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Abstract—Kernel rootkits generally attempt to maliciously
tamper kernel objects and surreptitiously distort program ex-
ecution flow. Herein, we introduce a hardware-assisted hier-
archical on-line system which detects such kernel rootkits by
identifying deviation of dynamic intra-process execution pro-
files based on architecture-level semantics captured directly in
hardware. The underlying key insight is that, in order to take
effect, malicious manipulation of kernel objects must distort the
execution flow of benign processes, thereby leaving abnormal
traces in architecture-level semantics. While traditional detection
methods rely on software modules to collect such traces, their
implementations are susceptible to being compromised through
software attacks. In contrast, our detection system maintains
immunity to software attacks by resorting to hardware for trace
collection. The proposed method is demonstrated on a Linux-
based operating system running on a 32-bit x86 architecture,
implemented in Simics. Experimental results, using real-world
kernel rootkits, corroborate the effectiveness of this method, while
a predictive 45nm PDK is used to evaluate hardware overhead.

I. INTRODUCTION

As the number of transactions performed on-line and the

amount of private information that is stored and communicated

between electronic devices increases, millions of malicious

software (or malware) continue to emerge [1], leading to

service disruptions and/or security breaches. As a result,

the decades-long arms race between malware and defense

mechanisms perpetuates and intensifies.

Although numerous malware detection mechanisms have

been developed, whose preliminary experiments have shown

favorable results, there remains one species of malware, i.e.,

kernel rootkits, whose detection is far from promising. In gen-

eral, kernel rootkits have unrestricted access to operating sys-

tem (OS) resources and attempt to tamper kernel objects and

inject malicious code stealthily. Traditional malware detection

methods seek to model program behavior and, therefore, train

a 2-class classifier, in order to distinguish malicious processes

from benign ones. In other words, these methods detect mal-

ware through inter-process behavior deviation. However, such

a detection mechanism may fail under rootkit attack scenarios.

For example, an attack can be launched by implanting a rootkit

that injects malicious code in the original system call table.

This results in distortion in the execution flow of existing

processes, rather than creation of a new (covert) malware

instance. In such cases, rootkit-infected processes, whose

behavior deviates only slightly from their legitimate version

due to malicious actions, may not be detected. Evidently, the

escalated privileges and the implementation specifics of kernel
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Fig. 1: Traditional vs. proposed method

rootkits makes them harder to detect using traditional malware

detection strategies.

Furthermore, most of the state-of-the-art malware detection

methods were developed at the OS- or hypervisor-level [2]–

[7]. OS-level methods benefit from semantic-rich information,

e.g., process ID, file system objects, etc. Nevertheless, they

are susceptible to software attacks launched from the same

privilege domain. To address this limitation, hypervisor-level

methods were proposed, since hypervisors operate with higher

privileges. Unfortunately, the hypervisor itself can be the

attack target, as several vulnerabilities and intrusion methods

have been identified [8]. Consequently, software-based detec-

tion approaches may suffer the risk of corruption of the logged

data or even disabling of the detection system.

To address the aforementioned limitations, we propose a

new rootkit detection mechanism, wherein a dynamic program

execution profile is modeled individually for each process, us-

ing a machine learning approach, in order to identify whether a

process is rootkit-infected. In other words, our detection mech-

anism relies on intra-process behavior deviation, as shown in

Fig. 1. As a result, a more precise view of process execution

profile is constructed at a finer granularity and, thus, even

slight deviations of process execution flow incurred by kernel

rootkits can be detected. Moreover, we explore the possibility

of a hardware-assisted solution, which relies on information

obtained exclusively from the hardware. Accordingly, data

traces collected through hardware are expected to be immune

to any software tampering. Our idea is demonstrated through

execution of both legitimate benchmarks and real-world kernel

rootkits on an x86 architecture running Linux OS.

