
Investigating the Effect of different eFPGAs fabrics
on Logic Locking through HW Redaction

Chaitali Sathe, Yiorgos Makris and Benjamin Carrion Schafer
Department of Electrical and Computer Engineering

The University of Texas at Dallas, TX, USA
{ChaitaliGajanan.Sathe,yiorgos.makris,schaferb}@utdallas.edu

Abstract—Most VLSI design companies are now fabless. This
implies that they need to rely on third party fabs to fabricate
their Integrated Circuits (ICs). Because these fabs are often
located in geographical different locations it is important to
have mechanisms in place to protect these companies against
Intellectual Property (IP) theft. One approach that has become
very popular due to its relative simplicity and practicality is logic
locking. One of the problems with traditional locking mechanisms
is that the locking circuitry is built into the netlist that the
VLSI design company delivers to the foundry which has now
access to the entire design including the locking mechanism. This
implies that they could potentially tamper with this circuitry or
reverse engineer it to obtain the locking key. One relatively new
approach that has been coined logic locking through omission, or
hardware redaction, maps a portion of the design to an embedded
FPGA (eFPGA). The bitstream of the eFPGA now acts as the
locking key. This new approach has been shown to be more
secure as the foundry has no access to the bitstream during the
manufacturing stage. The obvious drawbacks are the increase
in design complexity and the area and performance overheads
associated with the eFPGA. In this work investigate the trade-
offs of mapping different portions of behavioral descriptions for
High-Level Synthesis using two different eFPGA fabrics and show
that it is important to choose the eFPGA fabric based on the
characteristic of the design to be locked.

Index Terms—Functional Locking, Behavioral IP, High-Level
Synthesis. embedded FPGAs

I. INTRODUCTION

THE semiconductor industry has been undergoing a sig-
nificant transformation in the last two decades. In the

Heterogeneous System on Chip (SoC)

MemoryCPU1

HWacc1

C/C++

High-Level
Synthesis UART

SPI
ADC

Interfaces

: :

HWacc2

On-chip BusLogic
Synthesis

Place and
Route

Compiler
(gcc/g++)

HW/SW co-
design flow

Logic Locking
key

Tamper
proof

memory

Encrypted
Bitstream

eFPGA

Fig. 1. Overview of typical logic locking mechanisms (through additional
locking gates and through eFPGAs) in the context of modern heterogeneous
SoCs.

include the ability of third parties to steal the IP developed
by these fabless companies and which represent their main
value added. It is therefore extremely important to introduce
efficient methods to enable these companies to protect their
IPs.

Fig. 1 shows an example of a typical heterogeneous SoC
that is composed of multiple embedded processors, embedded
memory, interfaces and a variety of hardware accelerators. The
number and implementation of these accelerators are often
the main differentiating factor between different SoC offerings
from different companies as the rest of the components are
standard off-the-shelf IPs that can be sourced from third party
vendors (e.g., ARM processor). The figure also shows a typical
VLSI design flow starting from the application level that needs
to be partitioned in hardware (HW) and software (SW).

It is therefore particularly important to protect these
hardware accelerators from being reversed engineered. One
promising approach that is being widely investigated is logic
locking and design obfuscation [1]. In traditional logic locking,
additional locking gates are added to the circuit. A logic
locking key is in turn stored in a tamper-proof memory.
Without the correct key, the locked circuit does not work as
specified (either the output is incorrect, or the performance
is degraded). In the example in Fig. 1, the logic locking
circuitry in HW accelerator 1 (HWacc1) is composed of an
XOR gate and an AND gate. For this circuit to operate as

past, companies were vertically integrated and designed, ver-
ified a nd m anufactured c ompletely i n-house t heir Integrated
Circuits (ICs). In the early stages they even designed their
own Electronic Design Automation (EDA) tools. This has
rapidly changed due to the increase in complexity of designing
today’s multi-billion transistors ICs. There are only a few
companies left that can continue to do the entire VLSI design
process in-house (i.e., Intel or Samsung Electronics). Most
semiconductor companies are now fabless and rely extensively
on third party IPs (3PIPs). Moreover, they often outsource
significant portions of the design efforts to external third party
companies, e.g., the physical design stage and/or verification.
This leaves these companies extremely vulnerable to multiple
security threats. Some of these include the malicious alteration
of their hardware to include Hardware Trojans. Other threats

978-1-6654-9885-2/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 1
5t

h
D

al
la

s C
irc

ui
t A

nd
 S

ys
te

m
 C

on
fe

re
nc

e
(D

C
A

S)
 |

97
8-

1-
66

54
-9

88
5-

2/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

C
A

S5
39

74
.2

02
2.

