through a Scanning Electron Microscope (SEM), correlation

to a yield outcome simply does not make sense.

In this work, we develop a synergistic inline-to-final-

test correlation methodology which aims to leverage the

strengths of both bottom-up and top-down approaches, while

overcoming their limitations. An overview of our proposed

methodology is shown in Figure 2. We employ a statistical

feature selection approach to consider all inline parameters and

combinations thereof, and thereby avoid the limited domain

expertise problem which the bottom-up approach is sensitive

to. However, we also incorporate engineer domain expertise

1See [5] for a discussion of cases where presumably redundant parameters
provide information gain.

into our approach, conceding that statistical methods should

augment and improve the efficiency of expert intuition, not

replace it. Consider, for example, the 100 × 10, 000 dataset

mentioned earlier. With only 100 observations, the probability

of finding spurious correlations amongst the 10,000 inline

parameters is quite high. By incorporating engineer feedback

into our algorithm, we can learn from the domain experts and

sidestep these autocorrelations in our analysis.

Ultimately, our approach solves two related problems, as

shown in Figure 3. First, we dramatically improve the ability

of characterization and test engineers to quickly sort through

a great number of inline parameters, in order to identify key

subsets to monitor when tracking down the root cause of

yield degrades or final test parametric variation. Second, once

correlations between inline parameters and final test outcomes

are well-established via our method, we drastically improve

the ability to forecast final test outcomes and, accordingly,

plan and fine-tune production schedules. To the best of our

knowledge, this work is the first to present a systematic

approach to predicting final test outcomes from inline test

data, and the first to incorporate feedback from domain experts

directly into the algorithm in order to overcome the limitations

of the currently practiced top-down and bottom-up approaches.

Fig. 3. Utility of Proposed Approach

II. PROPOSED CORRELATION MINING APPROACH

Recall that our objective is to sift through a very large

set of inline measurements and identify a small subset which

demonstrate good predictive capability in the final test set, i.e.,

for which we can identify accurate correlation functions with

final test outcomes. In addition, we also want to enable domain

experts to evaluate the identified correlations and dismiss or

reinforce them, with the ultimate goal of enhancing their

significance. To this end, three key components are necessary,

as shown in Figure 2: (i) a feature selection algorithm, whereby

subsets of inline measurements are selected for assessing their

effectiveness as predictors of final test outcomes, (ii) a correla-

tion model construction method, whereby the dependent vari-

ables (i.e., the final test outcomes) are expressed as functions

of the selected predictors (i.e., the inline parameters), and (iii)



a provision for domain experts to seamlessly provide feedback

and guide an iterative approach, culminating with a final set of

correlations which leverage both advanced statistical methods

and field knowledge.

A. Feature Selection
Selecting among the large number of inline measurements

a subset that “best” correlates to a set of final test outcomes

is, essentially, a feature-selection problem. Generally, feature

selection is a non-trivial problem, since the number of possible

subsets of predictors is 2p − 1, where p is the cardinality of

the complete predictor set. With even a moderate number of

predictors, exhaustive search is completely untenable. Thus,

solutions to the feature selection problem generally fall into

two classes: greedy methods and heuristic methods. An excel-

lent review of various approaches to feature selection is given

in [5]. There is no single “best approach”; each has advan-

tages and disadvantages. Solutions from both classes, have

previously been employed by researchers in the analog/RF

test community, both in the context of analog/RF specification

test compaction [6], [7], [8] and in the context of alternate or

machine learning-based test [9], [10]. In our work, we have

found heuristic search methods generally work well for the

class and size of feature selection problems we encounter;

however, one could apply the algorithm presented in this work

in conjunction with any other underlying feature selection

method with little modification.

The specific heuristic feature selection method employed in

this work is a multi-objective genetic algorithm called NSGA-

II [11]. Genetic algorithms (GA), also known as evolutionary

algorithms, attempt to emulate biological natural selection by

creating seed “populations” of solutions, which subsequently

undergo mating and mutation steps. These steps are repeatedly

performed in phases known as “generations”. The justification

for such steps are intuitive: by mating two solutions, we may

discover a better solution, and by perturbing our solutions via

mutation we help avoid local optima which are suboptimal

in a global sense. At each generation, every member of the

population is evaluated via fitness/objective functions, and the

“elites”, or best solutions, of each generation are retained.