The rest of the paper is structured as follows. In Section II,

we briefly discuss related work. The threat model considered

is introduced in Section III. The proposed method is illustrated

in Section IV, while hardware implementation details are pro-

vided in Section V. We evaluate our system and its overhead in

Section VI, while potential limitations are discussed in Section

VII. Conclusions are drawn in Section VIII.
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Fig. 2: System architecture of proposed method

II. RELATED WORK

Based on their object of interest, state-of-the-art hardware-

assisted malware detection or rootkit detection methods can

be categorized into data-centric and program-centric. The

former typically generate and validate static signatures for

specific objects, in order to detect malicious events which

may jeopardize data integrity. For example, detecting malware

through Control Flow Integrity (CFI), which seeks to identify

illegitimate redirection of program control flow, has been a

popular data-centric solution. In one such work, a CFI module

is built in hardware, wherein signatures of basic blocks are

evaluated through Hamming distance, in order to perform

intrusion detection [9]. In a similar kernel rootkit detection

solution [10], a low-cost system call routine fingerprinting

method which employs custom hardware components, such as

a Multiple Input Signature Register (MISR) and a Bloom filter,

to generate and validate fingerprints of system call execution,

has been proposed. These methods generally lead to promising

detection efficiency. Nevertheless, such static signature-based

methods require prior knowledge of the binary image of the

objects which they focus on, and their effectiveness may be

undermined when indirect jumps are involved.

On the other hand, program-centric approaches seek to

leverage low-level information extracted directly from hard-

ware in order to model dynamic program behavior and perform

the targeted analysis. For instance, performance counters have

been widely used to model program behavior through ma-

chine learning methods in order to perform malware detection

or rootkit detection [11], [12]. Alternative approaches mine

the instruction flow and collect other low-level architectural

information, such as memory address references, instruction

opcodes, etc., to perform a similar analysis [13]–[15]. These

methods typically follow the general strategy of traditional

malware detection solutions, as introduced in Section I, and

therefore, have limited effectiveness in rootkit detection or do

not even address the problem at all.

III. THREAT MODEL

In this section, we define the threat model considered in

this work. Particularly, we aim at kernel rootkits which are

assumed to (i) have full access to the OS memory image,

and (ii) be able to make arbitrary modifications and execute

malicious code in OS kernel space. As a result, the rootkits are

able to hijack the control flow of arbitrary kernel services, e.g.,

system calls, and hook their malicious activities onto random

benign processes. Furthermore, unlike previous malware or
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Fig. 3: Rootkit detection flow

rootkit detection methods which require availability of known

malware/rootkit samples during their program behavior mod-

eling phase [7], [11], [13], we assume no prior knowledge of

the kernel rootkits, i.e., the contaminated objects, the rootkit

payload, or the binary image of the rootkits. In other words,

we assume a zero-day attack scenario.

IV. DESIGN OF THE PROPOSED METHOD

A. System Architecture

A top-level view of the proposed rootkit detection method

is shown in Fig. 2. Unlike software-based approaches, our

method mines the architecture state and extracts relevant

information exclusively from the hardware, in order to ensure

integrity of the logged data. The collected data is then off-

loaded to a trusted software environment, which is isolated

from the original OS, and wherein rootkit detection is per-

formed by a machine learning entity which has been trained

to model the intra-process behavior. Since this collection-to-

analysis path does not interfere with the original OS execution

and can be performed in parallel, our method is non-intrusive

and incurs no runtime overhead.

The actual rootkit detection is performed through a hierar-

chical mechanism, as shown in Fig. 3. When a new process

sample arrives, a first-level process identification is applied to

identify what process class it belongs to. After that, a second-

level rootkit detection is performed on the corresponding

process class independently, in order to investigate whether

a process sample is truly benign or rootkit-infected.

To perform the entire detection flow, we have to address

several challenges, as explained below: (i) Process identifier:
In order to perform rootkit detection at the process level

through a hardware-assisted method, we need to bridge the

semantic gap between architecture-level logged information

and the actual processes. (ii) Program behavior: Descriptive

features need to be extracted from information available in the

hardware in order to model program behavior. (iii) Machine
learning: Using the collected data, an appropriate machine

learning method is required in order to perform the proposed

hierarchical analysis.

B. Process Identifier

In modern OSs, due to the virtual memory concept, each

process has its own dedicated address space, which maps

resources used by the process into physical memory. This map-

ping is facilitated by the translation between virtual address

and physical address, maintained by a per-process page table.

In x86, the base address of this table is stored in a control
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TABLE I. Summary of feature set

Type Description

DP[1-24] counts of 3 types of data dependencies on 4
general-purpose registers in 2 OS modes

BR[25-27] counts of 3 types of branches (i.e., within and
across the 2 OS modes)

register, CR3. Changes of the CR3 value perfectly match the

events of process creation, switching and termination [16]. As

a result, we use the CR3 value as the identifier of a process.

