
Duplication-Based Concurrent Error Detection in  
Asynchronous Circuits: Shortcomings and Remedies 

 
 

Thomas Verdel & Yiorgos Makris 
Electrical Engineering Department 

Yale University 
{thomas.verdel, yiorgos.makris}@yale.edu 

 
 

Abstract 
Concurrent error detection (CED) methods are typically employed to provide an indication of 
the operational health of synchronous circuits during normal functionality. Existing CED 
techniques, however, require modification in order to be successfully adapted to asynchronous 
designs. We discuss the limitations of duplication, the simplest CED method, when applied to 
asynchronous circuits. We demonstrate that such limitations arise mainly due to comparison 
synchronization issues and inadequate detection of performance-related errors. We propose a 
circuit that alleviates the difficulties associated with comparison synchronization and we 
introduce a methodology that enables detection of errors that do not result in logic 
discrepancies and, thus, may not be detected through comparison. The proposed techniques are 
illustrated on example circuits, revealing their ability to render concurrently testable 
asynchronous designs.  
 
 

1. Introduction 
 

Advantages such as reduced power dissipation, elimination of clock distribution issues, 
modularity, and improved performance have enabled asynchronous circuits to carve a widening 
niche in many systems previously dominated by synchronous circuits [16]. Nevertheless, 
widespread acceptance of asynchronous designs requires development of elaborate methods and 
advanced EDA solutions. Unlike their synchronous counterparts, which have enjoyed a high 
level of design automation since the mid-1970s, similar efforts for asynchronous circuits have 
not kept up to par. In conjunction with the inherently more difficult asynchronous style [2,8], 
the lack of CAD support has deterred efforts not only in design but also in all other aspects of 
asynchronous circuit realization, including test. However, the recent resurgence of 
asynchronicity as a solution to several limitations encountered in submicron technology [16] 
has sparked new research efforts in test of asynchronous circuits [3,4,5,13].  

Among the several test challenges, in this work we focus on concurrent error detection 
(CED), a problem that has been extensively studied for synchronous circuits [7,9,11,12]. The 
objective of CED is to provide a circuit with the ability to monitor itself and report potential 
deviations from its correct functionality. In systems where data integrity is vital, CED is an 
absolute necessity. While porting some of the concepts of synchronous CED to asynchronous 
designs has been successfully attempted in the past [10,14], the applicability of these methods 
is limited because the underlying design style has proved impractical for large circuits [4]. In 
contrast, we examine the portability of duplication [15], a simple, yet generally applicable CED 
method. In duplication, a replica of the circuit is added to the design, possibly diversely 
implemented to avoid common mode failures [1]. The original and the replica serve as 
predictors of the functionality of each other and a simple comparator indicates any discrepancy 

Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’02) 
1063-6722/02 $17.00 © 2002 IEEE 



in their outputs, thus detecting potential malfunctions. Although expensive, this technique has 
proved practical due to its simplicity, effectiveness, and marginal impact on performance. 

The key difficulty in applying duplication-based CED to asynchronous circuits is the lack of 
a global synchronization mechanism, the clock. Without it, it is unclear when the outputs of the 
original and the replica circuit are expected to match, thus allowing the possibility of false 
alarms. As we discuss in this paper, this obstacle can be overcome by a modified comparator 
exploiting local synchronization that exists in asynchronous circuits despite the lack of a global 
clock. Further analysis, however, shows that synchronized comparison is still unable to detect 
all fault effects. Due to the asynchronicity in the operation of the original and the replica, a time 
window within which both arrive at the same state is required. This time window can result in 
masking of some performance-related fault effects so that the circuit appears to be operating 
normally when it actually is not. Such faults can still be detected, however, using signals 
internal to the circuit. Through analysis of the states of the fault-free and the faulty circuits, we 
determine a set of states that uniquely detect these malfunctions and implement a hardware 
monitor for them. By combining this information across all faults and by also exploiting states 
that are not within the set of states for the fault-free circuit, the cost of the monitor function is 
significantly reduced. 

