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Abstract

We discuss the use of convolutional codes to perform concurrent error detection (CED) in finite
state machines (FSMs). We examine a previously proposed methodology, we identify its limitations,
and we outline two improvements that reduce its cost and enhance its effectiveness. More specif-
ically, we demonstrate how the existing FSM hardware can be reused for computing the convolu-
tional code keys and we formulate the optimization problem of maximizing hardware reusability.
Additionally, we extend the proposed methodology to detect errors that only affect the output logic
but not the next state of the FSM, which are not detected by the previously proposed methodology.

1. Introduction

Several research efforts have been expended in concurrent error detection for FSMs over the last
three decades [1, 2, 3]. Proposed solutions typically explore the trade-off between the achieved cov-
erage and the incurred overhead, while guaranteeing latency-free error detection. Several intrusive
redesign and resynthesis methods are described in [4, 5, 6], wherein parity or various unordered
codes are employed to encode the states of the circuit. Limitations of [6], such as structural con-
straints requiring an inverter-free design, are alleviated in [7], where partitioning is employed to
reduce the incurred hardware overhead. Utilization of multiple parity bits, first proposed in [8], is
examined in [9] within the context of FSMs. A general algebraic model for non-intrusive CED is
introduced in [10]. Implementations based on Bose-Lin and Berger codes are presented in [11] and
[12], respectively. Finally, parity-based CED methods are described in [1, 13, 14].

The aforementioned methods guarantee latency-free detection of all errors resulting from pre-
scribed fault models. In contrast, a method that explores the trade-off between error detection
latency and overhead, while guaranteeing coverage is described in [15, 16]. To our knowledge, this
is the only previously proposed method that provides an upper bound to the detection latency and
is based on the use of convolutional codes [17, 18]. In this method, additional logic is utilized to
generate key bits during every FSM transition, such that these bits are valid sequences in a convo-
lutional code if and only if the FSM is operating correctly. Any erroneous transition in a prescribed
model will be detected with latency which will not exceed the latency of the convolutional code.

In this work, we extend the original method proposed in [15, 16] along two directions. First we
demonstrate that the hardware necessary for computing the convolutionally encoded keys during
every FSM transition can be reduced by reusing the next state logic of the FSM. Moreover, we
show that the problem of maximizing hardware reuse can be formulated as a judicious selection
among alternative convolutional codes and assignments of keys to FSM transitions. Second, we
address the issue of faults in the output logic, which cannot be detected by the original method.
In particular, by reusing the output logic for calculating the keys of the convolutional code, many
faults in the output logic can also be detected. Alternatively, by adding D flip-flops, FSM outputs
can be treated as state-bits and the methodology can be applied directly to detect output faults.
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2. Convolutional Code Based CED in FSMs

In this section, we describe briefly the originally proposed CED method for FSMs based on
convolutional codes [15, 16]. We summarize the principles of convolutional codes that are relevant
to the proposed CED method, which we then present and demonstrate through a small example.

2.1. Convolutional Codes

An (n, k, m) convolutional code is a linear code with k-bit inputs, n-bit outputs and a memory of
depth m. Using a convolutional encoder, sequences of k-bit inputs are encoded as sequences of n-
bit outputs, where in general, n > k. Each encoded output is a function of the current input and the
previous m inputs. The output sequences that are generated by a convolutional code are called code
sequences. The original inputs can be recovered from the code sequences by using a convolutional
decoder. Both the convolutional encoder and the convolutional decoded may be easily realized in
canonical form using k linear feed-forward shift registers and combinational logic [17, 18]. Similar
to the original method proposed in [15, 16], we will focus on (n, k, 1) codes, in which the output
depends on the current input as well as the immediately preceding input.

