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Abstract—We introduce a CMOS computational fabric con-
sisting of carefully arranged regular rows and columns of tran-
sistors which can be individually configured and appropriately
interconnected in order to implement a target digital circuit.
Termed Field Programmable Transistor Array (FPTA), this
novel reconfigurable architecture enables several highly-desirable
features including (i) simultaneous storage of three configurations
along with the ability to dynamically switch between them
in a fraction of a single cycle, while retaining the fabric’s
computational state, (ii) rapid or full modification of a stored
configuration in a time proportional to the number of modified
configuration bits through the use of hierarchically arranged,
high throughput, asynchronously pipelined memory buffers, and
(iii) support for libraries containing cells of the same height and
variable width, just as in a typical standard cell circuit, thereby
simplifying transition from a prototype to a custom IC design.
Besides presenting the design details of this fabric in a 130nm
technology and demonstrating the aforementioned capabilities,
we also briefly discuss the development of a complete CAD flow
for programing this fabric and we use numerous benchmark
circuits to contrast its area efficiency against a typical FPGA
implemented in the same technology node.

I. INTRODUCTION

We present a novel field programmable device, developed

on conventional static CMOS processes, which has significant

differences and potential advantages over field programmable

gate arrays (FPGAs). Specifically, our design seeks to:

1) Improve area utilization: Unlike the basic configurable

logic block (CLB) of FPGAs, which employs look-up tables

(LUTs) to generate combinational logic functions [1], our

FPTA relies on a carefully-arranged, configurable array of

transistors, which can be interconnected to implement standard

library cells. Thereby, for logic outside the custom cells

(e.g., full adders, D flip-flops, multiplexers) that both FPGAs

and our FPTA explicitly possess, we surmise that transistor

utilization in our FPTA is better than in FPGA LUTs. In other

words, an FPGA may allocate an entire LUT to implement

even a relatively simple gate, while our FPTA allocates only

the precise number of columns of transistors required.

2) Enable time-sharing between multiple circuits: Our

design supports simultaneous storage of three separate con-

figurations, each with its own computational state. Therefore,

we also provide the means to switch, in a fraction of a single

cycle, between any of the three stored configurations, or load

a new configuration while toggling between the other two.

3) Support rapid circuit updates: Instead of being serially

loaded, our FPTA configuration is stored in hierarchically

arranged, high throughput, asynchronously pipelined memory

buffers. This enables not only faster configuration but also

rapid dynamic partial reconfiguration wherein only a portion of

a circuit is reloaded by addressing specific transistor columns.

In the following, we discuss the FPTA architecture and

design features which support each of the above three ob-

jectives (Sections II-IV). To demonstrate the aforementioned

capabilities, we designed and laid out an FPTA prototype in

the IBM 130nm 1.2V process and we developed a CAD tool

flow (Section V) to synthesize, place and route designs onto it.

Results using various benchmark circuits (Section VI) confirm

that, despite the added features of single-cycle switching

between multiple designs and rapid partial reconfiguration,

our FPTA achieves better area utilization in comparison to

a typical FPGA in the same technology node.

II. TRANSISTOR-LEVEL PROGRAMMING

To present our FPTA’s ability to support transistor-level pro-

gramming, we first describe its overall architecture, including

the basic logic cell structure and the routing resources.

A. FPTA Architecture Overview

The FPTA architecture, which resembles a standard cell

circuit, consists of numerous long rows of transistors and can

work with cell libraries similar to those used for a typical

standard cell-based ASIC, where each cell has the same height

and variable width. In the FPTA, the granularity of the width

of the cells is one column of transistors. As shown in Fig.

1(a), a column consists of two pMOS transistors above two

nMOS transistors. This basic column is replicated repeatedly

in the horizontal direction, forming a row. Vertical transistors

in Fig. 1(a) can be programmed to be always on, always off,

or to receive logic signals. Among the horizontal transistors,

while the innermost (blue-colored) ones are strictly used for

isolation, the outermost ones not only support isolation but

also enable the use of logic functions that require up to

three transistor in series. The metal1 (M1) layer is used to

interconnect the transistors and various logic gates.

The actual hardware implementation of the row-based FPTA

groups every four columns of transistors into so-called ‘logic

cells’. In Fig. 1(a), a potential logic gate output is illustrated

by means of a small green rectangle. Each potential output

is optionally connected to a vertical metal2 (M2) track, by

means of a programmed switch. In addition, the two pMOS

and the two nMOS inputs in a column are directly connected

to individual vertical M2 tracks. Each of these tracks is driven

by either a programming bit or a logic signal.

