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Abstract

We describe a method for designing fault tolerant circuits based on an extension of a Concur-
rent Error Detection (CED) technique. The proposed extension combines parity check codes and
duplication in order to not only perform error detection but also provide diagnosis and correction
capabilities. Informed selection among the outputs of the original synthesized circuit and the out-
puts of a constrained-sharing resynthesized duplicate with parity check codes renders a low-cost
fault tolerant design. Experimental results confirm the efficacy of the proposed method as a general
solution for designing fault tolerant circuits.

1. Introduction

Complex electronic circuits are currently utilized in safety critical applications, where reliability
is of paramount importance. While manufacturing test typically identifies a large number of circuit
defects, exhaustive testing is impractical and attaining complete fault coverage may not be feasible.
Design-For-Testability (DFT) techniques are used to remedy low fault coverage [1, 2], albeit at the
cost of additional hardware area. Yet undetected manufacturing defects, wear-and-tear faults, as
well as transient errors still pose a threat to the reliable operation of the circuit. To shield against
such faults, CED techniques [3, 4, 5, 6, 7, 8] are used to detect malfunctions during the lifetime
of the circuit. While the cost of CED techniques is often twice the cost of the original design,
such techniques can only report the occurrence of a fault and may not take any remedial action.
Should the circuit need to remain operational in the presence of a fault, a fault tolerant design
is required. Fault tolerant designs concurrently detect, diagnose and correct a fault effect, at the
cost of either performance degradation or considerable hardware overhead. For example, Triple
Modular Redundancy (TMR) [9], a standard fault tolerance method, comes at three times the cost
of the original circuit.

The distinct objectives of CED and fault tolerance have resulted in quite different solutions to the
two problems. In an effort to reduce this gap, we examine in this paper the extension of a standard
CED technique into a method for designing fault tolerant circuits. The choice of the starting-
point CED technique is based on its effectiveness in terms of fault model assumed, feasibility of
implementation, performance overhead, and diagnostic capabilities. The CED technique must be
able to detect any single fault and, still, be efficiently implemented for large circuits. Moreover, the
chosen CED technique must inherently provide some level of fault identification in order to assist
the diagnosis and correction operation. Finally, the fault tolerance extension to the CED technique
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Figure 1. CED using Parity Check Codes Alternatives.

needs to derive adequate information for both detecting and correcting the fault on the fly, in order
to attain the same performance as the original circuit.

Among the several CED techniques that have been proposed in the literature, we select one that
meets most of the aforementioned requirements and we extend it with the minimum number of com-
ponents necessary to perform fault diagnosis and correction. Section 2 describes the selected CED
technique that fits our requirements and explains the underlying features that assist the construction
of a fault tolerant circuit. The added components and the proposed extension for fault tolerance are
outlined in section 3. Experimental results evaluating the proposed design are presented in section
4 and conclusions are drawn in section 5.

2. CED using Parity Check Codes

The idea of multiple parity bits was first introduced in [10]. A parity check code is a code in
which the parity of multiple circuit outputs, forming a parity group, is checked against a predicted
parity bit for that group. The objective is to classify the outputs in a minimal number of groups,
such that any single fault in the circuit will affect the parity of at most one output bit in every
parity group. To ensure that the fault effect will be detected, no sharing is allowed between the
cones of logic of output bits belonging to the same parity group. The two extreme cases for the
number of parity groups are single-bit parity and duplication as illustrated in figures 1.a and 1.b,
respectively. In single-bit parity, all output bits of the circuit form a single group and, consequently,
no sharing between their cones of logic is allowed. In duplication, on the other hand, every output
bit is considered a group by itself and, thus, there are no constraints on logic sharing and the
parity checker reduces to a comparator. Nevertheless, both of these extremes may incur significant
hardware overhead and may not lead to an acceptable solution.

Predicting the value of the parity bit in the single-bit parity case is relatively inexpensive. How-
ever, the prohibition of sharing between the output cones of logic adds a significant overhead to
the cost of the original circuit, which needs to be intrusively re-synthesized under this constraint.
Duplication, on the other hand, leaves the original circuit intact, yet incurs the cost of an additional
copy of the circuit to predict the parity of each group (which in this case is equal to the actual output
of the circuit). The possibility of finding a more cost-effective solution in between the two extremes
has motivated several research efforts. The overall goal is clear; minimize the area required to im-
plement the parity check code. The area required by the parity check code is equal to the sum of
the cost of the logic function, the parity prediction logic, and a parity checker. As illustrated in
figure 1.c, the cost of the parity checker and parity prediction logic increases when the number of
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groups increases while the cost of the original circuit decreases, as more logic sharing is permitted
between the outputs. On the other hand, reducing the number of groups decreases the cost of the
parity checker and the parity prediction logic, while increasing the cost of the original circuit due
to reduced logic sharing.