Basics of asynchronous circuits, advantages and disadvantages over their synchronous 
counterparts, as well as a model for their failure mechanisms are reviewed in Section 2. Section 
3 summarizes the typical use of duplication-based CED on synchronous circuits and reveals its 
limitations on asynchronous circuits. A simple circuit that provides the ability to adequately 
synchronize comparisons is proposed and illustrated through an example in Section 4. Section 5 
presents a methodology for detecting performance-related faults that are not detected through 
comparison. Example circuits are used to demonstrate the ability of the proposed methods to 
render a duplication-based, concurrently testable, asynchronous circuit.   

 
2. Review of asynchronous circuits 

 
Often discussed in the literature [2,8,16], advantages of asynchronous circuits include better 

performance, less area for clock circuitry, reduced power consumption, and better modularity. 
In synchronous circuits, the clock period is chosen according to a worst-case timing analysis. 
Regardless of how quickly the computation is actually performed, the circuit is allotted the 
same worst-case time. Furthermore, since chip performance may vary depending on process 
variations, voltage, and temperature, additional time, called the clock margin [2], is added to the 
clock period to compensate for these variables. In contrast, the worst-case scenario does not 
limit the performance of asynchronous circuits. Each asynchronous element communicates 
through handshake protocols when it is ready to begin computation and when it is finished 
computing. Therefore, it takes only the time required to do the particular computation; over 
several computations it exhibits average case performance [8,16]. In synchronous circuits, clock 
distribution is also a rapidly growing problem. With increasing chip size, complexity, and 
speed, keeping clock skew to a minimum and efficiently routing clock lines has proved to be an 
ongoing engineering challenge that requires a growing proportion of chip-area. This is not a 
problem in asynchronous circuits since they have no global clock. In terms of power 
consumption, asynchronous circuits are also beneficial because only the elements necessary to 
perform the computation are active; idle elements do not consume power. Synchronous circuits, 
on the other hand, consume power every clock cycle, regardless if useful work is actually being 
done or not. Finally, the implicit signaling protocols of synchronous circuits can make circuit 
composition a difficult task. Asynchronous circuits are more modular in that one needs only to 
match the explicit signaling protocol and the interface to compose a larger circuit from two 
smaller ones [2]. 

Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’02) 
1063-6722/02 $17.00 © 2002 IEEE 



 

Request

Acknowledge

Start Event i

Event i done Start Event i+1

Event i+1 done

Request

Acknowledge

Start Event i

Event i done

Ready for Event i+1

Start Event i+1

Return to Zero

Event i+1 done

(a) (b)

2-Phase Signaling 4-Phase Signaling

 
Figure (1): Handshake protocols 

 

C

ro

ri

lo

li

l1

l2 r1

r2

u

u

(b)(a)

x

y

z

 
Figure (2): (a) D-Element (b) Possible C-Element implementation 

 
Asynchronous circuits do have drawbacks however. Unlike synchronous circuits that are 

relatively glitch tolerant, glitches pose a significant problem in asynchronous circuits. Proper, 
hazard-free operation often necessitates addition of redundant circuitry, which may require 
more silicon area. Redundant logic poses a test obstacle as well. Lastly, while most designers 
are familiar with synchronous design techniques, asynchronous circuits can seem relatively 
cumbersome and difficult to understand. Compounding this difficulty, EDA tools available for 
asynchronous design are neither as abundant nor as refined as those for synchronous. 

From a high-level perspective, each asynchronous module can be thought of as having two 
parts, a data section and a control section [6]. The data section actually performs the required 
logical computation. The control section is the synchronization element that enables inter-
module communication. Since numerous asynchronous modules may be interacting with each 
other in a typical circuit, a synchronization standard is required to ensure properly timed 
communication. This is the purpose of handshake protocols. The two standard signaling 
protocols used in asynchronous circuits, namely two-phase signaling and four-phase signaling 
[2], are illustrated in figure (1). The request line, which is controlled by the external 
environment, is used to inform the circuit that it has a task that it needs the circuit to perform. 
The acknowledge line is controlled by the circuit itself and indicates its processing state. In the 
2-phase scheme, only one transition (either up or down) on the request line and one on the 
acknowledge line is needed to complete a full handshake. The 4-phase protocol uses only up 
transitions but requires that both lines return to zero before a new handshake is initiated.  