98
45

53
5

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 09,2022 at 04:03:48 UTC from IEEE Xplore. Restrictions apply.

Data

Coef1

Out1

FIR1 FIR2 FIR3

Coef2
Coef3

Out2
Out3

Data

Coef1

Out1

FIR1
obfuscated

FIR2

FIR3

Coef2
Coef3

Out2
Out3

Data

Coef1

Out1

FIR1 obfuscated
FIR2

FIR3

Coef2
Coef3

Out2
Out3

C/C++

High-Level
Synthesis

ASIC+eFPGA
Partition

eFPGA2

eFPGA1

Ar
ea

 [µ
m

2]

Latency
[clk]10

eFPGA2
(PAR +bitgen)

Verilog VHDL

biteFPGA2

(a)

(b)

(c)

(d)

(e)

ASIC

CeFPGA

12

Fig. 2. Example of a three-stage decimation filter. (a) Original ASIC-only
implementation; (b) Obfuscated design with FIR2 mapped to eFPGA1; (c)
Same obfuscated design with FIR2 mapped to eFPGA2; (d) Area vs. latency
trade-offs of different implementations; (e) Overview of partition flow

expected, the key input to the XOR gate should be logic 0
and the key to the AND gate input set to logic 1. Fig. 1 also
shows a relatively new way to lock hardware circuits through
omission. In this case, a portion of HWacc2 is mapped
to an eFPGA. The eFPGA bitstream now acts as the logic
locking key and the un-programmed eFPGA design is sent
to the foundry for fabrication. This approach has been shown
to be more secure as the search space is much larger than
traditional locking methods considering that the bitstream not
only determines the logic function mapped onto the eFPGA
but also the interconnect [2], [3] making this approach even
resilient against modern SAT attacks [4]. Thus, mapping a
smaller portion of a design to an eFPGA can serve as a strong
locking mechanism.

One of the main problems with this approach is that the
overheads associated with using eFPGAs is significant. The
authors in [5] reported a 10× area, delay and power overheads
of FPGAs vs. ASIC designs. It is therefore important to
develop a framework that can minimize these overheads.
Moreover, considering that there are FPGAs with different
granularities available, the question that we aim to address
in this work is if some eFPGA are better suited than others
for logic locking . In summary, the main contributions of this
work are:

• Introduce an automated flow that partitions untimed be-
havioral descriptions for HLS into an ASIC part and an
eFPGA to lock the final circuit.

• Present extensive experimental comparing different eF-
PGA fabrics overheads.

II. MOTIVATIONAL EXAMPLE

Fig. 2 shows a motivational example for this work. In this
particular case a 3-stage decimation filter which is composed
of cascading three Finite Impulse Response (FIR) filters, where
the output of FIR1 is passed as an input to the second FIR
filter (FIR2) and the output of this second filter passed to

the third FIR filter (FIR3). Fig. 2(a) shows the original un-
protected ASIC implementation. Fig. 2(b) shows one possible
obfuscation partitioning, which consists of mapping one of
the FIR filters (in this case FIR2) to an eFPGA. This design
is now protected against reverse engineering when sent to an
untrusted fab as the fab does not have access to the bitstream
that configures the eFPGA portion of the design (the bitstream
is not sent to the fab).The entire design is hence, partitioned
into an ASIC portion that contains FIR1 and FIR3 and an
eFPGA portion which contains FIR2: Design=ASIC(FIR1,
FIR3) ∪ eFPGA(FIR2). Fig. 2(d) shows the area overhead
introduced by this obfuscation approach when using different
eFPGA fabric as compared to the ASIC only approach

Fig. 2(e) show our partitioning approach. The idea is parti-
tion an untimed behavioral description for HLS into an ASIC
part and an eFPGA part. Based on the eFPGA fabric used
different area and performance overheads will be achieved

III. RELATED WORK

Logic obfuscation can be describe as the process that
transforms a circuit into another functional equivalent version
that is significantly, ideally impossible, to reverse engineer.
This research area has recently received significant attention
due to the importance of this topic, especially considering that
most semiconductor companies are now fabless.

