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Abstract— We introduce an analog non-volatile neural network
chip which serves as an experimentation platform for prototyping
custom classifiers for on-chip integration towards fully stand-
alone built-in self-test (BIST) solutions for RF circuits. Our
chip consists of a reconfigurable array of synapses and neurons
operating below threshold and featuring sub-μW power con-
sumption. The synapse circuits employ dynamic weight storage
for fast bidirectional weight updates during training. The learned
weights are then copied onto analog floating gate (FG) memory
for permanent storage. The chip architecture supports two
learning models: a multilayer perceptron and an ontogenic neural
network. A benchmark XOR task is first employed to evaluate
the overall learning capability of our chip. The BIST-related
effectiveness is then evaluated on two case studies: the detection
of parametric and catastrophic faults in an LNA and an RF
front-end circuits, respectively.

I. INTRODUCTION

Machine learning-based testing of RF circuits has demon-

strated the use of software non-linear classifiers to predict

pass/fail test labels from low-cost measurements [1]. This

approach has paved the way for developing stand-alone BIST

solutions for RF circuits by integrating stimuli generators,

low-cost sensors and a hardware implementation of non-linear

classifiers alongside the circuit-under-test (CUT), as shown in

the architecture of Fig. 1. In this architecture, the responses of

the on-chip sensors to the stimuli generators, usually provided

in the form of DC voltages, are presented to the neural

classifier which produces a binary output indicating whether

the CUT passes or fails its specifications. The accuracy of such

prediction depends both on the ability of the neural classifier to

learn the underlying mapping (i.e. its learning ability) and on

the separability of classes as such (i.e. sensor measurement

quality). The latter has been addressed in recent studies

showing great promise in predicting performances of CUTs

with minimum overhead [2]. Therefore, this work focuses

on the former and investigates a hardware implementation

of two popular classifier models — a multilayer perceptron

(MLP) and an ontogenic neural network (ONN). Prior research

has demonstrated high efficiency of these models running in

software to predict circuit health from low-cost measurements

[1]. However, the processing resources required to run the

software models, such as an external computer or a built-

in digital signal processor, are not always available to a

stand-alone integrated circuit (IC), thus calling for a custom

hardware network that can be integrated on-chip.
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Fig. 1. Components of the RF BIST architecture. The CUT is excited by test
stimuli. Multiple sensors collect simple measurements which are processed by
the non-linear classifier that produces a pass/fail test result.

In applications such as BIST the additional power and

area overhead incurred by test circuits is crucial. Accordingly,

we selected an analog neural network implementation for its

superior power efficiency during run time, compact size and

the possibility of permanent weight storage using analog FG

memory. Indeed, when high precision is not required, analog

computation can be as much as 1000x more energy efficient

than digital [3]. In addition, analog circuits can be directly

interfaced with sensor outputs, thereby eliminating the use

of analog-to-digital converters. Finally, the use of the FG

technology in standard CMOS offers efficient non-volatile

storage of weight values with high accuracy [4].

Our previous work in this field focused on demonstrating a

proof-of-concept of learning in mixed-signal neural networks

[5] and using an emulation model of an experimental floating

gate chip [6]. In this work, we present an analog non-volatile

neural network experimentation platform fabricated in a 0.35-

μm CMOS process from TSMC, as well as its silicon learning

results. The platform features a large number of components

and serves as a prototyping tool for identifying appropriate

classifier models and their parameters for a given classification

problem. Thereby, the final classifier circuitry to be integrated

on chip is optimized to deliver high classification accuracy

with minimum area/power overhead.

The remainder of the paper is structured as follows. Section

II introduces two classifier models and outlines their training

algorithms. Section III describes the implementation details

including the overall architecture, the weight storage mech-

anism, as well as the synapse and neuron circuits. Section

IV-A evaluates the chip’s learning capability on a XOR task.

In Section IV-B, we present a first case study where the neural

classifier is trained to distinguish between functional and faulty

RF LNA chips based on amplitude detector measurements. In

the second case study, presented in Section IV-C, the neural
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Fig. 2. The ontogenic neural network topology. The hidden neurons receive
connections from both the network inputs Xi and the outputs of the previous

hidden neurons ̂Y H
j . The bottom neuron serves as a network output ̂Y O .

classifier is trained to identify defects in RF front-end chip

instances based on the readings from various on-chip sensors.