C. Feature Extraction

While the behavior of a program can be explained through

execution of its instruction flow in a microprocessor, it is

impractical to log the entire instruction flow in hardware.

As a result, hardware-assisted malware/rootkit detection meth-

ods generally leverage architecture-level information, which

indirectly reflects data and control transfer flow, in order

to model program behavior. Along these lines, our method

seeks to model program behavior through hardware events

representing change of microprocessor state, including register

usage, program control flow redirection, OS operation state,

etc. During rootkit execution, these hardware events will

deviate from those occurring during a benign execution path,

thereby leaving traces that can be used for rootkit detection.

In particular, our method interpretes the program data/control

transfer flow through hardware events involving data depen-

dencies between registers, branches in program execution flow,

and OS privilege transition.

Data dependencies exist when an instruction involves target

or source operands which are also referenced by preceding

instructions. Such dependencies need to be resolved prior to

instruction execution, in order to preserve correct program

functionality. Three types of data dependencies exist: (i) True

dependency occurs when an instruction reads a register being

written by a preceding instruction. (ii) Anti-dependency occurs

when an instruction writes a register being read by a preceding

instruction. (iii) Output dependency occurs when an instruction

writes a register being written by a preceding instruction.

In x86, four general purpose registers, i.e., eax, ebx,

ecx, and edx, are most frequently used. Our method collects

counts of the three types of dependencies on each of the

registers as our data dependency-related features. Furthermore,

instructions can operate in user mode or kernel mode in a

modern OS. Data dependency statistics are collected separately

for these two modes, leading to a deeper understanding of

how a process operates in its user space and in kernel space.

Ultimately, for each CR3 value representing a process, 24 data

dependency-related features are collected.

Regarding branches in program execution flow, we con-

sider 3 types of branches, including intra-user, user-kernel

and intra-kernel branches. Intra-user branches involve jumps

between user-space instructions, capturing the functionality

of a program in user mode. User-kernel branches, on the

other hand, involve transition between user and kernel mode.

Such transition may occur due to either software interrupts,

which are launched actively by program execution, or hard-

ware interrupts, which are asynchronous with the program

execution flow. Since we aim at modeling program behavior

with minimal impact on the underlying environment, only

branches introduced by software interrupts, launched by pro-

grams explicitly through SYSCALL or INT instructions, are

considered. Finally, similar to intra-user branches, intra-kernel

branches are collected accordingly. Table I summarizes the

features considered in this work.

D. Rootkit Detection
Upon extracting the aforementioned features, our detection

mechanism employs machine learning to perform a hierar-

chical analysis, i.e., a first-level process identification and a

second-level rootkit detection.
1) Process Identification: The process identification

method employs multi-class classification algorithms, where

each class corresponds to a single process. We experimented

with three classifiers of varying complexity and performance,

namely K-Nearest Neighbors (KNN), Support Vector Machine

(SVM) and Artificial Neural Network (ANN).
KNN is a non-parametric classification algorithm which

classifies samples based on spatial relationship in their feature

space. It computes the k nearest neighbors of a sample using

Euclidean distance and assigns the sample to a class based on

majority voting among these neighbors. SVM, on the other

hand, generates a hyperplane which separates the transformed

feature space into labeled sub-spaces, while ensuring maximal

separation among them. ANN exploits a multi-layer struc-

ture, where each layer consists of multiple nodes, i.e., neu-
rons, which are interconnected with nodes in adjacent layers.

Through stacked layers, ANN maps the original inputs, via an

activation function on each neuron, to a final labeled space,

accomplishing the classification. In our implementation, we

used KNN from the Matlab library, SVM from the LIBSVM

library [17] and ANN from Keras [18].
2) Rootkit Detection: After identifying the process class

that a sample belongs to, a second-level rootkit detection

is performed. To this end, we employ an outlier detection

method, wherein an outlier indicates that the process behavior

has been compromised and a rootkit is detected. Specifically,

since the probability distribution of the feature space of pro-

cesses is unknown, we use Kernel Density Estimation (KDE)

which can handle unknown input probability distributions.
KDE evaluates the probability density of the samples under

test using an adaptive kernel estimator and identifies outliers

outside the probability distribution. Outlier detection is then

performed as follows. Given a benign-sample matrix X in-

cluding n samples, each of which has d features, its kernel

estimator is defined by:

f̃(x) =
1

nhd

n∑
i=1

K(
1

h
(x−Xi)) (1)

where K is the kernel function and h is an adjustable smooth-

ing parameter called bandwidth. The kernel we use herein is

the Epanechnikov kernel:
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Fig. 4: Hardware implementation of feature extraction