In addition to the four columns of transistors, each logic

cell comes with a custom D-flip-flop (DFF), a full adder

(FA) and a multiplexer (MUX), whose inputs and outputs

(I/Os) are optionally connected to logic cell I/Os. The D input

(Signal in) of the DFF, which is shown in Fig. 1(b), is either

connected to a logic transistor in the first column of the logic
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Fig. 1: (a) Logic cell structure, (b) Built-in D flip-flop, (c) Built-in full adder, and (d) Built-in multiplexer

cell (if ctrl = 1 and enable = 0) or to the D input of the DFF

if enable = 1 via the de-multiplexer. All DFFs provided by

the logic cells are connected in a scan chain. The three inputs

of the FA, which is shown in Fig. 1(c), span across the 2nd

and 3rd columns of the logic cell. The carry and sum outputs

(either inverted or non-inverted) are provided at the outputs

of the 2nd and 3rd columns, respectively. The custom MUX,

which is shown in Fig. 1(d), only occupies one column. The

MUX output is provided in either inverting or non-inverting

form at the output of the 4th column.

Figs. 2(a) and (b) depict how two different cells, i.e., a

NAND3 and an AOI22 gate, are programmed in a logic cell.

All the transistors, except for the ones highlighted in black, are

turned off. Among the highlighted transistors, the ones with

signal names at their gate terminals receive primary inputs;

the rest are turned on to complete the circuit. Transistors

highlighted in blue are turned on with programming bits to

form the output node of the logic function.

Note that a pull-down (or pull-up) network of three tran-

sistors in series is the maximum possible. The motivation

for limiting to three transistors in series was based on area

efficiency versus power efficiency concerns. In [2], it was

shown that a standard cell library limited to two transistors

in series for each of the pull-up and pull-down networks was

sufficient to generate circuits with the best power efficiency.

However, for FPGAs, the vast majority of the delay and power

are due to the interconnection networks. Thus, we decided to

reduce the number of nets by allowing more complex cells

with up to three transistors in series.

B. Routing Architecture
Each logic cell includes two routing switchboxes, one just

above the logic cell and one just below. The two switchboxes

are exactly symmetric, so only the upper switchbox, as shown

in Fig. 2(c), is described in detail. It is more efficient to supply

the programming bits for the top part of the logic cell (pMOS

transistors) from above, and for the bottom part of the logic

cell (nMOS transistors) from below. Certainly the upper and

lower pair of switchboxes belonging to vertically neighboring

logic cells can be viewed as a single switchbox.

Metal layer 2 (M2) and metal layer 4 (M4) are the vertical

routing resources, while metal layer 3 (M3) and metal layer 5

(M5) are the horizontal routing resources. Metal layer 6 (M6)

is primarily used to route the programming bits. In Fig. 2(c),

each metal line is labeled with the letter ‘M’ followed by the

layer number, and then an underscore followed by the line or

track number. In Fig. 1(a), the transistors in the logic cell are

labeled as to how they connect with M2 lines in Fig. 2(c).

Each small square (of various colors) shown in Fig. 2(c) is

a switch, implemented by an nMOS transistor controlled by

a programming bit, with the source and drain connecting the

two perpendicular metal lines (on different layers) as shown

in Fig. 2(d) (with the programming bit called ctrl in this case).

Since the pass transistors do not pass a full Vdd, a half-keeper

is added to each metal segment, as shown in Fig. 2(d).

There are 12 vertical M4 lines that go over the logic cell

unit along with switches connecting to the 17 horizontal M3

lines (switches in gray) and to the 9 M5 lines (switches in

red). Each of the 9 M3 lines and each of the 9 M5 lines has

4 switches to M4. Each of the remaining 8 M3 lines has 3

switches to M4. For the switchbox above (below) the logic

cell, the 16 M2 lines terminate inside the logic cell, either at

a pMOS (nMOS) gate input or at an output. In fact, 4 M2

lines connect to the outputs of the logic cell and 12 M2 lines

connect to pMOS (nMOS) inputs. Each of the 12 M2 lines,

which connect to pMOS or nMOS inputs, has 7 connection

choices to M3 lines via switches. Each of the 4 M2 lines,

which connect to outputs, has 8 connection choices to M3, 4

in the upper switchbox and 4 in the lower one. M3 tracks 11,

13, 15, and 17 facilitate local connections from an output of

a logic cell to inputs of nearby logic cells.