Finally, Section V concludes the paper.

II. OVERVIEW OF NEURAL CLASSIFIERS

A. Ontogenic Neural Network

Fig. 2 illustrates a block diagram of the ONN learning

model. A decision boundary is constructed by successively

adding hidden neurons (HN); each hidden neuron augments

the feature space of the original inputs with the intention of

making the derived space linearly separable. This strategy is

guided by the cascade-correlation algorithm [7], which repeats

the following steps for each added neuron. Suppose that our

current stage has M − 1 hidden neurons, as shown in Fig. 2.

Let ̂Y H
i be the output of the i-th hidden neuron and ̂Y O

i be the

output of the network when it has i hidden neurons. The M -th

hidden neuron is added at the bottom so that it sees the primary

inputs X0, ..., XP as well as all the outputs of the preceding

neurons ̂Y H
1 , ..., ̂Y H

M−1. Next, we train this neuron to maximize

the correlation between its output ̂Y H
M and the training error

of the previous stage ̂EM−1 =
∑

(YT − ̂Y O
M−1)

2, where YT

represents the target class labels and the summation is done

over the entire training set. Once the correlation is maximized,

the weights of this neuron become permanent and the output

layer is retrained to minimize the error on the training set,

i.e. ̂EM =
∑

(YT − ̂Y O
M )2. Note that in each step, only

the weights of the neuron being added undergo modification,

followed by the weights of the output neuron, while the other

weights are kept unchanged. This feature greatly simplifies

the gradient estimation by the hardware and leads to stable

performance even for large-sized topologies. Hidden neurons

are added until a stopping criterion is reached, which in

our case is the classification error on a validation set. The

correlation maximization and the error minimization are done

by the resilient back propagation algorithm (iRPROP+) [8],

which can be efficiently customized for hardware networks.

B. Multilayer Perceptron

Unlike the ONN model, a multilayer perceptron learns its

boundary by adjusting synaptic weights only, i.e. its topology

is fixed during training. A typical network consists of two

layers of neurons (Fig. 3). The first layer (a.k.a. hidden layer)

receives connections from the primary inputs X1, ..., XP and a

constant X0 = 1. The output layer consists of a single neuron
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Fig. 3. The multilayer perceptron topology with one hidden layer and one
output neuron.
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Fig. 4. (a) System architecture of the neural network chip. The reconfigurable
array of synapses (S) and neurons (N) is shown in the shaded box. (b) Die
photograph of the chip implemented in a 0.35-μm CMOS and measuring 3×3
mm2.

(for binary classification) receiving its connections from the

outputs of the hidden layer. The number of hidden neurons is

the only parameter that needs to be selected prior to training.

Once the topology is fixed, the training is performed once and

for the entire network. Similarly to ONN, error minimization

on the training set is achieved using a hardware customized

resilient back propagation (iRPROP+).

III. CHIP DESIGN

A. System Description

Fig. 4 shows a block diagram of the neural network chip.

A 30×20 array of synapses and neurons is arranged so

that the neurons are aligned along the main diagonal of the

upper matrix and along the right edge for the bottom part.

Global connectivity is programmable by means of multiplexors

inserted between rows. The core operates in the analog domain

with weights and signals represented by differential currents.

A single weight value requires two current sources for differ-

ential current storage. A current source is implemented as a

current storage cell (CSC) circuit that combines two modes of

operation: dynamic, for fast bidirectional weight updates, and

non-volatile, for long-term storage of learned weights. The

dynamic mode is engaged during training, when the weight

values undergo multiple updates. Upon completion of training,

the learned weights are copied onto the FG transistors for

permanent storage. The peripheral circuits provide support for

fast programing and interfacing with the external world. The

GM blocks convert voltage-encoded input signals (sensor read-

ings) into balanced differential currents required by the core.
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Fig. 5. Schematic of the current storage cell along with the dynamic
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μm2, P2 = 2×1 μm2, P3 = 0.4×0.35 μm2; C1 = 40 fF, C2 = 15 fF, C3 =
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The digitally-controlled current source IDAC generates target

currents from an on-chip reference for dynamic programming

of the CSCs. Finally, the current-to-voltage converter ITOV

facilitates the reading of internal currents by converting them

to voltages that can be sampled by an external ADC. Each of

the blocks undergoes extensive characterization to provide a

reading/sourcing accuracy of at least 8 bits.