Ke(t) =

{
1
2c
−1
d (d+ 2)(1− tT t), tT t < 1

0, otherwise
(2)

where c−1
d = 2πd/2/(d · Γ(d/2)) is the volume of the unit

d-dimensional sphere [19]. A rule-of-thumb choice of h is:

h =
{
8c−1

d (d+ 4)(2
√
π)d

}1/(d+4)
n−1/(d+4) (3)

For a sample-under-test matrix Y including m samples, each

of which has d features, its adaptive kernel estimator is:

f̂(y) =
1

n

m∑
i=1

1

(h · λi)d
K(

1

h · λi
(x− Yi)) (4)

where the local bandwidth scalars λi are defined by:

λi =
{
f̃(Xi)/g

}−α

(5)

f̃(Xi) is a pilot density estimate calculated in (1) with h
defined in (3). g is the geometric mean given by:

log g = n−1
n∑

i=1

log f̃(Xi) (6)

while α is a sensitivity parameter ∈ [0, 1]. After obtaining

the probability density estimate for the samples under test, a

threshold is set to filter outliers. Probability lower than the

threshold indicates a rootkit-infected process, while proba-

bility greater than the threshold indicates a benign process.

Parameters of the outlier detection model, such as h, α and

the threshold are tuned for each process class individually, in

order to optimize detection performance.

V. HARDWARE IMPLEMENTATION

As mentioned earlier, our feature extraction is performed

directly in hardware to eliminate the possibility of software

tampering. The actual implementation, as shown in Fig. 4,

employs a custom hardware component, i.e., feature collector,

which is deeply coupled with the CPU and collects the process

identifier as well as the features used for process behavior

modeling, based on the microprocessor state.

TABLE II. Summary of rootkit samples

Rootkit Targeted
system call

Rootkit Targeted
system call

maKit write, open, read lkm-syscall open, close

suterusu ioctl, read, write hook-syscall mkdir

syscall-hooker read, write simple-rootkit read

hijack-syscall open Diamorphine getdents, kill

In order to collect process identifiers, the feature collector

captures the CR3 register value whenever a value update is

encountered. As mentioned in Section IV-C, user and kernel

mode features are collected separately. To determine which

mode an instruction operates in, we leverage the design

convention of control register CR0 in x86. The least significant

bit of CR0 register, or PE bit, indicates which mode the

underlying system operates in, with ‘1’ meaning kernel mode

and ‘0’ meaning user mode. Therefore, the feature collector

is wired to the PE bit to split program instructions into user-

space and kernel-space instructions, respectively.

Statistics of data dependencies can, then, be generated for

instructions in different modes. To this end, we make use

of the built-in decoder in the microprocessor to derive the

read/write operations on the 4 general purpose registers. A

temporary register is associated with each of the general

purpose registers, maintaining the READ or WRITE tag of

its last access. For every new access on a general purpose

register, its current operation is compared with its last op-

eration, thereby identifying dependency pairs. Accordingly,

a counter corresponding to the specific dependency type is

incremented by ‘1’ while the temporary register is updated.

Collecting the 3 types of branch statistics, meanwhile, is more

straightforward. The feature collector continuously monitors

the program counter and instruction operators, in order to

detect the occurrence of the branch events defined in Section

IV-C, and updates the corresponding counters.

VI. EXPERIMENTAL RESULTS

In this Section, we evaluate the efficacy of our proposed

method in accurately classifying processes and successfully

detecting rootkits. Additionally, we evaluate the area/power

overhead and logging bandwidth required by the hardware

implementation of this method. The experiments were per-

formed in Simics. Therein, an x86 machine is simulated,

configured with a single Intel Pentium 4 core running at 2GHz.