These elites define a Pareto-optimal set of solutions at the

termination of the GA, from which we can select a solution

optimal for our specific application.

Within the context of inline-to-final-test correlation, the con-

struction of the feature selection problem is straightforward,

as we have both a clear objective and a well-defined search

space. Our objective is good prediction quality (measured by

some loss function on the constructed correlation model) and

our search space comprises all possible subsets of one or more

inline measurements. As shown in Figure 4, which depicts the

first two components of the proposed method, we use NSGA-II

to generate bitstrings which correspond to the matrix of inline

parameters (i.e., the search space). Each entry in the bitstring

determines whether the corresponding inline measurement will

be included in the prediction model. The GA then searches

through candidate subsets of inline measurements, driven

Fig. 4. Iterative Feature Selection and Correlation Model Construction

by two objective functions (recall that NSGA-II is a multi-

objective GA). In order to increase information density and

avoid the well known “curse of dimensionality” problem, we

want to minimize the number of predictors retained, so the

first fitness function is proportional to the cardinality of the

retained set of inline measurements. We also wish to minimize

prediction error, so our second fitness function is proportional

to some loss function, which is defined over the final test

outcome space. Herein, we use as the loss function the residual

sum of squares error of the constructed correlation model.

B. Correlation Model Construction

As shown in Figure 4, at each iteration of the genetic

algorithm the selected subset of inline parameters is evaluated

by performing a regression to construct a correlation model.

In this work, we employ Multivariate Adaptive Regression

Splines (MARS) [12] as our correlation model construction

method. We use MARS as we have found it consistently

outperforms (in terms of prediction error) other regression

methods on the semiconductor manufacturing datasets we have

been working with. To evaluate prediction error for each

subset of inline measurements retained, we build a MARS

regression model with our predictor matrix X consisting of

the inline measurements, and our dependent variables matrix Y
consisting of final test outcomes. Aggregate prediction error is

then estimated by the total residual sum of squares (RSS) error

across the final test outcomes. To ensure statistical stability,

we perform 10 cross-validations and average the RSS. This

average is the error which is returned to the genetic algorithm

to drive the feature selection process.

C. Domain Expert Feedback

In order to improve convergence time of the genetic algo-

rithm in the large search space of inline measurements, we

assign a “prior” over the predictor set based on univariate

Pearson correlation coefficients and we modify the algorithm

to probabilistically retain parameters based on the prior values.

This permits us to loosely prioritize measurements that are

well-correlated, in a univariate/parametric sense, to the final

test outcomes. At the same time, using this prior does not

exclude inline measurements with small correlation coeffi-

cients from retention. Thus, we avoid the limitations of simple

ranking methods.

Most importantly, this prior also enables us to bridge the

gap between top-down and bottom-up methods in a key



Fig. 5. Complete Correlation Mining Approach

contribution of our method: we can use it to seamlessly incor-

porate feedback from engineers familiar with the process and

continually improve the performance of the feature selection.

To do this, we provide simple feedback mechanisms, whereby

domain experts can quickly scan the inline measurements

retained and flag any correlations which do not make sense

given the physical parameters of the device under consider-

ation or any correlations which are highly meaningful and

expected. The former are then assigned a very low or zero

prior value (i.e., they are likely to be excluded as predictors)

while the latter are assigned a very high prior value (i.e., they

are likely to be retained as predictors) and the analysis is re-

run, generating a new subset of inline parameters correlated

with final test outcomes. The complete correlation identifica-

tion algorithm proposed in this work, complementing feature

selection and correlation model construction with probability

priors, is presented in Figure 5.

D. Feedback Provision Mechanism

There are many possible mechanisms that can be con-

structed for domain experts to provide feedback in order to

drive the feature selection process. For this work, we opted to

implement a web-based interface, the architecture of which is

presented in Figure 6.