B. Weight Storage

The principle of weight storage is illustrated in Fig. 5. We

use a multiple-input FG transistor (FGT) P1 to store the drain

current Iw representing one of the weight value components.

The drain current is modulated by the voltage on the FG

node, which is itself determined by the FG node charge and

the voltages on two control gates. The global voltage vgate1
of the first control gate is shared among all FGTs, while

vgate2 is stored locally in the dynamic sample-and-hold (S/H)

circuit which consists of the switch transistor P3 and the MOS

capacitor C3. The low-coupling capacitor C2 makes Iw much

less sensitive to charge leakage and other parasitic effects of

the S/H circuit. The tunneling capacitor C4 is implemented

as a minimum size PMOS transistor with its source, drain

and well terminals connected to vtun. Hot-electron injection

is used to add electrons to the FG, thus, lowering its voltage

and increasing the drain current. Conversely, Fowler-Nordheim

(FN) tunneling is used to remove electrons from the FG. The

tunneling is used for global erase only, while the injection

allows us to individually program drain currents of each CSC

with high accuracy (>8 bits).

C. Synapse and Neuron Circuits

The synapse circuit, illustrated in Fig. 6, implements a

four-quadrant multiplication of a differential input current

{I+in, I−in} by a differential weight current {I+w , I−w }. The cir-

cuit features two CSC cells for differential weight component

storage and a six-transistor core P1-P6. The neuron circuit,

illustrated in Fig. 7, implements a nonlinear activation function

of the sum of the outputs of the connected synapses. This

nonlinear transformation is completed in two stages. The first

stage, represented by the bottom part of the circuit, controls

the slope of the activation function. The slope is adjusted by

programming the Igain current, which is stored in a local CSC.

CSC CSC

Iw+ Iw-

P1 P4 P5 P6P3P2

Iin+ Iin-Iout+ Iout-

Fig. 6. Schematic of the synapse circuit (P1 = ... = P6 = 4×2 μm2).
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Fig. 7. Schematic of the neuron circuit. All PMOS and NMOS transistors
have size 4×1 μm2.

The second stage, implemented by the top part of the circuit

(P1-P6), performs nonlinear transformation of the normalized

input current. The common-mode signal Ineur of the output

current is set by a separate FGT.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results of the neural

network chip on several classification problems. Training is

performed in silicon by the chip-in-the-loop strategy using a

corresponding algorithm mentioned in Section II. The learning

capability is first evaluated on a standard XOR task. In the

second experiment, the neural network chip is trained to

distinguish faulty from functional instances of LNA circuits

(parametric faults) using on-chip amplitude detector measure-

ments. Lastly, the effectiveness of the neural classifiers to

detect defects (catastrophic faults) is evaluated on a dataset

of RF front-end circuits.

A. XOR2 Problem

Learning ability evaluation and comparison with other im-

plementations reported in literature is performed on a bench-

mark 2-input XOR task. It is well known that linear classifiers

fail to allocate a boundary in this case. In fact, a multilayer

perceptron requires a minimum of two hidden neurons for

this task. For power efficiency demonstration, we limited the

operating currents to 1 nA (i.e. the output currents of the

GM blocks, neurons and the maximum weight currents). For

the ONN classifier, the training started with just an output

layer and successively added hidden layers (neurons) until all

4 patterns were classified correctly. The training consistently
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Fig. 9. Transient characteristic of the ONN trained to classify XOR2 patterns.
The output is recorded from the voltage output pin of the ITOV converter.

converged with a single hidden neuron. Fig. 8 illustrates

the output produced by the trained ONN with one hidden

neuron. The output neuron is programmed for high gain, which

explains the rail-to-rail response. The transient characteristic

of the neural network is presented in Fig. 9. The response

time is 4 ms, which also includes the propagation delay due

to the GM and ITOV converters. The system performance

and comparison data to other implementations found in the

literature are summarized in Table I.