The various metal line segments terminate at the boundary

of a logic cell. Vertical M2 metal line segments literally

terminate at the top and bottom of the logic cell. However,

vertical M4 line segments can be connected to M4 segments

of other logic cells above and below, in either direction, using

the optional bi-directional repeater, shown in Fig. 2(e).

The M3 and M5 horizontal metal line segments terminate

at the left and right boundaries of the logic cell but connect to

adjacent M3 and M5 line segments in the neighboring logic

cells via nMOS pass transistors. In order to limit the delay on

these lines, after each 4 logic cells, the nMOS pass transistor

is replaced with a bi-directional repeater.

III. PROGRAMMING & SINGLE-CYCLE RECONFIGURATION

We now proceed to describe how the FPTA is programmed

and how its local memory structure can support single-cycle

switching between multiple configurations.
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Fig. 2: (a) Configuration of a NAND3, (b) Configuration of an AOI22, (c) Upper switchbox, (d) Pass transistor with half-keepers,

and (e) Bi-directional repeater

A. Programming Path Structure

The dashed box in the right portion of Fig. 3 shows the

structure of the functional blocks comprising one complete

logic cell, which is called a unit. Besides the previously

mentioned switchbox wiring, termed upper switchbox and

lower switchbox in Fig. 3, the local memory which stores

the programming bits used to configure a unit is also shown.

Most of the programming bits are used to configure the

switchboxes. To shorten the wiring, the local memory is

separated into four parts, surrounding the two switch boxes.

The left portion of Fig. 3 shows the detailed connections

between different functional blocks. As the unit structure is

approximately symmetric, we only expand the upper half.

Using the IBM 130nm 6-2-0 metal stack process (6 thin and

2 thick metal layers), the layout of a single unit is 430um by

72um. Eight units are combined to form the basic replicated

block (termed a group) in the FPTA. Fig. 4 shows the block-

level schematic of a group, whose size is 430um by 620um.

B. Local Memory Structure

The local memory structure, which consists of three latches

driven by transmission gate switches, is shown in Fig. 5(a).

Three latches are used to allow three separate FPTA bit streams

to be stored at the same time, enabling a single-cycle switch

from one digital design (e.g., state machine) to another.

When writing programming bits in from the 33 bit-lines

(BLs) available per unit, one of the global control signals

clka, clkb, or clkc selects the proper latch to receive the bit.

Subsequently, one of the global copy signals cpa, cpb, or cpc
is used to select the stored programming bits which actually

configure the FPTA. For each memory cell, only one of cpa,

cpb, or cpc is high at any given time, representing the latch

that is supplying the current programming bit to the FPTA.

This design enables dynamic reconfiguration in a fraction of

a clock cycle, by turning off the copy signal that is currently

on (among cpa, cpb, or cpc) and globally turning a different

one on. Furthermore, a completely programmed system can be

running while the programming bits of a new system are being

loaded. For example, while the system configured by cpa is

running, clkb may be on and the programming bits comprising

LOWER
 SWITCHBOX

UPPER
 SWITCHBOX

LOGIC CELL

DECODER

LOCAL MEMORY 1

REP/SW
ITCH

REP/SW
ITCH

REPEATER

UNIT

LOCAL MEMORY 2

LOCAL MEMORY 3

LOCAL MEMORY 4

LC

  

  

... ...

... ...

... ...

...

...

Local
Memory

1

Top
Switch

Array

Local
Memory

2

Logic
Cell

... ...

... ...

Fig. 3: Unit structure

UNIT
1

UNIT
2

UNIT
3

UNIT
4

UNIT
5

UNIT
6

UNIT
7

UNIT
8

DECODER
3

 L0 M
EM

O
RY BU

FFER

...

LC LC LC LC LC LC LC LC

Fig. 4: Group structure with logic cells (LCs) for each unit

an alternative system may be loaded into the second latch of

the memory cell. Since cpb is off, the current state of the

FPTA is not impacted by the loading of an alternate system.