One of the first efforts in finding an optimal point between the two extreme cases was developed
by De et al. [5]. The circuit outputs are partitioned to form logic blocks where no logic sharing is
allowed between blocks but sharing is maximized within the block. We denote the circuit generated
with constraints on the sharing between the logic blocks as a resynthesized circuit. A cost function
that is based on logic sharing in the optimized circuit implementation guides the partitioning pro-
cess. The number of parity groups depends on the logic block with the highest number of outputs.
Every group contains no more than a single output from every logic block. Any single fault will
affect outputs of a single block and, as logic block outputs are in different parity groups, the fault
effect will not be masked.

The synthesis method proposed in [5] depends on the number of output partitions; a user supplied
parameter. The greedy cost function considers only the area required by the original function.
Touba et al. [6] enhanced the efficiency of the solution by employing a cost function that takes into
account the cost necessary for the logic of the original function, the parity prediction, and the parity
checker. The proposed solution automates parity check code selection and allows sharing between
outputs in different logic blocks, as long as the outputs belong to different parity groups, which was
a restriction in the method proposed in [5].

Zeng et al. [7] extended the parity check code method of [6] to design Finite State Machines
(FSMs) with CED capabilities. Since states can be represented symbolically, CED circuitry can
be added to the next state logic during state assignment, after the assignment but before logic
optimization, or after logic optimization. A new state encoding technique that encodes the states
with the objective of reducing the area overhead of the self-checking FSM is introduced. The next
state parity check is done one clock cycle later to also detect faults in the bistable elements. The
output logic and next state logic belong to different parity groups, and hence, logic sharing between
them is allowed.

Parity check codes appear to be the most appropriate choice for our purpose of extending a CED
method to perform fault diagnosis and fault correction. In accordance with the requirements set
forth in the introduction, parity check codes allow the detection of all single faults, which consti-
tutes a reasonable fault model. Moreover, they incur tolerable area overhead and are feasible to
implement for large circuits [6]. In addition, parity check codes reveal some fault identification
information that, when used properly, may assist with fault diagnosis and fault correction. In the
next section, we show how this information may be utilized in order to design fault tolerant circuits.

3. Proposed Extension for Fault Tolerance

The result of the comparison between the predicted group parity and the actual parity indicates
the presence of a fault, yet it provides no information regarding the fault source. While a fault in the
circuitry implementing the desired logic function leads to faulty circuit results, potential faults in
the parity prediction logic will not affect correctness of the output. Yet, the CED method will still
indicate detection of a fault, rendering the circuit results unusable. Therefore, we need a mechanism
to distinguish between faults in the parity prediction logic and faults in the resynthesized circuit.
Furthermore, independent of where the fault is, this mechanism should generate the correct result.
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Figure 2. Proposed Methodology for Combinational Circuits.
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Figure 3. The behavior of two faulty components (non-Alias Cases).
3.1. Combinational Logic

The proposed fault tolerant design for combinational logic is illustrated in figure 2. The CED
technique, as described in [6], consists of a resynthesized circuit, a group parity predictor, and a
parity checker. Two components are added to extend the CED technique for fault tolerance: the
original area-optimized circuit and an output comparator. The two copies of the circuit, along
with the CED capability, provide adequate information for generating correct results, even in the
presence of a faulty component. The parity checker and the comparator produce the control signals
required to diagnose and correct a single faulty component.

During fault-free operation, the two inputs of the comparator will always agree. Similarly, the
two inputs of the parity checker will also agree. In case of a discrepancy in the parity checker
but not the comparator, the outputs of the two circuits are correct and a malfunction is detected
either in the parity predict logic, the parity checker or both; single or multiple faults in these two
components are tolerated in this case. If the comparator inputs disagree while the parity checker
confirms the correctness of the group parity, a malfunction is detected either in the original circuit,
the comparator or both; multiple faults in these two components are also tolerated in this case. When
both the comparator and parity checker detect a discrepancy and under a single faulty component
assumption, a fault is detected in the resynthesized circuit.