We now include two examples of asynchronous circuits to illustrate how these circuits work 
and to demonstrate the effects of potential faults. A D-Element [4] is an asynchronous circuit 
that is used to synchronize two four-phase handshakes. A gate level implementation of this 
circuit is shown in figure (2)(a). Within the D-Element is another common circuit, the C-
Element. An implementation of a C-Element is shown in figure (2)(b). It is a simple state 
holding device, wherein the output, z, follows the inputs, x and y, when the inputs are the same. 

Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’02) 
1063-6722/02 $17.00 © 2002 IEEE 



In the standard high-level description notation [3,4], the D-Element is specified internally (i.e. 
from the circuit’s perspective) as: 

 

*[[li];u↑;[u];lo↑;[¬li];ro↑;[ri];u↓;[¬u];ro↓;[¬ri];lo↓] 
 

In this notation, [α] means wait for an event α (either an assertion, denoted as α, or a 
deassertion, denoted as ¬α). These are events caused by the environment outside of the circuit 
itself. Transitions initiated by the circuit on a signal β are denoted by either β↑ (up) or β↓ 
(down). A semicolon is used to indicate a sequence of events. For example, [α];β↑ means wait 
for signal α to be asserted and then raise signal β. The * character implies that the process is 
repeated indefinitely and || denotes that two processes can occur in parallel. 

The one-bit, asynchronous full adder found in [13] provides us with another example. Unlike 
the D-Element, the adder has both data and control portions, and, more importantly, the control 
section is dependent upon both control and data signals. Figure 3 shows the gate level 
implementation. A brief discussion of the adder’s operation is given here, while a more detailed 
analysis can be found in [13].  First, the environment determines when the data is ready on 
inputs A and B. When A and B are valid, nStart, an active-low signal, is deasserted. If A = B, the 
XOR gate output is zero, and the output of NAND gate G1 is asserted. This then deasserts the 
output of NAND gate G2, nCVout. The timing specification is: 

 

[[¬nStart]; Start↑; nCVout↓;[nStart]; Start↓; nCVout↑] 
 

When A ≠ B, output nCVout follows nCVin.  The timing specification for this case is: 
 

[[[[¬nCVin]; z↑] || [[¬nStart]; Start↑]]; nCVout↓; [[[nCVin]; z↓; nCVout↑] || [[nStart]; Start↓; nCVout↑]]] 
 

The motivation for this design is to speed up carry-propagation in a series of one-bit 
adders. From a high-level perspective, we see that the adder gets its performance boost from 
predicting the carry early. When A=B, the adder does not need to wait for the carry-in, thus 
validating its own carry-out signal sooner. This gives the next adder in the series the ability to 
begin computation earlier and, hence, speed up carry propagation and increase performance.  

Failure mechanisms in asynchronous circuits can be classified into three categories, halting 
faults, premature firings, and faults in redundant logic that cause performance degradation. A 
halt occurs whenever the circuit can no longer continue through its specification. For example,  
 

G1

G2

Cino

A o

B o

nCVin

nStart

hso
hs4

hs3

Start
nCVout

Sum

Cout

Z

A 2

A 1

hs1

nhs1

hs2

Cin1

Cin2

x

y

 
Figure (3): Asynchronous full adder 

Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’02) 
1063-6722/02 $17.00 © 2002 IEEE 



from the specification for the D-Element, lo-s-a-0 would prevent the transition lo↑. The 
environment will wait forever for this transition to occur, halting operation. This cessation of 
activity makes halts easily detectable [4]. A circuit with a premature firing fault will, under 
certain conditions, operate faster than the fault-free circuit. The danger of this fault is that 
inputs or outputs might be falsely indicated as valid. The D-Element has two premature firing 
faults, l1-s-a-0 and r2-s-a-0. For l1-s-a-0 we see that [lo↑;[¬li]] and [ro↑;[ri]] may occur 
simultaneously instead of sequentially as they should. Lastly, faults in redundant logic reduce 
the speed of the circuit, though the outputs may still be logically correct. For example, when a 
fault inhibits the carry prediction of the adder, its performance is degraded. One such fault is 
hs4-s-a-0. In this case, if A=B, then nCVout should transition to zero immediately after nStart is 
deasserted, regardless of the value of nCVin. Instead, the circuit is forced to wait for nCVin to 
be deasserted before deasserting nCVout. We note, however, that the data output of this circuit 
will still be correct. 