B. Case Study I: LNA Circuits

In the first case study, the analog neural network is trained

to separate faulty from functional LNA chips using on-chip

sensor measurements in response to on-chip stimulus gener-

ators. The design and the measurement data were provided

to us by the authors of [11]. The design consists of an

LNA circuit integrated with two RF amplitude detectors (AD)

placed at its input and output ports, as well as a voltage-

controlled oscillator which provides input stimuli for BIST. An

original set of 1000 devices with process variation is generated

via post-layout Monte Carlo (MC) simulation (Fig. 10). On

each device, we collect both a standard set of performance

parameters (i.e. noise figure, gain, S11, S22, IIP3) and four

AD measurements (in response to two single-tone stimuli of

different power levels). The latter are used as inputs to the

classifier.

The actual training and test sets are obtained via the

TABLE I

SYSTEM PERFORMANCE AND COMPARISON

ETANN [9] [10] this work
Technology 1 um CMOS 0.35 um, DP 0.35 um, DP
Weight storage floating gate floating gate FG + dynamic
Learning models MLP VMM+WTA MLP+ONN
Learning strategy off-chip off-chip chip-in-the-loop
Synapse current 20 um @5V 10 nA @2.4V 2 nA @3.3V
Response time 5 us NA 4 ms
Total power
(XOR2 taks)

NA 700 nW 66 nW

Computation
efficiency

1.3 GMAC/s/W 11–14 TMAC/s/W
(theoretical)

57 GMAC/s/W
(measured)

1000 MC 
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Fig. 10. Case study I. The synthetic training set is used for training and
model selection. The test set is used to report classification performance.

technique described by the authors of [12]. In essence, the

original dataset is used to estimate a joint non-parametric

density of both the sensor measurements and the performances.

This learned density is then resampled to obtain new synthetic

devices which follow the original distribution. The new devices

are arranged into a training set (1,000 devices) and a test set

(1,000,000 devices). A large size of the test set allows us to

assess the classification rate with parts per million accuracy.

The performance parameters portion of the data is passed

through a specification filter (defined as Mean±3·StdDev) to

obtain pass/fail labels used for training/testing. It should be

noted that the training set is balanced by artificially enhancing

it with faulty devices to bring the pass/fail ratio close to 1.

Besides fitting the weights, each of the presented classifiers

has a model complexity parameter – the number of hidden

neurons – that needs to be selected. We employ a popular

technique called cross validation (CV), whereby a small por-

tion of the original training set is reserved as validation data

to test a model trained on the remaining data. This step is

repeated multiple times for each number of hidden neurons

with individual CV errors aggregated into a graph such as

the one shown in Fig. 11. Also shown are the mean and

the standard error bars of CV errors. The fact that the CV

error does not improve after a few hidden neurons suggests

that the optimal boundary is fairly simple. We select the best

model according to the one-standard-error rule as the most

parsimonious model whose score is within one standard error

of the best score. For the MLP and ONN classifiers these

models contain 3 and 2 hidden neurons, respectively. The

resulting classifiers are retrained on the entire training set and



TABLE II

TRAINING RESULTS OF LNA CIRCUITS

Analog Analog Software Software
ONN MLP MLP MLP

Model size (HN) 2 3 2 4
Test error (PPM) 480 580 730 435
Die area (mm2) 0.126 0.138 N/A N/A
Power (μW) 1.58 1.63 N/A N/A
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Fig. 11. Case study I: CV error vs. the number of hidden neurons for training
an MLP classifier.

evaluated on the test set with the results shown in Table II.

For comparison purposes, the table also reports the test error

as obtained by training a software MLP with 2 and 4 hidden

neurons. Although the classification accuracy is similar across

various implementations, the software MLP with 4 hidden

neurons and the analog ONN achieve the lowest test error. The

average power consumption of the analog ONN with 2 hidden

neurons is 2.6 μW. Finally, we copied the learned weights onto

the FGTs and verified that the test error remained consistent

within several days. A long term study of non-volatile weight

retention is currently being conducted.