A convolutional code can be represented by its transition matrix. Figure 1 shows an example
of a transition matrix of a (3, 2, 1) convolutional code. In this example, k = 2 so the inputs are
2-bit wide and the valid words in the input code space are (0, 1, 2, 3) or (00, 01, 10, 11) in binary.
Similarly, n = 3 so the outputs are 3-bit wide and the valid words in the output code space are
(0, 1, 2, 3, 4, 5, 6, 7) or (000, 001, 010, 011, 100, 101, 110, 111) in binary. The memory of this code
is m = 1, so the response of a convolutional encoder for this code depends on both the current
input U2 and the previous input U1. In essence, the output depends on the transition from U1 to U2.
For example, a sequence of input 2 followed by input 0, denoted as 2 → 0, will produce output 7,
since this is the corresponding entry in the matrix of the convolutional code. Notice that by looking
at output 7 we can not decode and obtain the original sequence, as it might map to either 2 → 0
or to 1 → 1. A memory of m = 1 is required for decoding and this is also the latency of the
convolutional code. For example, if the input sequence is 2 → 0 → 1, then the output sequence is
7 → 3. This information is now adequate to decode, since by construction of the transition matrix
of the convolutional code there is a unique way to produce this output sequence, namely the given
input sequence 2 → 0 → 1. The reason for this is that the 8 possible output words are divided into
two disjoint groups, which are assigned to two rows each, rows 1 and 4, and rows 2 and 3 in our
example. The same property also holds for the columns of the transition matrix.

2.2. Previously Proposed CED Method

An overview of the CED method for FSMs based on convolutional codes, as proposed in [15, 16],
is depicted in Figure 2. This CED method targets a predefined set of Single Event Upsets (SEUs),
i.e. transient errors that have a duration of exactly one clock cycle and, consequently, affect only
one FSM transition. The methodology is non-intrusive, in the sense that it does not interfere with
the original FSM implementation and it only adds circuitry in parallel to it.

0  1  2  3
0    0  3  5  6
1    4  7  1  2
2    7  4  2  1
3    3  0  6  5

U2

U1

0      1      2     3
0    000  011  101  110
1    100  111  001  010
2    111  100  010  001
3    011  000  110  101

U2

U1
Or Equivalently

in Binary

Figure 1. Transition Matrix for Example (3,2,1) Convolutional Code
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Figure 2. Convolutional Code Based CED for FSMs [15, 16]

More specifically, given an FSM that consists of a state register and the next state combinational
logic, two components are added in order to perform CED based on convolutional codes. The first
component is a Key Generator, a combinational circuit that generates a key for every transition
in the FSM (i.e. for every combination of current state and input). The keys are selected such
that during error-free operation of the FSM, the generated key sequences are valid code sequences
of a convolutional code. In essence, the FSM transitions are convolutionally encoded a priori by
assigning appropriate keys, which are then generated during normal FSM operation through simple
combinational logic. The second component is a simple Convolutional Code Checker. Keys are
selected such that any SEU in the prescribed model, resulting in an erroneous FSM transition, will
yield a sequence of keys that is not a valid code sequence for the convolutional code. This will be
detected by the checker within the latency of the convolutional code.

More formally, given an FSM S, let Tf be the set of targeted erroneous transitions, and let each
element of Tf be of the form (q, s, s′, x), where q is the current state, s is the correct next state, s′ is
the faulty next state, and x is the input. Now consider a partition τ on the states of S such that, for
any erroneous transition in Tf , s and s′ belong to separate blocks of the partition τ . The FSM will
be encoded using an (n, k, 1) convolutional code, such that n = k + 1 and the number of partitions
is 2k. Consequently, the Key Generator will provide an n-bit codeword for every transition. The
Key Generator does not need any memory, as it is not a convolutional encoder itself. It merely uses
the information of the current state and the current input, to deduce the current partition, the next
correct partition and, thus, the n-bit codeword corresponding to this transition. The Convolutional
Code Checker will check, at each time, if the n-bit codeword at time t, the n-bit codeword at time
t − 1 and the n-bit codeword at time t − 2 constitute a valid sequence of codewords. A sequence
of three n-bit codewords is valid if and only if it can be the output of the convolutional code. For
example, for the convolutional code of Figure 1, the sequence 0 → 5 → 1 is a valid sequence that
occurs when the input to the encoder is (0, 2, 3) whereas the sequence 0 → 5 → 3 is not.