Some of this research includes logic encryption [6], active
metering [7], state obfuscation [8], split manufacturing [9] and
design camouflaging [10]. Each of these proposed solutions
has its strengths and weaknesses with no single solution
successfully addressing the security and trust challenges in
a cost-effective manner.

One common problem though with most of these ap-
proaches is that the fab still has access to the entire circuit
including the obfuscated logic (except for split manufacturing).
Thus, to address this, one relatively new approach has been to
selectively extract a small portion of the circuit and mapping
it to an eFPGA. This allows designers to hide a portion
of their design and make the circuit unusable without the
correct eFPGA bitstream. To the best of our knowledge, this
approach was first introduced in [2], where the authors present
a dedicated eFPGA fabric that they call TRAP to minimize the
overhead introduced by conventional eFPGAs. Although the
authors showed that this approach works well, the dedicated
fabric is only usable to hide simple combinational logic. In
this work the authors also present a partitioning flow for
RTL descriptions. Bo et al. [3] proposed a similar partitioning
methodology but raising the level of abstraction from the
RT-level to the behavioral level and presented an automated
partitioning flow for behavioral descriptions for HLS. In [11]
the authors studied how to reduce the area overhead introduced
by the eFPGA by using runtime reconfigurable coarse grain
FPGAs. The same approach was used in [4] to obfuscate por-
tions of the RISC-V control path. Finally, this ASIC+eFPGA
flow was also shown to be effective to hide implementation
details of two functionally equivalent designs, e.g., ANN
activation functions [12].

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 09,2022 at 04:03:48 UTC from IEEE Xplore. Restrictions apply.

Fr
on

t-
en

d
VL

SI
 D

es
ig

n

7nm, 22nm,
40nm, 90nm

Logic
Synthesis tech

lib (db.lib)

Logic
Synthesis

1-bit +, 2-bit
+, 4-bit +,
…,1-bit x

RTL basic
units

High-Level
Synthesis

technology
library

Inputs

#define pragma1 array=reg
#define pragma2 loop=all
#define pragma3 func=goto

RTL (Verilog, VHDL)

Reports (Area, timing, power)

Cin (ANSI-C/C++/SystemC)

#include ”pragma.h”
int buffer[16]; //pragma1
// pragma2
for(i=7;i>0;i--)

buffer[i]=buffer[i-1];
sum = sum_all(buffer);}
// pragma3
int sum_all(int buffer[16]){
for (i= 0; i< 16; i++)

sum += buffer[i];
return (sum/16);}

Area

Latency
[clk cycles]

!𝑃

HLS Inputs

HLS Outputs

Logic synthesis scripts

Testbench, simulation models

Allocation

Scheduling

Binding

High-Level
Synthesis

pragma.h

fmax

array=reg
loop=all
func=inline

array=reg
loop=partial
func=oper

array=ram
loop=0
func=goto

RTL
(.v/.vhdl)

techlibHLS

High-Level Synthesis
technology library

generator
(a)

Technology dependent
High-Level Synthesis

(b)

Fig. 3. Typical HLS Flow (a) Technology library generation flow; (b) HLS
inputs, steps and outputs.

To the best of our knowledge this is the first study that
analysis multiple eFPGA fabrics and presents an automated
flow to evaluate their overheads.

IV. THREAT MODEL

This work considers the same threat model used in most
previous functional locking work and assumes that any party
involved in the design and fabrication of the circuit is a
threat and in particular the fab that can reverse engineer any
traditional circuit given as GDSII netlist. We assume that the
attacker has access to the layout and significant resources and
technical knowledge in reverse engineering. The main goal
of the attacker is to reverse engineer the IC to sell it as a
pirate copy or to acquire the IP of the IC for its own profit.
The attacker also has access to an oracle, which is a fully
functional IC obtained legally from the market. The attacker
can also apply input patterns to the locked IC and observe its
response.