 

3. Limitations to duplication based concurrent testing 
 

Duplication [15] is one of the simplest non-intrusive CED methods, incurring minimal 
performance degradation, yet with considerable area overhead. Referring to figure (4)(a), we 
see that the main idea is to replicate the circuit and connect both sets of outputs to a comparator. 
An error is indicated if the comparator detects a mismatch at the end of a clock cycle. The clock 
period guarantees that both the original and the duplicate have ample time to complete the 
operation required and stabilize to the correct state.  

Unlike synchronous circuits, wherein the clock indicates the appropriate comparison time, in 
asynchronous circuits, we are dependent on local handshakes. Due to process variations, 
possible diverse implementations to avoid masking in common mode failures [1], and the very 
fact that the circuit and its duplicate are separate asynchronous entities, we cannot rely on the 
outputs being exactly the same all of the time. We define the maximum allowable delay 
between the original and its duplicate due to these factors to be τD. In figures (4)(b) and (4)(c) 
we see two hypothetical timing diagrams for one output of some circuit, O, and its duplicate, D. 
In the former case we have D lagging O by τD while in the latter we have O lagging D by τD. 
The magnitude of τD is exaggerated for illustrative purposes, but there are instances where, 
even though O and D may both be fault-free, the outputs are different.  

To overcome the synchronization problem, we need to be able to create a time window of 
size τD so that when a transition occurs on O (D), we indicate an error only when D (O) doesn’t 
make the same transition within the window. Unfortunately, this also enables timing scenarios 
that prohibit certain types of fault effects from being detected. For any transition, let the instant 
at which the fault-free circuit makes the transition be tC. In the case of either a premature firing 
fault or a fault due to redundant logic, let the instant at which the faulty transition takes place be 
tE. It can be shown that if |tC-tE| < 2τD then the comparison process may fail to detect the fault. 

 

Output O

Output D

τ1 τ1+τD τ2 τ2+τD

τD

Output D

τ1 τ1+τD τ2 τ2+τD

τD

Output O

(b) (c)(a)

Original
Circuit

Duplicate
Circuit

Comparator

Input O

D

Output

ErrorClock

 
Figure (4): Duplication-based CED and timing diagrams of false negatives 

Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’02) 
1063-6722/02 $17.00 © 2002 IEEE 



liD

loD

uD

riD

roD

Fault-Free Duplicate

(a)

liO

loO

uO

riO

roO

Faulty Original (Fault l1 stuck-at-0, Original lags Duplicate by ττττD)

(b)

τD

tE tC

Fault-Free Duplicate

nStartD

StartD

nCVoutD

nCVinD

ZD

(c)
Faulty Original (hs4-stuck-at-1,
Original leads Duplicate by ττττD)

(d)

tC tE

τD τD

nStartO

StartO

nCVoutO

nCVinO

ZO

τD

 
Figure (5): Timing diagrams of false positive in synchronized comparisons 

 

Figure (5) illustrates the failure of synchronized comparison on the D-Element with a 
premature firing fault, and on the adder with a fault due to redundant logic. For the D-Element 
let us assume that the original, OD, has the fault l1-s-a-0, while the duplicate, DD, is fault-free. 
In addition, let us assume that OD lags DD by τD. Since OD is the controlling circuit, the 
discrepancy is indicated only by signals roD and roO. Figure (5)(a) is the timing diagram for DD 
and figure (5)(b) is the diagram for OD. As shown, if OD is fault-free then roO↑ will occur at 
time tC instead of time tE. In general, we must allow for the case when DD lags OD, so tE marks 
the beginning of the comparison window. On circuit DD, roD↑ occurs within the window so the 
synchronized comparator does not detect a discrepancy. The previous formula suggests the 
same conclusion since |tC - tE| < 2τD. Thus, the premature firing fault remains undetected.  

Repeating the analysis for the adder but assuming that OA leads DA, we see that faults due to 
redundant logic can go undetected. For example, assume that fault hs4-s-a-1, which is excited 
when inputs A and B are equal, is present in OA, while DA is fault-free. Figures (5)(c) and (5)(d) 
provide the timing diagrams for DA and OA, respectively.  nCVout reflects the fault effect in this 
situation. In the fault-free scenario, nCVout↓ occurs after nStart↓. When hs4-s-a-1 is present, 
nCVout↓ cannot occur until after both nStart↓ and nCVin↓. In figure (5)(d), tC indicates when 
the nCVoutO↓ event should happen and tE indicates when it actually happens. However, since 
OA leads DA, nCVoutD↓ and nCVoutO↓ occur within the τD window. The resulting performance 
degradation is masked by the allowed delay.   

Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’02) 
1063-6722/02 $17.00 © 2002 IEEE 



l i

loO

roO

loD

r i

(Fault l1 stuck-at-0 in Original: O lags D by ττττD)

τD

roD

x1

y1

z1

tE tC |tC − tE| >2*τD

(b)(a)

Duplicate
D-Element

D

Original
D-Element

O

Comparison Synchronization

loD loO l i

r i

roD roO

D
Flip-Flop

D
E
L
A
Y

z1

x1

y1

D
Flip-Flop

D
E
L
A
Y

z2

x2

y2

DCS OCSComparison
Synchronizer

 
Figure (6): Comparison synchronization circuit and timing diagram 

 

4. Remedial action for synchronization 
 

Limitations of duplication in asynchronous circuits are attributed to the lack of a mechanism 
to synchronize the comparison. Nevertheless, we can use signals that establish local 
synchronization within the original and the duplicate to indicate when the comparison results 
are valid. The comparison synchronizer in figure (6)(a) takes this approach. 

If the circuit is duplicated, then all fault types manifest themselves as a discrepancy in the 
proper timing of the circuit. Therefore, we use a signal from the control portion of each circuit, 
the original (OCS) and the duplicate (DCS). These signals reflect where each circuit is in the 
execution of the handshake protocol. As noted earlier, continuous comparison of these signals 
is insufficient because of the possible delay, τD, between them. However, since the magnitude 
of τD can be calculated beforehand, we can use its value to create a time window after a 
transition on OCS (DCS). If DCS (OCS) also transitions within this window, the circuit is operating 
correctly. If DCS (OCS) transitions outside of this window, we know that one of the circuits is 
either operating too fast (a premature firing) or too slow (a fault in redundant logic or a halt).  

This is achieved by the comparison synchronizer in figure (6)(a), where the delay attached to 
the clock-input of the flip-flop is matched to τD. Assuming OCS and DCS are the same at the 
outset, the output of the XOR will be asserted when OCS (DCS) transitions. The output of the 
XOR is then delayed to the clock of the flip-flop. If the circuit is fault-free, DCS (OCS) will make 
the same transition, thereby deasserting the output of the XOR before the flip-flop is clocked. If 
the circuit has a fault that affects the timing of the given signal, the delayed clock pulse will 
arrive while the output of the XOR is still asserted, setting the flip-flop. Figure (6)(a) shows the 
two comparison synchronizers necessary to detect all fault effects in the duplex D-Element. The 
corresponding timing diagram in figure (6)(b) demonstrates detection of the fault l1-s-a-0 on 
the original D-Element. Here the OCS input is roO and the DCS input is roD. Output z1 indicates 
the presence of a fault. While many synchronized comparisons may be necessary, only one 
output pin driven by the logic OR of their outputs suffices. 

Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’02) 
1063-6722/02 $17.00 © 2002 IEEE 



li lo ri ro u  A B C  l1 s-a-0 
0 0 0 0 0  li lo ri ro u X? li lo ri ro u X? li lo ri ro u X?  li lo ri ro u
1 0 0 0 0  1 1 0 0 1 N 1 1 0 0 1 N 1 1 0 0 1 N  1 1 0 1 1
1 0 0 0 1  0 1 0 0 1 N 1 1 0 1 1 Y 1 1 0 1 1 Y  1 1 1 1 1
1 1 0 0 1  0 1 0 1 1 N 0 1 0 1 1 N 1 1 1 1 1 Y  1 0 0 1 1
0 1 0 0 1  0 1 1 1 1 N 0 1 1 1 1 N 0 1 1 1 1 N       
0 1 0 1 1  D E F  r2 s-a-0 
0 1 1 1 1  li lo ri  ro u X? li lo ri ro u X? li lo ri ro u X?  li lo ri ro u
0 1 1 1 0  1 0 0 1 1 Y 1 0 0 1 1 Y 1 0 0 1 1 Y  0 0 1 0 0
0 1 1 0 0  1 0 1 1 1 N 1 1 0 1 1 Y 1 1 0 1 1 Y  1 0 1 0 0
0 1 0 0 0  1 1 1 1 1 Y 1 1 1 1 1 Y 0 1 0 1 1 N  0 0 1 1 0
      0 1 1 1 1 N 0 1 1 1 1 N 0 1 1 1 1 N  1 0 1 1 0
Table 1: Valid set           Table 2: Invalid set of D-Element           Table 3: Exclusive       
    of D-Element          with l1-stuck-at-0                           sets of faults 
 