Fig. 6. Domain Expert Feedback Provision Architecture

The algorithm is implemented as an asynchronous web

service running on some analysis machine(s). After an initial

seed run, results are sent via JSON to a web page. Domain

experts can check this page at their convenience for the

latest list of correlated inline parameters. For each allegedly

correlated parameter, the domain expert can select one of

three actions: reject, to remove the inline parameter from

the correlation analysis being considered; follow-up, to flag

the parameter for further investigation, and accept, to accept

the correlation and emphasize its contribution in the prior

probability vector. An example of our implementation of this

interface is shown in Figure 7.

After feedback is provided by domain experts, the prior is

updated asynchronously, again via JSON, and the web service

re-runs the analysis, reporting uncovered correlations once

again upon completion of the analysis. This can iteratively

be repeated with the attention of the characterization engineer

only required upon completion of each round of analysis. The

anticipation is that, through this iterative process, feedback by

the expert engineers will result in more compact and more

accurate correlation models.

Fig. 7. Example of Web Interface

III. EXPERIMENTAL VALIDATION

To evaluate performance of our methodology, we employed

a dataset from an analog/RF device manufactured by IBM

in their 90nm low-power bulk silicon process, with 14 lots

worth of data sampled across several months of production. 14

module final test parameters were identified as key parameters

to investigate; these parameters consisted of various supply

currents and gains. A large number of inline parameters were

also provided; after removing constant columns and columns

with missing values, 1,746 inline measurements were retained.

As described in Section I, the contribution of this work

can be divided into identification of “forward correlations”,

which enable prediction of final test outcomes via subsets

of inline tests, and “backward correlations”, which pinpoint

key subsets of inline parameters for characterization engineers

to investigate and attribute yield degrades and/or final test

parametric variations to. Using the IBM-provided dataset, we

accomplished both objectives; the results are demonstrated in

the following subsections.

A. Forward Correlations: Predicting Final Test Outcomes

Figure 8 provides a graphical presentation of the accuracy of

the models constructed by the proposed method for predicting

final test outcomes based on inline parameters. Specifically,



(a) GSM DC Current (b) GSM LNA Gain

(c) CDMA DC Current (d) CDMA LNA Gain

Fig. 8. Experimental Results: MFT Parameter Predictions

we show prediction accuracy for 4 out of the 14 final test

outcomes, namely a DC current and an LNA gain while op-

erating at the CDMA and the GSM bands. The results for the

remaining 12 final test outcomes are similar. Each of the four

plots depicts the actual values on the horizontal axis and the

values predicted by the constructed models using only inline

parameters on the vertical axis. In other words, the 45-degree

line shown in the figures represents zero prediction error. As

can be seen, we are able to exploit correlations between inline

parameters and final test outcomes to successfully predict the

latter with minimal prediction error.

The overall prediction error of the proposed method across

the 14 parameters, expressed as the residual sum of squares,

is provided in Table I and contrasted against two baseline

feature selection methods. The first one is a simple rank-based

feature selection where the inline measurements are ranked

based on their Pearson correlation coefficients, and the most

correlated (in a pairwise univariate sense) inline measurements

are retained. The second one is a random search, where

1,000 random subsets of inline measurements are evaluated

and the retained subset is determined as the subset with the

lowest prediction error achieved across all 1,000 iterations.

As expected, the heuristic NSGA-II search outperforms both

of the simpler feature selection methods, since it efficiently

searches the space of inline parameter subsets and uncovers

complex multi-variate correlations.

Furthermore, as discussed in Section II, the proposed ap-

proach provides the ability for semiconductor manufacturing

domain experts to exert fine-grained control over the feature

selection process via modification of the prior probability

vector, thereby pruning spurious correlations and resulting in

compact prediction models using inline parameter subsets of

small cardinality. This is corroborated in Table II, which lists

Method Residual Sum of Squares

Pearson Correlation Coefficient Ranking 1716.980
Random Search - 1,000 Iterations 1243.942
Proposed Feature Selection Method 920.03

TABLE I
EXPERIMENTAL RESULTS: RESIDUAL SUM OF SQUARE ERROR

MFT Parameter Number of Inline Predictors Retained

DC Current 1 2
DC Current 2 3
DC Current GSM 3
DC Current CDMA 3
Gain GSM 4
Gain CDMA 10

TABLE II
NUMBER OF INLINE PREDICTORS RETAINED

the cardinality of the inline parameter subsets used to predict

each of 6 out of the 14 final test outcomes in our experiment.