After this alternate system is completely loaded using clkb, a

third system can be subsequently loaded by turning off clkb
and turning on clkc. While clkc is being used to load the third

system configuration, in a fraction of a clock cycle, the second

system can start (or resume) execution by turning on cpb.
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In summary, it is possible to store the programming for three

separate systems and switch between them in a fraction of a

clock cycle, or toggle between two systems while loading a

third one. In order to properly enable toggling between running

systems, not unlike swapping jobs in a central processing unit

of a computer, separate system or finite state machine flip-

flops must be available for each copy signal. Along those lines,

with respect to Fig. 1(b) which was simplified, there is not just

one flip-flop whose output may optionally appear at the first

column of each logic cell, but, in fact, three different flip-flops

enabled by, respectively, cpa, cpb, or cpc.

IV. RAPID PARTIAL RECONFIGURATION

Lastly, we describe the architecture through which the FPTA

configurations are stored and we explain how they can be

selectively updated to support rapid partial reconfiguration.

A. Memory Buffers L2, L1 and L0

The Level 0 Memory (L0) shown on the left side of Fig. 4 is

actually a memory buffer used to supply programming bits to

the local memory for each of the 8 units comprising the block.

Each unit has 16 columns, each of which contains a payload

of 33 programming bits. The total number of columns for each

group is, therefore, 16 x 8, or 128. This means that 7 address

bits must be appended to the 33-bit payload to direct it to the

proper column. Three of the address bits select a unit and the

remaining four select a column within that unit. Thus, when

writing a 33-bit payload to a local memory, the L0 Memory

buffer passes a word of 40 bits to the group.

We designed an asynchronous memory buffer pipeline to

rapidly program the FPTA. Our prototype has six groups

horizontally and four groups vertically, as shown in Fig.

5(b). When writing programming bits, L0 memory buffers are

supplied by Level 1 memory buffers (L1). Each L1 memory

buffer supplies a word to one of four L0 memory buffers,

arranged vertically. The word size for the L1 memory is 42

bits: 40 bits needed by the selected L0 memory buffer plus

2 address bits to select that L0 memory buffer. The six L1

memory buffers are fed by a Level 2 memory buffer (L2),

as shown in Fig. 5(b)). Its word size consists of 45 bits: 42

bits needed by an L1 memory buffer plus 3 bits to select

the particular L1 memory buffer. An off-chip memory then

supplies 45-bit words to the L2 memory buffer. In order to

facilitate fast (i.e., pipelined) read-out of the programming

bits, the various memory buffers are, in fact, bi-directional;

for brevity, this part is not presented here.

Fig. 5(c) shows the structure of the programming bit register.

The clk triggers the DFF to pass the data from the bus to

the BL. The DFFs in the L2, L1, and L0 memory buffers are

controlled by distinct clk signals. These clk signals are derived

from an asynchronous pipeline control unit, described next.

B. Programming Bit Asynchronous Pipeline

We use an asynchronous pipeline to achieve a high program-

ming rate. For example, after an L2 memory buffer receives

a 33-bit payload from off-chip, it forwards it (along with the

address) to the corresponding L1 memory buffer as soon as

the latter is ready to receive it. When the L1 memory buffer

receives the address and payload, the L2 memory buffer is

freed to accept a new address and payload from off-chip. The

rate at which programming bits can be sent from off-chip is

extremely high. In fact, detailed circuit simulations show that

the programming bit data rate is nominally 9.0 Gbps.

We used a bounded-delay asynchronous pipeline control

scheme [3]. Each stage of the asynchronous pipeline consists

of a Muller C-element, shown in Fig. 5(d). When a stage

Ri receives a request (req) from the previous stage Ri-1, if

the acknowledge (ack) from the next stage Ri+1 is available

(active low), then a request is generated to Ri+1 along with

an acknowledge to Ri-1.

The asynchronous control scheme for writing programming

bits to the local memories is shown in Fig. 6. The signal clki
(where i is the stage index of the memory buffer) is generated

by the logical AND of Ri and the inversion of the (bounded)

delayed Ri. This is basically a pulse generator that ensures

that the various local clocks (clki) are non-overlapping in their

high portions. The signal clki is used to trigger the DFFs in

the Li memory buffer, as shown in Fig. 5(c). R2 receives the

request to write programming bits (RQ WR) from off-chip.

Since the L2 memory buffer feeds any of six L1 memory

buffers in the prototype, acknowledge signals from all six of

them are OR-ed to form the acknowledge for R2. Also, since

each L1 memory buffer feeds any of four L0 memory buffers,

acknowledge signals from all four of them are OR-ed to form

the acknowledge for R1. The local memory driven by the L1

memory buffer is controlled by local clock clk00. Note that

the last stage uses the delayed request as its acknowledge.