A minimum installation Ubuntu server that embeds a Linux

3.8 kernel is loaded on the simulated hardware platform. As

benign workload, we used Mibench [20], a free commercially

representative benchmark suite, which contains tens of appli-

cations. As rootkit samples, similar to the dataset used in [7],

we experimented with real-world Linux rootkits summarized

in Table II, which hijack arbitrary system call service routines

to perform denial-of-service attack, file/process hiding, key

logging, etc. Implementations of rootkit samples have been

elaborated to create more variants, since only a generalized

template is provided in the original version.
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TABLE III. Process identification accuracy

KNN SVM ANN

average 100/99.85% 99.90/99.87% 99.89/99.87%

bf 100/100% 100/99.71% 100/100%

qsort 100/100% 99.34/99.73% 100/100%

patricia 100/100% 99.28/99.72% 100/100%

toast 100/100% 100/100% 100/100%

untoast 100/100% 100/100% 100/100%

susan 100/100% 100/100% 100/100%

dijkstra 100/100% 100/100% 100/100%

sha 100/100% 100/100% 100/100%

crc 100/100% 100/100% 100/100%

search 100/98.26% 100/100% 100/98.26%

tiff2rgba 100/100% 99.34/99.10% 100/100%

tiff2bw 100/100% 100/99.17% 98.50/99.69%

tiffmedian 100/100% 100/100% 100/100%

basicmath 100/100% 100/100% 100/100%

rawcaudio 100/100% 100/100% 100/100%

rawdaudio 100/100% 100/100% 100/100%

fft 100/98.83% 100/100% 99.29/99.41%

cjpeg 100/100% 100/100% 100/100%

djpeg 100/100% 100/100% 100/100%

pgp 100/100% 100/100% 100/100%

A. Process Identification

To evaluate the accuracy of our method in process identifi-

cation, the Mibench suite was executed repeatedly, with each

application invoked with various valid arguments or in the

background (& option). Rootkit-infected samples are created

by executing Mibench after enabling different rootkits. In total,

we collected approximately 20000 benign as well as 10000

rootkit-infected samples, evenly for 20 process classes. The

benign dataset was split in half for training and testing, while

the rootkit-infected dataset was used only in testing.

The process identification results using KNN, SVM and

ANN are shown in Table III. The numbers on the left of

the slash represent identification accuracy using the testing set

excluding rootkit-infected samples, while the numbers on the

right side represent the case including these samples. As may

be observed, there is no significant difference in the results be-

tween the two cases, indicating that rootkit-infected processes

did not incur higher misclassification, even though the training
set contained only benign processes. This observation supports

our conjecture that the rootkit-infected process behavior may

not be distinguishable from its benign instances through inter-

process behavior deviation. Furthermore, all three classifiers

performed well in identifying processes (including rootkit-

infected processes), reaching an average accuracy of 99.85%,

99.87%, and 99.87% respectively. This provides solid ground

for the next-level rootkit detection.

B. Rootkit Detection

Effectiveness of our method in rootkit detection was evalu-

ated separately for each process class. Benign samples in each

TABLE IV. Per-process rootkit detection results

process
class

FP
rate

FN
rate

process
class

FP
rate

FN
rate

bf 1.41% 0% tiff2rgba 1.33% 0%

qsort 0% 0% tiff2bw 1.74% 0%

patricia 0.73% 0% tiffmedian 0.98% 0%

toast 0% 0% basicmath 0.75% 0%

untoast 0.67% 0% rawcaudio 0% 0%

susan 0.49% 0% rawdaudio 0% 0%

dijkstra 1.4% 0% fft 0% 0%

sha 1.43% 0% cjpeg 1.8% 0%

crc 0.69% 0% djpeg 0% 0%

search 1.49% 0% pgp 0% 0%

class were split in half for training and testing, while rootkit-

infected samples were only used for testing. The parameters

of the KDE algorithm were optimized independently for each

class through cross-validation to maximize rootkit detection

capability with minimal false alarms. During the optimization

of KDE parameters, only a subset of the rootkit family under

test was used, in order to avoid overfitting to the current rootkit

dataset, as well as to ensure resilience of our detection model

to zero-day rootkit samples.

Table IV summarizes the per-class false positive (FP) (i.e.,

benign process identified as rootkit-infected) and false negative

(FN) (i.e., rootkit-infected process identified as benign) rates.