V. HIGH-LEVEL SYNTHESIS

Before we proceed describing the proposed work, it is
important to review what HLS is and how it works. Fig. 3
shows an overview of the complete HLS process. HLS can be
described as a process to convert untimed behavioral descrip-
tions into efficient hardware that implements that behavior.
The input to the HLS process, as shown in Fig. 3 (b), are
the behavioral description to be synthesized in e.g., ANSI-
C, C++ or SystemC, a technology library (techlibHLS) that
contains the area and delay information of basic operations
(i.e., adders and multipliers of different bitwidth), a target
synthesis frequency (fmax) and a set of synthesis directives in
the form of pragmas (pragma.h). These synthesis directives are
extremely important as they allow the designer to control the
synthesis process. In particular, these directives control how to
synthesize arrays (RAM or registers), loops (unroll, partially
unroll, not unroll or pipeline) and functions (inline or not). In
the example shown in Fig. 3(b) the code snippet contains one
array and two loops.

The HLS process then parses the behavioral description
and constraints and performs three main steps: (1) resource
allocation, (2) scheduling and (3) binding. In the resource

C/C++/SystemC

Line 1: --
Line 2: --
Line 3: for(x=0;x<10;x++)
Line 4: func1(data[x]);
Line 5: ---
Line 6: ---
Line 7:
Line 8: // Function
Line 9: // pragma func=inline | goto | operator
Line 10: int func1(data){
Line 11: ---------------------------------------
Line 12: ---------------------------------------
Line 13: }

func1_0

: :func1_1

func1_9
func1

func1_0

func1_x

: :

pragma = inline pragma = goto pragma = operator

Function Constraint
(FCNT)

func1 = 1-10

(a) (b) (c)

A
re

a
[µ

m
2]

Latency [clk]

operator

inline
goto

(d)

Fig. 4. HLS options to synthesize functions. (a) Inline, (b) goto or (c) func-
tional operator. (d) Trade-offs between the three different ways to synthesize
functions

allocation stage the number and type of hardware resources
from techlibHLS are extracted. In the scheduling phase the
different operations in the behavioral description are assigned
to individual clock steps based on the number of available re-
sources and finally, in the binding stage the hardware resources
are bound to different operations in the scheduled operations.

To achieve high quality RTL, the HLS process needs to
know that accurate delay of the different functional units
(FUs) that are mapped to different operations in the behav-
ioral description. For this, commercial HLS tools provide
a library characterizer shown in Fig. 3 (a) that generates
the technology library for the HLS process. This library
characterizer synthesizes (logic synthesis) different basic units
with different bitwidths. Basically the library characterizer
generates automatically the RTL code of these basic units,
synthesizes it with the target technology specified by the user,
which has to match the technology used during HLS and back-
annotates the area and delay information reported by the logic
synthesis tools into the HLS technology library (techlibHLS).
This process needs to be executed before the HLS process
is executed and although time consuming, it only needs to
be execute once. It should be noted that FPGA vendors do
not provide this flow as they pre-generate these technology
libraries for their particular FPGAs and include them with
their HLS tool.

The output of the HLS process is the RTL code (Verilog
or VHDL) and a set of reports that summarize the area
and performance of the synthesized circuit. Commercial HLS
tools also generate synthesis scripts to interface the HLS tool
with the logic synthesis process and testbenches to verify the
generated circuit as shown on Fig. 3(b).

As mentioned previously, commercial HLS tools make
extensive use of synthesis directives to mainly decide how
to synthesize arrays, loops and functions. In this work we
will use a synthesis directive to encapsulate the function to
be mapped onto the eFPGA as an operator. Fig. 4 shows
an example of the three main ways to synthesize a function
in HLS. The first is to inline functions where the body of
the function is copied at the function call point (Fig. 4(a)).