5. Remedial action for premature firings and faults in redundant logic 
  

As stated in Section 3, solving the comparison synchronization problem is inadequate to 
detect all possible faults. The problem arises because many faults do not manifest themselves as 
logic discrepancies that can be detected through output comparison. However, the presence of a 
fault signifies some discrepancy in the internal signals of the fault-free and the faulty machine. 
We propose further remedial action that uses these internal signals to detect faults missed by the 
comparator, thus guaranteeing data integrity under the single-fault model. 

Given an asynchronous circuit and its corresponding timing specification, there are a limited 
number of states that it can be in. We define the valid set of a circuit as the set of all possible 
states allowed in its normal operation. Next, for each non-halting fault, we determine the 
invalid set, which is defined as the set of possible states that the circuit may reach in the 
presence of the fault. We further define the exclusive set for each non-halting fault as the set of 
states that belong to the invalid set of the fault but not to the valid set. Since all internal signals 
are considered, we are guaranteed non-emptiness of exclusive sets. Exclusive sets provide 
adequate information to detect each fault. Therefore, a function that monitors the circuit to 
detect any state in the exclusive set of a fault is necessary to detect this fault. Since such 
functions will be implemented in hardware, however, it is important to minimize their cost. The 
objective of CED is to identify erroneous behavior of the circuit for any input combination that 
appears during normal operation; therefore, all states in each exclusive set need to be monitored 
for concurrent error detection. The union of the exclusive sets is required, but incorporating 
states in the complement of the valid set can reduce the hardware cost of the monitor function. 

We illustrate this method on the example circuits. Table (1) provides us with the valid set for 
the D-Element, the circuit shown in figure (2)(a). The fault l1-s-a-0 is a premature firing fault. 
It alters the timing specification so that [lo↑;[¬li]] and [ro↑;[ri]] may happen in parallel. 
Outside of these events, the faulty circuit behaves the same as the fault free version; therefore, 
to observe the fault effect, we focus on the different subsequences that may occur. Ιn the 
presence of this fault, there are six orderings possible (because [¬li] must still follow [lo↑] and 
[ri] must still follow [ro↑]). Letting 1 = [lo↑], 2 = [¬li], 3 = [ro↑], and 4 = [ri], the orderings 
are A=[1;2;3;4], B=[1;3;2;4], C=[1;3;4;2],  D=[3;4;1;2], E=[3;1;4;2], F=[3;1;2;4]. Table (2) 
shows the states for each sequence. A is non-faulty behavior so none of its states are outside of 
the valid set.  The column in table (2) labeled “X?” indicates if the state is in the exclusive set 
for the fault. The same analysis can be used on the fault r2-s-a-0 to produce its exclusive set. 
The exclusive sets of both faults are shown in table (3). Taking the union of these sets and using 
states not in the valid set as needed, we find an error function, ED= (li∧ro) ∨ (lo’∧ri). 

Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’02) 
1063-6722/02 $17.00 © 2002 IEEE 



The data-dependent control logic and the more complex timing specification of the adder 
result in a larger valid set and more invalid sets. For brevity, we assume that inputs A and B are 
both zero, in which case there is only one non-halting fault, hs4 s-a-1. It is a fault in redundant 
logic and reduces the performance of the circuit. In effect, this fault forces the circuit to move 
through the timing specification used when A ≠ B. The states in the invalid set are too numerous 
to list here; however, to simplify matters, we note that the intersection of the valid set and the 
invalid set for this scenario is empty (because in the valid set hs4 = 0). In addition, every state in 
the invalid set has hs4=1 for A=0, B=0. Therefore, a possible monitor function in this case is 
E=A’∧B’∧hs4. Performing this analysis for all invalid sets yields the following monitor 
function, EA, for detecting all non-halting errors in the adder: 