The delay elements (Ds), shown in Fig. 6, are set based

on careful worst-case simulation of the extracted layout of the
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prototype. Since this pipeline is used for programming bits and

is not a signal datapath, maximum throughput is not required.

Therefore, we conservatively double the worst-case simulated

delay (including worst-case corner) to set the delay element

value with sufficient margin to handle process, voltage, and

temperature (PVT) variations.

V. CELL LIBRARY AND CAD TOOL FLOW

Our base library consists of all the possible inverting gates

that are feasible with our FPTA and its series limit of three

transistors. The 24 base library components are: INV, NAND2,

NOR2, AOI12, AOI22, OAI12, OAI22, NAND3, NOR3,

AOI31, OAI31, AOI41, OAI41, AOI32, OAI32, AOAI311,

OAOI311, AOAI211, OAOI211, AOOAI212, OAAOI212,

AOAAI2111, OAOOI2111 and MAJI (which is the inverted

mirror carry). In addition, the following custom cells are built

into the logic cells: FA, FAI, DFF, MUX and MUXI.

To further increase logic density, following the philosophy

of [2], numerous compounds of the 24 base library cells are

also provided. Compound cells are created by appending an

inverter (or a NAND2 or NOR2) to one input and/or the

output of each of the 24 base cells, resulting in a total of 234

compound cells. Compound cells are placed as a unit but are

decomposed into their constituent base cells prior to routing.

We also developed the necessary CAD tool-flow for pro-

gramming the FPTA. Our tool-flow consists of industry-

standard commercial tools along with open-source software

which has been modified to work with our architecture. Syn-

opsys Design Compiler is used to synthesize a gate-level netlist

from the Register-Transfer Level (RTL) description of the

design. The cell library, consisting of 24 base cells, 11 built-in

cells and 234 compounds was characterized using Synopsys

SiliconSmart. Placement is done through TimberWolf [4],

which is very effective in row-based placement. For routing,

we modified the source code of the open-source tool VPR

TABLE I: Area utilization compared to a commercial FPGA

Benchmark Cell Count
(Synopsys

DC)

FPTA
Utilization

Altera
Stratix

Utilization

B04 317 1.02% 2%

B05 353 1.29% 2%

B12 539 2.02% 4%

SPI 1240 4.27% 8%

B14 2123 8.69% 10%

Tv80 3077 11.13% 19%

B15 3461 12.18% 22%

B20 4407 17.78% 20%

B21 4635 19.07% 20%

B22 6702 26.85% 29%

B17 10942 37.75% 68%

AES cipher 9422 38.91% 47%

AES inv cipher 13578 52.07% 72%

WB conmax 16436 70.00% 148%

B18∗ 25303 87.85% 140%

(∗) One instance of B15 is removed from B18 to reduce the size of the benchmark in
order to ensure that it fits within the available resources

(Versatile Place and Route) [5], [6] to make it compatible with

our architecture. Finally, bit-stream generation is done through

a Python script which we developed for this purpose.

VI. DEMONSTRATIONS

We designed and laid out a prototype for fabrication using

the IBM 130nm 1.2V process. It includes a 6 x 4 array of

groups, each containing 8 logic cells, for a total of 192 logic

cells. The layout is shown in Fig. 7, and its overall size is

4113.41um x 2769.50um.

A. Area Utilization Efficiency

In order determine the area utilization efficiency of our

FPTA, we compared it with a commercial FPGA, Altera

Stratix EP1S10, which uses the same 130nm technology and

has a core size of 23mm X 23mm [7]. To make a fair

comparison, we scaled up our FPTA to the same size, resulting

in an array of 51 x 35 groups of 8 logic cells, for a total of

14,280 logic cells. We then implemented various benchmarks

from ITC’99 [8] and opencores [9] on both our FPTA and

the Altera chip. A comparison of the resource utilization is

presented in Table I. Note that the same switchbox sizes were

used throughout the scaled up array and the benchmarks were

100% routed.

Despite the additional area overhead due to having three

memory cells per programming bit, the density (or utilization)

of the FPTA is quite competitive with the Altera chip. We

attribute this observation to the fact that for logic outside the

custom cells (e.g., full adders, carry units, flip-flops, multi-

plexers) that both designs possess, the transistor utilization

of the logic cells in the FPTA is better than the transistor

utilization of the LUTs in the Altera design. Essentially, even

a relatively simple logic function might take up an entire LUT,

whereas in the FPTA, only the precise number of columns

needed to implement the gate are used. Thus, simple gates

such as NAND2, NAND3, NOR2, NOR3, and up to three or

even four input AOI and OAI gates are comparatively very

area-efficient in the FPTA.