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 09,2022 at 04:03:48 UTC from IEEE Xplore. Restrictions apply.

Ar
ea

 [µ
m

2]

Latency [clk]

ASIC only
ASIC+eFPGA p#1

ASIC+eFPGA p#2

CHWacc

High-Level
Synthesis

PAR

efpga.v

biteFPGA

CeFPGA

ASIC+eFPGA Partition Flow

techlibeFPGA

fsyn
Logic Synthesis

QoRHLS_efpga (A,L,D)

QoRLS_efpga (A, L, D)

High-Level
Synthesis

PAR + bitgen

GDSII

CASIC

Logic Synthesis

Step1: Function
encapsulation

Step2: Description
parsing

asic.v QoRHLS_asic (A,L,D)

QoRLS_asic (A,L,D) gate.v

techlibASIC

Step3: Partition
Evaluation

Constraints
(A, L, P)

FSM Datapath

CASIC

CeFPGA

eFPGA

// pragma func=operator
int efpga(data, coef){

}

Inputs

Outputs

Fig. 5. Overview of complete ASIC+eFPGA partitioning flow.

Another way to synthesize functions is as a single hardware
block (goto). This will make the resultant HW circuit slower,
but smaller compared to inlining the function (Fig. 4 (b)). One
alternative way is to encapsulate the function as an operator
as shown in Fig. 4(c). In this case the HLS tool generates a
constraint file that allows the designer to specify now many
functions to be instantiated. As shown in Fig. 4(d), using
these different synthesis directives lead to different area vs.
performance trade-offs. In this work we use the operator option
to as this option encapsulates the function as a separate module
and allows to synthesize the function with its own constraints.
This is used to delimit the partition between the portion of
the behavioral description to be mapped to the ASIC and the
portion to be mapped to the eFPGA, which is basically the
encapsulated function.

VI. EMBEDDED FPGAS

The obfuscated portions of a system designcan be mapped
to any embedded FPGA (eFPGA). There are multiple com-
mercial eFPGAs on the market. The most notable vendors
include Achronix [13], Menta [14] and Quicklogic [15]. These
eFPGAs are based on traditional multi-input, 1-output LUTs
and also contain multiple hard macros such as embedded DSP
modules and memories.

Another eFPGA fabric that was recently introduced is a
transistor-level fabric called Transistor-Level Programmable
Fabric (TRAP) [16]. The TRAP fabric consists of hierarchi-
cally arranged CMOS transistors. Basically these transistors
can be stitched together into gates or state-holding compo-
nents. For better performance and area efficiency of the fabric,
an element also contains a built-in flip-flop (DFF), a full adder
(FA) and a multiplexer (MUX). This could be considered a
ultra-fine grain FPGAs

On the other side of the spectrum we could also use coarse-
grained FPGAs like Renesas Technology Stream Transpose
Processor (STP) [17]. The STP is composed of tiles onto
which the datapath of an application is mapped. Each tile
in turn consists of an array of 8×8 Processing Elements
(PEs). Each tile is also surrounded by embedded memory
and dedicated DSP blocks. A state transition controller (STC)

that is located in the center of the STP is responsible for
reconfiguring the tiles with the correct functionality every
clock cycle. This reconfiguration takes 1ns. In [18] the authors
showed that this fabric can be efficiently used for logic locking
due to its ability to reconfigure itself, hence, reducing the area
overhead.

In this work we will focus on the first two eFPGA fabrics
as they are the most commons one and leave the comparison
with CGRAs for future work.

VII. PROPOSED METHOD OVERVIEW

Fig. 5 depicts graphically the overall flow of the proposed
method. The framework takes as input the untimed behavioral
description to be locked (CHWacc), the technology libraries for
the target ASIC (techlibASIC) and eFPGA (techlibeFPGA),
and the target synthesis frequency (fsyn). The user can also
specify a set of constraints as inputs in terms of the total area
(A), latency (L) and power (P) that the final circuits shown
not exceed. The method is composed of three main steps.
described in detailed below.