 
EA= ((A ⊕ B) ⊕ hs4) ∨ (nStart ∧ Start) ∨ ((A ⊕ B) ∧ nCVin ∧ z) 

 
6. Conclusion 
 

Exploiting the numerous advantages of asynchronous circuits requires that design methods 
equally efficient to those in the synchronous domain be devised. Toward this end, this paper 
examines the problems that prevent application of existing duplication-based concurrent error 
detection techniques to asynchronous circuits and proposes solutions. As demonstrated, 
synchronization issues can be resolved through the proposed comparator circuit that accounts 
for acceptable time differences in the operation of the original and the duplicate circuit. 
Furthermore, fault effects that may not be detected by comparison alone, can still be detected 
through an additional monitor function that makes use of signals internal to the design. 
Application of the proposed methods to two example circuits displays the effectiveness of these 
solutions in yielding concurrently testable asynchronous designs. 
 
References 
 
[1] A. Avizienis, J. P. J. Kelly, “Fault Tolerance by Design Diversity: Concepts and Experiments”, IEEE Trans. 

Comput., vol. 17, no. 8, pp. 67-80, 1984. 
[2] A. Davis, S. M. Nowick, “An Introduction to Asynchronous Circuit Design”, Technical Report UUCS-97-013, 

Department of Computer Science, University of Utah, 1997. 
[3] P. J. Hazewindus, Testing Delay Insensitive Circuits. Ph.D. Thesis, California Institute of Technology, 1992. 
[4] H. Hulgaard, S. M. Burns, G. Borriello, “Testing Asynchronous Circuits: A Survey”, Technical Report CS-TR-

94-03-06, Department of Computer Science and Engineering, University of Washington, 1994.  
[5] M. Kishinevsky, A. Kondraytev, L. Lavagno, A. Saldanha, A. Taubin, “Partial-Scan Delay Fault Testing of 

Asynchronous Circuits”, IEEE Trans. Comput., vol. 17, pp. 1184-1198, 1998. 
[6] D. Lu, C. Q. Tong, “High-Level Fault Modeling of Asynchronous Circuits”, VTS, pp. 190-195, 1995. 
[7] Y. Makris, I. Bayraktaroğlu, A. Orailoğlu, “Invariance-Based On-Line Test for RTL Controller-Datapath 

Circuits”, VTS, pp. 459-464, 2000. 
[8] C. Myers, Asynchronous Circuit Design, Wiley, 2001. 
[9] S. Mitra, E. J. McCluskey, “Which Concurrent Error Detection Scheme to Choose?”, ITC, pp. 985-994, 2000. 
[10] Y. Mukai, Y. Tohma, “A Method for the Realization of Fail-Safe Asynchronous Sequential Circuits”. IEEE 

Trans. Comput., vol. 23, no. 7, pp. 736-739, 1974. 
[11] M. Nicolaidis, Y. Zorian, “On-Line Testing for VLSI - A Compendium of Approaches”, JETTA, vol. 12,  

no. 1-2, pp. 7-20, 1998. 
[12] A. Paschalis, D. Gizopoulos, N. Gaitanis, “Concurrent Delay Testing in Totally Self-Checking Systems”, 

JETTA, vol. 12, no. 1/2, pp. 55-61, 1998. 
[13] O. A. Petlin, C. Farnsworth, S. B. Furber, “Design for Testability of an Asynchronous Adder”, IEE Colloquium 

on Design and Test of Asynchronous Systems (Ref. No.1996/040), pp. 5/1-9, 1996.   
[14] D. H. Sawin, G. K. Maki, “Asynchronous Sequential Machines Designed for Fault Detection”. IEEE Trans. 

Comput., vol. 23, no. 3, pp. 239-249, 1974. 
[15] F. Sellers, M.-Y. Hsiao, L. W. Bearnson,  Error Detection for Digital Computers, McGraw-Hill, 1968 
[16] C. Tristam, “It’s Time for Clockless”, Technology Review, pp. 37-41, Oct. 2001.  

Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’02) 
1063-6722/02 $17.00 © 2002 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