As may be observed, the worst FP rate is 1.8% and the

average is 0.75%, while 0% FN rates are achieved for all

process classes under test. Indeed, intra-process behavioral

models describe process activities at a finer granularity, mak-

ing rootkit-infected behavior distinguishable. We emphasize

that our method outperforms the state-of-the-art hardware-

assisted malware detection method, which achieves no signif-

icant result in rootkit detection [11]. Furthermore, compared

with the software-based counterpart which achieves similarly

promising results (i.e., 100% detection rate with low FP rate)

[7], our method is inherently more secure since it extracts data

in hardware through a custom component. Moreover, it incurs

zero runtime overhead due to the non-intrusive collection-to-

analysis path. In contrast, the software-based solution incurs

a runtime overhead of approximately 3% [7].

C. Overhead

To evaluate the design overhead of the proposed method, we

focus on (i) additional area and power overhead introduced

by the feature collector, and (ii) the required data logging

bandwidth. Herein, we evaluate the area/power overhead by

synthesizing the design of the feature collector using a pre-

dictive 45nm Process Design Kit (PDK) [21], which results

in area overhead of 649.98 μm2 and power overhead of

1.9152 mW (at 2GHz). Compared to a 45nm Intel processor1,

the additional overhead incurred by the feature collector is

negligible. Furthermore, we ran our workload multiple times

to obtain an average estimation of the data logging rate,

1Specifications from http://ark.intel.com/products/35605
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TABLE V. Design overhead of the proposed method

area(μm2) power(mW ) logging(KB/s)

this method 649.98 1.9152 50.51

processor 107× 106 65× 103 N/A

resulting in a rate of 50.51KB/s. As a point of reference, the

performance counter-based method in [11] requires bandwidth

of a few hundred KB/s to perform similar analysis. Table V

summarizes the design overhead of the proposed method.

VII. DISCUSSION

A. Register Renaming/Reorder Buffer

Modern microprocessors exploit techniques such as register
renaming or Reorder buffer (ROB) to improve performance.

Register renaming renames a register to an idle one when a

writing request occurs, so that this operation can be executed

before its preceding instruction which reads the same register.

Similarly, a ROB leverages a register buffer as temporary

storage to hold values of speculatively executed instructions.

These techniques eliminate anti-dependencies as well as output

dependencies and enable out-of-order and speculative program

execution. However, they do not affect negatively the proposed

method effectiveness, as our feature collector investigates data

dependencies when instructions are fetched and decoded in-

order, before these techniques are applied.

B. On-chip Detection Solution

Hardware-based malware detection can be implemented on-

chip [13], [14]. Our method, however, implements only the

feature extraction mechanism in hardware and exports the

logged data to a trusted software environment to perform

off-chip analysis. In fact, there is a trade-off between on-

chip and off-chip solutions. The former generally benefit from

prompt reaction to malicious events as compared with the

latter; implementing the analysis module on chip, however,

increases the design complexity and overhead. Furthermore,

when the underlying OS or applications release an update,

the configuration of the on-chip analysis module must be

updated accordingly, which is not at all straightforward. In

contrast, an off-chip analysis module is slower in responding

but more flexible, as it can be updated while the on-chip

logging component remains unchanged.

VIII. CONCLUSION

We introduced a hardware-assisted infrastructure for per-

forming on-line rootkit detection. Compared with software-

based solutions, whose effectiveness may be undermined by

software attacks, we extract data of interest directly from the

hardware, making our system resistant to software tamper-

ing. Moreover, unlike traditional malware or rootkit detection

methods, which assume prior knowledge of malware/rootkit

dataset and perform 2-class classification analysis based on

inter-process behavior deviation, this method assumes a zero-

day attack scenario and proposes a new hierarchical detection

mechanism, leveraging intra-process behavior deviation and

outlier detection. An incarnation of this idea, which models

per-process behavior using data-dependencies, branch statistics

and privilege transition, based on which rootkit detection

can be performed, was described herein. Experimental results

using the Mibench suite with real-world kernel rootkits re-

vealed that almost perfect detection accuracy with very low

false positive rate can be achieved. The required logging

bandwidth of our method is 50.51KB/s while its hardware cost

is negligible compared to the size of a modern microprocessor.
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