All the previous possible scenarios are restated in the table of figure 2. Similarly to TMR, the
proposed method tolerates multiple faults in any single component. As discussed above, single
and multiple faults in multiple components may or may not be tolerated. A TMR implementation,
composed of the original circuit and two replicas, tolerates multiple faults in two components if
the faulty response of the two faulty components is not the same, i.e. the majority for every output
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Figure 4. Proposed Methodology for Sequential Circuits.

bit over all the three components is correct. An output bit in the TMR implementation is faulty if
two inputs to its majority voter are incorrect. We refer to such cases where the faulty responses are
equivalent in some bit positions as Alias Cases. Similar to the TMR implementation, the proposed
method has some Alias Cases where multiple faulty components can not be corrected. Nonetheless,
the proposed method can tolerate faults in two components based on the effect of the faults on
the control signals. Figure 3 illustrates all the possible scenarios for two faulty components, the
associated control signals and correctness of operation. As seen from the figure, the proposed
method can detect 6 out of 10 cases where two components are faulty. The correct output can be
easily produced using a 2-to-1 multiplexer based on the aforementioned comparison results of the
comparator and the parity checker. We should note at this point that the multiplexer is the Achilles
heel of the proposed fault tolerant method, just as a majority voter is the weak point of TMR; a fault
in both cases can be neither detected nor corrected.

3.2. Sequential Logic

The proposed technique may be easily extended to sequential logic, by extending the method
proposed in [7] for CED in FSMs based on parity check codes. To make the circuit fault tolerant, the
original area-optimized FSM implementation and an output comparator are added to detect faults
in the next state and output logic, as illustrated in figure 4. The parity checker and the comparator
produce the same control signals of the previous section to diagnose and correct a fault.

The parity check bits are stored in bistable elements to also detect faults in the state register in
[7]; however, this is not possible in a fault tolerant implementation as the check is performed a cycle
later, while the next state logic is evaluating the next state using an erroneous present state. More-
over, although the fault is detected it may not be corrected without performing a re-computation that
will slow down the circuit operation. If the detection is performed before the next state is stored in
the bistable elements then correction can be added in the same cycle, as shown in the left diagram
of figure 4. Unfortunately, this will not allow us to correct any faults in the bistable elements. An
alternative implementation that resolves this problem is illustrated in the left diagram of figure 4.
In this case, we multiplex the correct state based on the value of the control signals A and B so that
the correct previous state is used in the calculation of the next state. However, the clock cycle time
must be increased to account for the delay it takes to compute A and B.

In summary, the proposed method requires three additional hardware components in order to
make a combinational or sequential circuit fault tolerant: a replica of the circuit resynthesized based
on group parity, a comparator, and the small output selection hardware. In comparison to TMR, the
proposed method provides a substantial hardware reduction, as indicated through the experimental
results provided below.
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Original Circuit TMR FT Circuit Proposed FT Circuit

Lits. Parity Lits. Check. | Total | Parity | Lits. | Check. | Total | Hardware

Name | PI | PO . R . .
Count Bits Count Lits. Count | bits Count | Count | Count | Reduction
apla 10| 12 312 12 936 176 1112 3 628 140 768 3291 %
brl 12 8 196 8 588 112 700 2 439 88 527 25.34 %
bw 5128 178 28 534 432 966 8 480 352 832 10.11 %
chkn | 29| 7 398 7 1194 96 1290 3 1104 80 1184 7.54 %
decl 4 7 45 7 135 96 231 3 107 80 187 20.74 %
dc2 8 7 162 7 486 96 582 2 350 76 426 27.98 %
exp 8 | 18 435 18 1305 272 1577 5 961 220 1181 26.36 %
luc 8 | 27 211 27 633 416 1049 6 546 232 778 13.74 %
p82 5114 127 14 371 208 579 3 289 164 453 22.10 %
signet | 39| 8 335 8 1005 112 1117 5 645 100 745 35.82 %
wim 4 7 60 7 180 96 276 2 121 76 197 32.78 %
5xpl 7 | 10 134 10 402 144 546 3 351 116 467 12.69 %
alu4 141 8 800 8 2400 112 2512 8 1600 112 1712 3333 %
b12 151 9 87 9 261 128 389 4 237 108 345 9.20 %
cmb 16| 4 52 4 156 48 204 2 116 40 156 25.64 %
cu 14 | 11 53 11 159 160 319 1 136 120 256 14.47 %
f51ml | 8 8 130 8 390 112 502 2 348 88 436 10.77 %
misex] | 8 7 54 7 162 96 258 3 150 80 230 7.41 %
misex2 | 25 | 18 104 18 312 272 584 2 306 208 514 1.92 %
pcle 191 9 69 9 207 128 335 3 225 104 329 -8.70 %
terml | 34| 10 149 10 447 144 591 7 505 132 637 -12.98 %
ttt2 24 | 21 191 21 573 320 893 9 565 272 837 1.40 %
x2 10] 7 51 7 153 96 249 2 130 76 206 15.03 %