Step 1 - Function Encapsulation: This first step encapsulates
portions of the behavioral description into functions. The
previously described pragma to encapsulate this function as an
operator is then specified to tell the HLS tool that the contents
of the function should be synthesized as a black box. This
allows a clean and easy way to partition the design into the
ASIC and eFPGA that is fully transparent to commercial HLS
tools.

Step 2 - Description Parsing: This second step takes as
input partitioned behavioral description and parses it. The HLS
tools automatically generates two separate files (CASIC and
CeFPGA) that can now be synthesizes separately with different
constraints and more importantly technology libraries (ASIC
and eFPGA).

Step 3 - Partition Evaluation: This last step synthesizes the
two behavioral description (CASIC and CeFPGA) using the
same target synthesis frequency (fsyn), as the final circuit
still needs to meet the original, ASIC only maximum delay

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 09,2022 at 04:03:48 UTC from IEEE Xplore. Restrictions apply.

constraint. Each behavioral description as shown in Fig. 5
is synthesized using the particular technology library. After
HLS we can already understand the overheads associated with
the generated partition, as the HLS tools generates a Quality
of Report (QoR) file with the total area in case of ASIC
design and resources utilization for FPGA, estimated delay
and latency. In case of FPGA area, since we don’t have access
to the tools to calculate exact area, the LUTs and DSPs were
converted into µm2 following the indications of [19] which
approximately calculates FPGA tile areas including routing
area. For more accurate results the generated RTL can be
further synthesized and/or placed and routed. For TRAP, we
calculated area and size of the bitstream accurately as indicated
in [2].

This step allows to quantify the overhead of this particular
partition quickly. This process can then be repeated with a new
partition until a given exit condition is reached, e.g., the given
overall constraints are met. Although the number of partitions
might seem significant and hence, the running time to find the
best partition, in reality there is only a very limited number
of partitions as e.g., if-conditions and switch-cases need to be
grouped together, restricting significantly the number of valid
partitions. In order to find highly secured partitions, 1) it must
utilize large numbers of FPGA resources- LUTs or DSPs, as
use of large numbers of LUTs, DSPs weakens any SAT-based
attack or brute force attack by increasing the search space. 2)
Obfuscated function logic must be complex, irregular, diverse
and not easy to guess from behavior of rest of the circuit.
While high numbers of FPGA resources leads to high security
but it causes area, also obfuscated part of the circuit must play
very crucial role in performance and overall response of the
circuit to make this technique highly effective.

VIII. SECURITY ANALYSIS

The proposed locking mechanism leads to a more robust
functional locking in two main ways: through the increase in
the search space, thus, making SAT attacks virtually impossi-
ble and secondly through resource sharing of the locking logic,
thus, making removal attacks not possible.
Protection against SAT Attack: First it increases the search
space, by forcing the attacker to run a SAT attack on each
of the unique FSM states. Moreover, because the order of
the correct keys is needed, it has to run this attack on all key
permutations. This implies that for a circuit with n FSM states,
n! distinct combination of key sequences can be generated, as
opposed of just one single key used in previous work.
Protection against Removal Attack: In addition, most of the
previous locking mechanisms are subject to removal attacks.
These attacks identify the circuitry responsible for the logic
locking and removes it at the foundry. In our case, because
this logic is fully shared with the rest of the circuitry, it
is impossible to remove. The nature of the HLS process,
leads to maximize resource sharing. In resource sharing a
single functional unit is shared among different operations
in the source code by inserted multiplexers at its inputs and
outputs. The Finite State Machine (FSM) created by the HLS

synchronizes all the multiplexers’ control signals in order to
steer the data through the datapath containing the shared FUs.
Thus, the RTL code generated through HLS typically shared
most of its resources when possible. This makes our approach
extremely robust against removal attacks. We measure security
in terms of the time-to-break (TTB) as indicated in [3] where
TTB is a function of bitstream. Bitstream size for TRAP based
eFPGA is calculated from number of instances mapped on
TRAP [2]. Since bitstream size for any commercial FPGA
is constant for given FPGA model, we deduce size of the
bitstream from number of resources utilized. From high level
architecture of ALM in Cyclone V we know that ALM is made
of two 6-input LUT, eight 2:1 MUXs, two internal adders
and four registers. For experimental purpose we conservatively
assume that one ALM produces bitstream of size 136 bits.
Figure 6 shows relation between bitstream size and TTB in
years for brute force attack using single FPGA model and it
also shows the threshold for number of resources to get higher
security.