2.3. Example

An example will help clarify how the keys are generated such that the above condition is met.
Consider the FSM with 8 states and 1 input shown in Figure 3. For the purpose of the example,
also assume that the targeted set of SEUs consists of all possible erroneous transitions due to single
stuck-at faults. The conflict graph shown in Figure 3 is subsequently created. In this graph, nodes
represent the states of the FSM. An edge between two nodes implies that there is an error in the
targeted set, as well as a transition in the FSM, such that the error-free and the erroneous next state
correspond to the states represented by the two nodes. For example, an edge between nodes 000 and
001 implies that there exists a stuck-at fault such that for some FSM transition the error-free next
state is 000 and the erroneous response is 001, or vice-versa. The graph can be easily constructed
using a fault simulator. The next step is to create a partition τ on this graph, such that no two nodes
connected to each other belong to the same partition block. Essentially, we need to color the graph.
In this example, we need at least 4 colors, with one of the many possible colorings shown in Figure
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IN CS2 CS1 CS0 NS2 NS1 NS0 
0 0 0 0 1 0 1 
0 0 0 1 1 1 0 
0 0 1 0 1 0 0 
0 0 1 1 1 1 0 
0 1 0 0 0 0 1 
0 1 0 1 0 1 0 
0 1 1 0 0 0 0 
0 1 1 1 0 1 0 
1 0 0 0 0 0 1 
1 0 0 1 0 0 0 
1 0 1 0 0 0 0 
1 0 1 1 0 0 0 
1 1 0 0 1 0 1 
1 1 0 1 1 0 0 
1 1 1 0 1 0 0 
1 1 1 1 1 0 0 

Current State Next State

FSM DEFINITION

IN CS2 CS1 CS0 K2 K1 K0 
0 0 0 0 0 1 0 
0 0 0 1 1 1 1 
0 0 1 0 1 1 0 
0 0 1 1 0 0 0 
0 1 0 0 0 1 0 
0 1 0 1 1 0 1 
0 1 1 0 0 1 1 
0 1 1 1 0 1 0 
1 0 0 0 0 0 1 
1 0 0 1 1 0 0 
1 0 1 0 0 0 0 
1 0 1 1 0 0 0 
1 1 0 0 0 0 1 
1 1 0 1 1 1 0 
1 1 1 0 1 0 1 
1 1 1 1 0 0 1 

Current State Key

KEY GENERATOR FSM GRAPH CONFLICT GRAPH

000 001 010

111 011

110 101 100

0

1

0

1

0

1

0

1

0

1

1

0

0

1

0

1

000 001 011

110 010

111 101 100

Partition: 1:(110,011), 2:(111,000), 3:(100,001), 4:(101,010)

Figure 3. Convolutionally Encoded FSM Example

3. Subsequently, we need an (n, k, 1) convolutional code, where n = k + 1 and the number of
partitions is smaller or equal to 2k, resulting in this case to n = 3 and k = 2. So we are going to
use a (3, 2, 1) convolutional code, and more specifically, the one shown in Figure 1. Creating the
key generator is now a very simple process. Every partition is assigned to one of the columns and
one of the rows of the transition matrix of the convolutional code. An FSM transition from a state
belonging to partition A to a state belonging to partition B will then result in the generation of a
key equal to the entry (A,B) in the transition matrix. For example, on input 0 and current state
000 the next state of the FSM is 101. Since 000 belongs to the second partition and 101 belongs
to the fourth partition, the key generated during this transition is going to be the entry (2, 4) in the
transition matrix, i.e. 010. The truth table of the key generator is shown in Figure 4. As explained
in detail in [15, 16], by construction, the keys generated through the above process guarantee that
any erroneous FSM transition in the prescribed error model will result in a sequence of keys that is
not a valid sequence of the convolutional code and will be detected through the convolutional code
checker within latency of m = 1 clock cycle.

3. Cost Reduction Through Hardware Reuse

In this section, we propose a method for reducing the key generator cost by reusing the hardware
that calculates the next FSM state. We outline the underlying principle, we demonstrate it through
an example and we formulate the corresponding optimization problem.