Figure 5. Experimental Results on the MCNC Combinational Benchmarks.

4. Experimental Results

The generation of CED circuits using parity check codes requires modification of the synthesis
tool to prevent logic sharing between outputs belonging to the same parity group. We use the results
presented in [6] for MCNC combinational benchmarks and [7] for MCNC sequential benchmarks
in order to estimate the hardware overhead. Both methods have been implemented using SIS [11]
synthesis tool to perform the code selection and restructuring algorithms necessary to prevent fault
masking.

The literal count of the original circuit, the fault tolerant circuit with TMR, and the proposed
fault tolerant method are provided in the table of figure 5 for combinational circuits. The first
major heading in the table describes each benchmark circuit considered: number of primary inputs,
number of primary outputs and literal count. The second major heading summarizes the TMR
implementation: the number of parity bits used, the literal count for the three copies of the circuit,
the literal count for the checker, and the total literal count. As no output grouping is performed
in the TMR version, the number of parity bits equals the number of primary outputs. The third
heading summarizes the proposed method: the number of parity bits, the literal count for the circuit
(original circuit, resynthesized circuit, and group parity predictor), the literal count for the checker
(parity checker and comparator), and the total literal count. The bold entries in the total count
column correspond to the benchmarks were the proposed method performed better than TMR. The
last major heading in the table of figure 5 provides the area overhead reduction of the proposed
scheme as compared to TMR. An average saving of 18.42% is seen for all the benchmarks where
the proposed method performs better.
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Circuit Original TMR Proposed Hardware
Name Lits. Count Lits. Count Lits. Count | Reduction
cse 183 675 614 9.04 %
dk14 101 387 351 9.30 %
dk15 69 277 236 14.80 %
dk16 239 801 692 13.61 %
dk17 57 227 195 14.10 %
dk27 24 114 95 16.67 %
dk512 56 238 192 19.33 %
exl 221 971 1035 -6.59 %
ex2 74 278 231 16.91 %
ex3 25 117 94 19.66 %
ex4 70 364 295 18.96 %
ex5 12 64 52 18.75 %
ex6 78 360 380 -5.56 %
ex7 22 94 76 19.15 %
kirkman 186 684 706 -3.22 %
mark1 80 492 378 23.17 %
mc 23 139 110 20.86 %
opus 77 343 291 15.16 %
planet 213 2991 2231 25.41 %
pma 237 697 665 4.59 %
s27 36 136 122 10.29 %
sand 476 1596 1537 3.70 %
scf 763 3143 2314 26.38 %
sse 120 521 472 9.40 %
styr 183 675 614 9.04 %

Figure 6. Experimental Results on the MCNC Sequential Benchmarks.

The table of figure 6 illustrates the results of the proposed method and TMR on sequential cir-
cuits. The first column provides the literal count of the original circuit. The second and third
columns summarize the literal count for the TMR and the proposed method. As seen from the last
column, the proposed method provides an average saving of 16.23% for cases where the proposed
method performs better than a TMR implementation and savings in excess of 25% for some com-
binational and sequential circuits. The results of the proposed method exploit the advantages of the
CED method described in [6], i.e. the hardware reduction of the proposed method is proportional
to the hardware reduction of [6].

5. Conclusions

In conclusion, we presented a method to construct fault tolerant designs for combinational and
sequential logic. The proposed methodology extends a parity check code based CED method by ap-
pending the required components to perform fault diagnosis and fault correction. CED using parity
check codes is a key component of the proposed method, as it inherently discloses information that
assist the diagnosis and correction phases in the proposed technique and reduce the corresponding
hardware overhead. The proposed method can be easily extended to handle fault tolerant design of
sequential logic. Experimental results confirm the overhead reduction of the proposed technique,
as compared to the traditional TMR fault tolerance approach.
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