C. Case Study II: Defect Filter

Identifying manufacturing defects (or catastrophic faults

during the lifetime of ICs) represents a different class of

problems insofar as machine learning-based test is concerned.

A boundary trained to separate functional from parametric

faults does not perform well on defects which do not follow

the distribution of devices with process variation and appear

as outliers in the space of sensor measurements. Moreover,

while it is straightforward to obtain devices as affected by

process variation by performing MC simulation, there are

no widespread models for defect generation. Thus, relying

on devices affected by process variation only, the problem

of training a defect filter can be solved by constructing a

boundary around the class of instances with process variation

(considered as functional) serving to protect them against any

defects, which appear as outliers.

For the purpose of this case study we used the data from an

RF front-end chip which was provided to us by the authors of

[2]. The front-end consists of an LNA, a mixer and a number
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Fig. 12. Defect filter course of experiments. The synthetic training set is used
for training and model selection. The test set is used to report classification
performance.

of on-chip sensors serving as input features for the classi-

fication task. In particular, we consider the readings of three

sensors: two envelope detectors and a DC probe. These sensors

produce voltage outputs and can be conveniently interfaced

with the neural classifier’s inputs. The sensor measurements

are obtained for 1000 devices generated through post-layout

MC simulation and 79 devices with defects. The list of defects

includes all possible open- and short-circuits injected one at a

time at the layout level.

The course of experiments is shown in Fig. 12. The original

dataset is split into a training set consisting of 500 randomly

selected devices generated with process variation and a test

set comprising the remaining 500 devices and all defects.

Since training a neural classifier requires two classes, we

generate a second class by uniformly populating the space

around the 500 devices from the training set with artificial

data. The objective is to leave a tiny gap between the classes

for the separation boundary. Next, both analog classifiers are

trained on the synthetic training set using the cross validation

technique. Figures 13 and 14 illustrate training results in terms

of CV errors vs. the model complexity for the MLP and ONN

classifiers. The CV errors beyond 10 neurons remain at the

same level and are not shown. It should be pointed out that

absolute values of the CV errors mean little due to the artificial

nature of the training set and are used only for model selection.

The one-standard-error line indicates that the best models

for the ONN and MLP classifiers contain 4 and 8 neurons,

respectively. These models are retrained on the entire synthetic

set and applied to the test set with the results shown in

Table III. Note that the MLP classifier’s error of 1.2% is

considerably lower which, however, is achieved at a larger

model size. Also note that yield loss accounts for almost the

entire test error for both classifiers with only a single defect

being misclassified as a functional device by MLP (0.17%

test escape). Fig. 15 illustrates 579 devices from the test set

and a decision surface produced by the trained MLP classifier.

The devices affected by process variation (blue) are located

inside the cavity formed by the decision surface while the

defective devices (red) are located outside. Note that only

those few devices with process variation lying in the tail of

distribution fall outside the enclosing boundary and, as a result,

are misclassified.



TABLE III

TRAINING RESULTS ON DEFECT FILTER

Analog Analog
ONN MLP

Test error (%) 3.79 1.2
Test escapes (%) 0 0.17
Yield loss (%) 3.79 1.03
Model size (HN) 4 8
Die area (mm2) 0.21 0.282
Power (μW) 2.64 3.45
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V. CONCLUSIONS

We presented a reconfigurable neural platform supporting

two classifier models programmable over various model com-

plexities and biased over a wide range of operating currents.

The circuits underlying the architecture are optimized for low

cost in terms of area and power, programming flexibility and

permanent non-volatile storage of learned functionality. The

two classifier models demonstrated great learning ability in

distinguishing faulty from functional devices due to parameter

variation and identifying catastrophic faults on two realistic

case studies. The presented results confirm our belief that cus-

tom analog neural classifiers can support successful decision

making towards a stand-alone RF BIST solution.
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Fig. 14. Cross validation error vs. the number of hidden neurons for training
an ONN classifier.

Fig. 15. Decision surface of the MLP classifier as obtained by measuring
the response on a fine 3d grid of inputs and interpolating a surface over
points where the response crosses a zero threshold. Misclassified devices are
highlighted in gray.
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