3.1. Underlying Principle

As shown in the method depicted in Figure 2, the key generator calculates the key based on the
current FSM state and the input. Notice that the key corresponds to a transition from the current
state to the next state, but the calculation does not use the actual next state. This is computed
concurrently with the generation of the key, through the combinational next state logic of the FSM.
Both the key bits and the next state bits are functions of the same variables, namely the current state
and the input. Additionally, while assigning the necessary keys to perform CED, there is a lot of
flexibility as to the selection of the actual convolutional code and the actual partition of the conflict
graph. Conceivably, by choosing an appropriate convolutional code and an appropriate partition of
the conflict graph, some of key bits may become identical to some of the next state bits. In this case,
the same hardware can be used for calculating both the key and the next state bit, thus reducing the
cost of the key generator and the overall CED method.
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IN CS2 CS1 CS0 NS2 NS1 NS0 K2 K1 K0 

0 0 0 0 1 0 1 0 0 0 

0 0 0 1 1 1 0 0 1 1 

0 0 1 0 1 0 0 0 0 0 

0 0 1 1 1 1 0 0 1 0 

0 1 0 0 0 0 1 1 0 1 

0 1 0 1 0 1 0 1 1 0 

0 1 1 0 0 0 0 1 0 1 

0 1 1 1 0 1 0 1 1 1 
1 0 0 0 0 0 1 0 0 1 

1 0 0 1 0 0 0 1 0 0 

1 0 1 0 0 0 0 0 0 1 

1 0 1 1 0 0 0 1 0 1 

1 1 0 0 1 0 1 1 0 0 
1 1 0 1 1 0 0 0 0 1 

1 1 1 0 1 0 0 1 0 0 

1 1 1 1 1 0 0 0 0 0 

Current State Key

000 001 011

110 010

111 101 100

Partition: 1:(101,000), 2:(100,001), 3:(110,011), 4:(111,010

Next State

0  1  2  3

0    0  1  7  6

1    4  5  3  2

2    5  4  2  3

3    1  0  6  7

U2

U1

0      1      2     3

0    000  001  111  110

1    100  101  011  010

2    101  100  010  011

3    001  000  110  111

U2

U1

Or Equivalently in

Binary

Figure 4. Convolutionally Encoded FSM Example with Hardware Reuse

1  2  3  4
1    0  1  7  6
2    4  5  3  2
3    5  4  2  3
4    1  0  6  7

   P1   P2   P3   P4
P1     0     A3   A5   A6
P2    A4    A7   A1   A2
P3    A7    A4   A2   A1
P4    A3     0    A6   A5

CODE A

1  2  3  4
1    0  3  5  6
2    4  7  1  2
3    7  4  2  1
4    3  0  6  5

CODE BGENERAL FORM

Figure 5. General Form of (3,2,1) Convolutional Code and Equivalence Example

3.2. Example

Consider once again the FSM defined in Figure 3, along with the conflict graph for the targeted
errors. Only this time, a different partition (coloring) is chosen, as depicted in Figure 4. Moreover,
an alternative convolutional code is selected, which is also shown in Figure 4. Following the exact
same process as detailed in the previous section, the truth table for the new key generator is derived.
We emphasize that the two alternative key generators are both capable of detecting all targeted
errors. In the latter case, however, one may observe that the key bit K1 is identical to the next state
bit NS1. Therefore, no additional hardware is necessary for generating K1, as it can be tapped
directly from NS1. Thus, the key generator is reduced from 3 bits to 2 bits, without compromising
its ability to detect all prescribed errors.

3.3. Problem Formulation

As mentioned above, there are two dimensions along which there is flexibility in developing the
proposed CED method. The first dimension is the selection of the convolutional code to be used,
while the second dimension is the selection of the partitioning (coloring) of the conflict graph. The
previous example demonstrated that by choosing judiciously, some of the key generator bits may
become identical to some of the next state logic bits, thus reducing the hardware. In this section we
formulate the optimization problem of maximizing the number of identical bits.