B. Backward Correlations: Finding Causal Inline Subsets

The key contribution of this work is not in simply dis-

covering correlations, but also in enabling domain experts

to identify causal links between inline parameters and final

test outcomes. The small number of parameters retained in

the correlation models, as shown in Table II, enables quick

and effective investigation into the possible root causes of

yield degrades and final test parametric variations. In order to

achieve compactness of these models, we presented the results

of the feature selection and correlation model construction

algorithm of Figure 4 to the IBM inline experts and solicited

their feedback through the system described in Figure 6.

In Table III, we show the feedback provided through this

interaction with the domain experts for 4 out of the 14 final

test outcomes. The module final test outcome is listed on the

left, the retained inline test parameters correlated to it via

NSGA-II and MARS are listed in the center column, and the

feedback given by IBM inline experts is provided in the third

column. The tendency of automated correlation identification

methods to uncover spurious correlations is immediately ob-

vious from the table. Clearly, as we explained earlier, there is

no legitimate causal link between SRAM measurements and

GSM/CDMA LNA gain, and these correlations are rejected

as autocorrelation. On the other hand, the correlation of gain

to to NFET transconductance (Gm) makes sense and we

expect a legitimate correlation to exist, so we accept such

correlations as valid. Other parameters identified as “Follow-

up” are parameters flagged for further investigation (i.e., via

comparison to broader datasets or other products). Given the

collected feedback of the domain experts, the probability priors

are updated and the analysis is repeated, with this iterative

process ensuring both the accuracy and the compactness of

the identified correlation models and causal inline subsets.

IV. CONCLUSION

We presented a novel technique for identifying correlations

between inline measurements and final test outcomes, which



Final Test Parameter Correlated Inline Measurements Expert Feedback

GSM DC Current BEOL 10V Yield Measurement �Approve

BEOL 20V Yield Measurement �Approve
N OP RX resistance short device: unsilicided N diffusion resistance &Follow-up

CDMA DC Current BEOL 10V Yield Measurement �Approve

BEOL 20V Yield Measurement �Approve

Low Vt NFET Idsat �Approve

GSM LNA Gain BEOL Short Measurement �Approve

N thin iso FET Gm �Approve
PFET Ioff at high Vdd &Follow-up
SRAM PG Vt delta � Reject

CDMA LNA Gain BEOL Short Measurement �Approve

BEOL 20V Yield Measurement �Approve

N thin iso FET Gm �Approve

Thin gate Coverlap leakage - gate to source/drain extension �Approve
PFET Ioff at high Vdd &Follow-up
Low Vt PFET Ioff at high Vdd &Follow-up
PN Igon ratio &Follow-up
P thin Cov structure inv mode conductance &Follow-up
Thin NFET Tox Acc to PFET Tox Inv Ratio, N Tox accumulation / P Tox inversion &Follow-up
SRAM PD/PG ratio: Beta � Reject

TABLE III
CORRELATIONS IDENTIFIED BY NSGA-II FEATURE SELECTION APPROACH & FEEDBACK BY DOMAIN EXPERTS

avoids the pitfalls of both of the traditional bottom-up and

top-down approaches to uncovering such correlations. Our

approach leverages not only advanced feature selection and

correlation model construction methods, but also domain ex-

pertise which is seamlessly embedded within our algorithm,

thereby providing engineers with a powerful new tool for

ensuring accuracy and compactness of the identified corre-

lations. This is especially significant given the prevalence of

issues with spurious correlations, which limit the effectiveness

and utility of automated correlation identification methods cur-

rently used in semiconductor manufacturing. We validated our

method on production data from an 90nm analog/RF device

manufactured by IBM, demonstrating that our approach can

successfully identify both forward correlations, which result

in accurate prediction of final test outcomes from inline test

parameters, and backward correlations, which pinpoint causal

sets of inline parameters for test engineers to monitor and

investigate in case of yield degrades and final test parametric

variations.
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