1340 2017 Design, Automation and Test in Europe (DATE)



   

   

o2

   

   

o1

o1

   

   

o1 o5

o1

o5

   

   

o4

o5

o3

o5

o3

o3

o4o1 o5o2

D
Q

D
Q

R R
rst

counter_clk

o2

o1 o5o4

D
Q

D
Q

R R
rst

counter_clk

o2

o1 o5
o4

   

   

o2

   

   

o1

o5

   

   

o1

o3

o1

   

   

o4

o5

o3

o5

o3

o4o1

o5

o5o2

o1

(a)

(b)

Fig. 8: (a) 2-bit up counter, and (b) 2-bit down counter

B. Single-Cycle Switching Between Configurations

The single-cycle reconfiguration capability of the FPTA is

demonstrated using two 2-bit counters, shown in Fig. 8, one

counting upwards and the other counting downwards, along

with the waveforms illustrated in Fig. 9. Two separate bit-

streams are generated for the ‘up counter’ and ‘down counter’

and are loaded into the A and B latches of the local memory of

the FPTA, respectively. As shown in Fig. 9, the up counter is

activated when the cpa pulse is provided and the counter starts

counting ‘up’ from 0 to 3 based on the counter clk pulses. As

soon as cpb arrives, the bit-stream corresponding to the down

counter is activated, within a single cycle, and the counter

counts ‘down’ from 3 to 0. The waveforms confirm that the

FPTA resources can be time-shared between two different bit-

streams with a single-cycle toggle.

C. Selective Partial Dynamic Reconfiguration

The partial/selective dynamic reconfiguration capability is

demonstrated using an example of a 2-bit counter, which

is initially configured as an up counter, as shown in Fig.

8(a). By selectively changing only the bits corresponding

to the logic cell in the middle, its functionality is changed

into a down counter, as shown in Fig. 8(b). This selective

reconfiguration mode also allows the retention and transfer

of computational state between the initial and the modified

bit-stream, as illustrated in the waveforms of Fig. 10. Initially,

the bit-stream of an up counter is loaded and the counter starts

counting ‘up’ from 0, soon after receiving the cpa pulse. The

counter is run through one full counting cycle and is stopped

at the count ‘1’ of its second counting cycle (time t1). Between

t1 and t2, the portion shown within the dashed red rectangle

in Fig. 8 is reconfigured. This converts the up counter into a

down counter. At time t2, the down counter starts counting

‘down’ from the same state (count ‘1’) where the up counter

had stopped. Selective reconfiguration eliminates the need to

reload the entire bit-stream for a small design change; hence,

the time required for reconfiguring the FPTA is proportional

to the number of bits changed in the bit-stream.

VII. CONCLUSION

We developed a novel field programmable transistor array

featuring (i) simultaneous storage of three configurations,

cpa

counter_clk
MSB
LSB

Count 0 1 2 3 0 

580ns 600ns 620ns 640ns 660ns 680ns 700ns

cpb

3 2 1 0 

Fig. 9: Within-cycle reconfiguration demonstration

cpa
counter_clk

MSB

LSB
Count

t1 t2

0 1 2 3 0 1 0 3 2 1 0 

250ns 300ns 350ns 400ns 450ns 500ns

Fig. 10: Partial dynamic reconfiguration demonstration

along with the ability to dynamically switch between them in

a fraction of a single cycle, while retaining the fabric’s compu-

tational state, (ii) rapid partial or full modification of a stored

configuration, in a time proportional to the number of modified

configuration bits, through the use of hierarchically arranged,

high throughput, asynchronously pipelined memory buffers,

and (iii) support for ASIC-compatible libraries containing cells

of the same height and variable width, thereby simplifying

transition from a prototype to a custom IC. As demonstrated

through fully routed implementation of benchmark circuits,

this FPTA has equivalent or superior area efficiency over a

typical FPGA, despite the triple number of programming bits

and the hierarchical programming logic required for support-

ing multiple configurations and selective partial/full dynamic

reconfiguration. We believe that this FPTA opens the possi-

bility of new computational modalities, such as dynamically

evolving circuits and field programmable device virtualization,

which we are investigating in our ongoing research.
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