Figure 5 shows the general form of a (3,2,1) convolutional code. Given this general form, several
equivalent convolutional codes exist, among which we are called to choose the appropriate one.
More specifically, two convolutional codes A and B are equivalent if and only if we can derive the
transition matrix of B by consistently interchanging some or all of the elements in the transition
matrix of A and vice versa. An example is given in Figure 5, where the transition matrix of B is
derived by interchanging entry 1 with entry 3 and entry 5 with entry 7 in the transition matrix of A.

Regarding the selection of partitions and the assignment of keys, consider the example of Figure
4, where 4 distinct partitions are required. Let us define these partitions as P1, P2, P3, and P4.
Moreover, let us define the eight states of the FSM, i.e. 000 through 111, as C1, C2, C3, C4, C5, C6,
C7, and C8. Let CiCj be binary variables such that CiCj = 1 if and only if there is a valid transition
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IN CS2 CS1 CS0 NS2 NS1 NS0 Out K2 K1 K0 
0 0 0 0 1 0 1 1 0 1 1 
0 0 0 1 1 1 0 1 0 1 1 
0 0 1 0 1 0 0 0 0 1 0 
0 0 1 1 1 1 0 1 1 0 1 
0 1 0 0 0 0 1 1 1 0 1 
0 1 0 1 0 1 0 1 1 0 1 
0 1 1 0 0 0 0 0 1 0 0 
0 1 1 1 0 1 0 1 0 1 1 
1 0 0 0 0 0 1 1 0 0 1 
1 0 0 1 0 0 0 0 1 0 0 
1 0 1 0 0 0 0 0 0 0 0 
1 0 1 1 0 0 0 0 0 1 0 
1 1 0 0 1 0 1 0 1 1 0 
1 1 0 1 1 0 0 0 0 1 0 
1 1 1 0 1 0 0 1 1 1 1 
1 1 1 1 1 0 0 0 1 0 0 

000 001 01

110 01

111 101 10

Partition: 1:(011,100), 2:(000,111), 3:(110,001), 4:(101,0

0  1  2  3
0    0  2  5  6
1    4  7  1  3
2    7  4  1  3
3    2  0  6  5

U2

U1

0      1      2     3
0    000  010  101  110
1    100  111  001  011
2    111  100  011  001
3    010  000  110  101

U2

U1

Or Equivalently in
Binary

Figure 6. Convolutionally Encoded FSM Example with Output Logic Reuse

from state Ci to state Cj , otherwise CiCj = 0. Also, let PiCj be binary variables such that
PiCj = 1 if and only if state Cj belongs to partition Pi, otherwise PiCj = 0. Since each state must
belong to exactly one partition, ∀j, if PiCj = 1 for some i, then PkCj = 0, ∀k �= i. Furthermore,
if there is a transition between states Ci and Cj , then PkCj · PkCi = 0, ∀k. Finally, let PiPj be
the symbolic values of the entries in the transition matrix of the convolutional code, i.e., P1C1 = 0,
P1C2 = A3, P1C3 = A5, P1C4 = A6, P2C1 = A4, P2C2 = A7, P2C3 = A1, P2C4 = A2,
P3C1 = A7, P3C2 = A4, P3C3 = A2, P3C4 = A1, P4C1 = A3, P4C2 = 0, P4C3 = A6,
and P4C4 = A5. We now need to assign a permutation of (001, 010, 011, 100, 101, 110, 111) to
variables A1 through A7, and to identify the appropriate values for every variable PiCj , so that a
key bit Kt will be identical to a next state bit NSt. Let f(x, y) be a function returning the value of
the y-th digit of x, written in binary form. Let also g(k) be a function that returns the partition, j,
where state k belongs to. For a key bit Kt to be identical to a next state bit NSt, it must hold that:

∀Ci, Cj , Pa, Pb, such that PaCi = 1 and PbCj = 1, CiCj · f(PaPb, t) = CiCj · f(Cj , t)

Or equivalently, the objective is to find the maximum number of variables t such that:
∑

∀i,j CiCj · (f(Pg(i)Pg(j), t) − f(Cj , t))2 = 0

4. Detecting Errors in the Output Logic

The aforementioned CED method based on convolutional codes will detect the prescribed errors
in the next state logic and the state register of the FSM. However, errors in the output logic of the
FSM are not detected, since this information is not part of the key computation. In this section
we demonstrate how these faults can also be detected, either by reusing the output logic for key
generation, or by making the outputs part of the convolutional encoding and the key assignment.