Fig. 6. (a) TTB for SAT based attack on Cyclone V eFPGA for number of
LUTs, (b) TTB for brute force attack on Cyclone V eFPGA for number of
LUTs, (c) TTB for brute force attack on TRAP eFPGA for given bitstream
size

IX. EXPERIMENTAL RESULTS

Five computationally intensive applications from the open
source S2Cbench SystemC benchmarks suite [20], were used
to test our proposed flow. These benchmarks comply with the
latest Accelera’s Synthesizable SystemC subset and hence, can
be synthesized with any commercial HLS tools as these all
support SystemC. FIR filter, aes a block cipher, snow3G
stream cipher, kasumi block cipher used in mobile com-
munication, adpcm as delta pulse code modulator. Table I
summarizes the main characteristics of the benchmarks used
in terms of their number of functions can be mapped on the
eFPGA and possible designs. In this work we use NEC’s
CyberWorkBench [21]. The target synthesis frequency is set in
all cases to 100MHz. Global Foundries 12LP library is targeted
for TRAP and all areas are scaled to 12nm technology. This
will be our base-line, ASIC-only (ASIC), design against which
we will measure the overheads in terms of area of the proposed
locking mechanism . Delay is not used as the HLS process
always guarantees to meet the given target synthesis frequency
by inserting additional clock steps. Two eFPGA fabrics are
compared. We use a Cyclone V FPGA (LUT)to replicate a
regular island-based fine grain eFPGA and also the transistor
level eFPGA (TRAP).

We have performed an exhaustive enumeration of all the
partitions and report the partitions that have the smallest

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 09,2022 at 04:03:48 UTC from IEEE Xplore. Restrictions apply.

TABLE I
BENCHMARK CHARACTERISTICS

Benchmarks
FIR aes snow3G kasumi adpcm

#Functions 1 6 5 3 2
#Total designs 2 27 8 88 4

fir ae
s

sn
ow

3G

ka
su

mi

ad
pc

m
0

1

2

3

4

log(Area overhead)

fir ae
s

sn
ow

3G

ka
su

mi

ad
pc

m
0

0.2

0.4

0.6

0.8

1
·105

Size of bitstream (bits)

LUT TRAP

Fig. 7. Area overhead and size of bitstream for LUT style FPGA (LUT) and
transistor-level eFPGA (TRAP).

overheads that would make the design secure in Fig.7. In this
context we assume that the partitioned design is secure if the
attacker would need over one year of time to break the system
by generating different valid bitstreams as shown in Fig. 6.

From the results we can make the following observations:
Observation 1: The eFPGA fabric used has a significant
impact on the area overheads. In particular from Fig. 7 we can
observe that for benchmark FIR the LUT-style fabric leads to
an average area overhead of 101.93, while the TRAP eFPGA
leads to an average area overhead of 102.33. This difference
in area overheads can be explained with the architectural
difference between TRAP and LUT based FPGA. Benchmark
such as FIR has multiply and accumulate operations which
use embedded DSPs modules while TRAP eFPGA doesn’t
have any embedded modules. Other benchmarks which don’t
use DSPs have area overheads comparable to each other.
Observation 2: For instances which dominantly use basic
logic operations than complex mathematical operations need
more numbers of ALUTs to map the operations than TRAP
instances as TRAP instances are made of standard CMOS
logic cells. In AES cipher banchmark, the function mapped on
eFPGA mostly has basic EX-OR and AND operations because
of that TRAP shows very small area overhead than LUT based
eFPGA.
Observation 3: FPGA area approximation used here [19] does
not evaluates area occupied by I/O ports but TRAP CAD tools
evaluate exact area occupied by entire circuit including I/O and
routing [2]. The benchmark Kasumi has higher number of I/O
ports than others and hence explains the difference in area
overhead.

In summary we can conclude that the proposed approach
works well when partitioning an untimed behavioral descrip-
tion for HLS into an ASIC and an eFPGA part and that it

allows us to quickly measure the area overheads and security
associated with any partition.

X. CONCLUSIONS

In this work we have proposed an automatic method to func-
tionally lock behavioral IPs for HLS by mapping a portion of
the untimed behavioral description to an eFPGA. We proposed
a fully automatic flow that is transparent to commercial HLS
tools by encapsulating the portion to be mapped to the eFPGA
as a function annotating a synthesis directive to synthesize it as
an operator. This allows us to compare the different overheads
associated with this locking mechanisms when using different
eFPGA fabrics.

XI. ACKNOWLEDGEMENTS

This work is partially supported by the NSF Indus-
try/University Cooperative Research Center on Hardware and
Embedded Systems Security and Trust (CHEST) through
project #P7_20.

REFERENCES

[1] M. T. Rahman et al., “Defense-in-depth: A recipe for logic locking to
prevail,” Integration, the VLSI Journal, vol. 72, pp. 37–57, Jan 2020.

[2] M. M. Shihab et al., “Design obfuscation through selective post-
fabrication transistor-level programming,” in DATE, 2019, pp. 528–533.

[3] B. Hu et al., “Functional obfuscation of hardware accelerators through
selective partial design extraction onto an embedded fpga,” in GLSVLSI,
2019, p. 171–176.

[4] P. Mohan et al., “Hardware redaction via designer-directed fine-grained
efpga insertion,” in DATE, 2021, pp. 1186–1191.

[5] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,”
IEEE TCAD, vol. 26, no. 2, pp. 203–215, 2007.

[6] J. Rajendran et al., “Fault analysis-based logic encryption,” IEEE
Transactions on Computers, vol. 64, no. 2, pp. 410–424, Feb 2015.

[7] J. A. Roy et al., “Epic: Ending piracy of integrated circuits,” in DATE,
2008, pp. 1069–1074.

[8] R. S. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based
SoC Design Methodology for Hardware Protection,” IEEE TCAD,
vol. 28, no. 10, pp. 1493–1502, Oct 2009.

[9] J. Rajendran et al., “Is split manufacturing secure?” in 2013 DATE,
2013, pp. 1259–1264.

[10] ——, “Security analysis of integrated circuit camouflaging,” in SIGSAC
Conference on Computer & Communications Security, ser. CCS ’13,
2013, pp. 709–720.

[11] J. Chen and B. Carrion Schafer, “Area efficient functional locking
through coarse grained runtime reconfigurable architectures,” in ASP-
DAC, 2021, p. 542–547.

[12] J. Chen et al., “DECOY: DEflection-Driven HLS-Based Computation
Partitioning for Obfuscating Intellectual PropertY,” in DAC, 2020, pp.
1–6.

[13] Achronix, “Speedcore embedded fpga ip,” 2022.
[14] Menta, “https://www.menta-efpga.com,” 2022.
[15] Quicklogic, “ArticPro, https://www.quicklogic.com,” 2022.
[16] J. Tian et al., “A field programmable transistor array featuring single-

cycle partial/full dynamic reconfiguration,” in DATE, 2017, pp. 1336–
1341.

[17] Renesas, “STP, http://www.renesas.com/products/soc/asic/programmable,”
2021.

[18] J. Chen and B. C. Schafer, “Area efficient functional locking through
coarse grained runtime reconfigurable architectures,” ser. ASPDAC ’21,
2021, p. 542–547.

[19] H. Wong, V. Betz, and J. Rose, “Comparing FPGA vs. Custom CMOS
and the Impact on Processor Microarchitecture,” in FPGA, 2011, p.
5–14.

[20] B. Carrion Schafer and A. Mahapatra, “S2CBench:Synthesizable Sys-
temC Benchmark Suite,” IEEE Embedded Systems Letters, vol. 6, no. 3,
pp. 53–56, 2014.

[21] NEC CyberWorkBench. (2019). [Online]. Available: www.
cyberworkbench.com

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 09,2022 at 04:03:48 UTC from IEEE Xplore. Restrictions apply.