4.1. Output Logic Hardware Reuse

Consider once again the running example FSM, only this time an output has been added, as
depicted in Figure 6. In order to detect errors affecting the output logic we add an extra constraint
while selecting among alternative convolutional codes and graph partitions. More specifically, we
require that the key generator functions that will be provided through hardware reuse, will include
the output functions and not just the next state logic. In this way, errors affecting the outputs will
also be detected, as they will result in an invalid sequence of key. For example, by choosing the
convolutional code and the partitioning shown in Figure 5, the key generator bit K0 is identical
to the output bit Out. Thus, this particular portion of the key generator may be omitted and the
corresponding bit will be tapped from the output logic of the FSM.
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IN PS2 PS1 PS0 
PREV.
OUT 

NS2 NS1 NS0 
NEXT
OUT 

K2 K1 K0 

0 0 0 0 0 1 0 1 1 0 0 0 
0 0 0 0 1 1 0 1 1 0 1 0 
0 0 0 1 0 1 1 0 1 0 1 1 
0 0 0 1 1 1 1 0 1 0 0 1 
0 0 1 0 0 1 0 0 0 0 1 1 
0 0 1 0 1 1 0 0 0 0 0 1 
0 0 1 1 0 1 1 0 1 1 1 0 
0 0 1 1 1 1 1 0 1 1 1 0 
0 1 0 0 0 0 0 1 1 0 1 1 
0 1 0 0 1 0 0 1 1 0 0 1 
0 1 0 1 0 0 1 0 1 0 0 0 
0 1 0 1 1 0 1 0 1 0 1 0 
0 1 1 0 0 0 0 0 0 0 0 0 
0 1 1 0 1 0 0 0 0 0 1 0 
0 1 1 1 0 0 1 0 1 0 1 0 
0 1 1 1 1 0 1 0 1 1 1 1 
1 0 0 0 0 0 0 1 1 1 0 1 
1 0 0 0 1 0 0 1 1 1 1 0 
1 0 0 1 0 0 0 0 0 1 0 0 
1 0 0 1 1 0 0 0 0 1 1 1 
1 0 1 0 0 0 0 0 0 1 1 1 
1 0 1 0 1 0 0 0 0 1 0 0 
1 0 1 1 0 0 0 0 0 0 0 0 
1 0 1 1 1 0 0 0 0 0 0 0 
1 1 0 0 0 1 0 1 0 0 0 1 
1 1 0 0 1 1 0 1 0 0 1 1 
1 1 0 1 0 1 0 0 0 1 1 0 
1 1 0 1 1 1 0 0 0 1 0 1 
1 1 1 0 0 1 0 0 1 0 1 0 
1 1 1 0 1 1 0 0 1 0 0 0 
1 1 1 1 0 1 0 0 0 1 0 1 
1 1 1 1 1 1 0 0 0 0 0 1 

Current State Key

FSM & KEY GENERATOR CONFLICT GRAPH

Partition: 1:(0111,0110,0000,1011,1110,1100), 2:(0101,1001,1111,0010), 3:(0011,0100,1000), 4:(0001,1010,1101)

Next State/Output

1101 01110001

0011

0110

0100

1010

1000

0000

1100

1011

1110

1111 00100101 1001

Figure 7. FSM Example with Convolutionally Encoded Next State / Output Logic

However, we now run the danger of aliasing. This will happen when an error in the output
logic results in an incorrect key sequence, which nevertheless is valid for some other sequence of
FSM transitions. Although the probability is small, this problem will limit the effectiveness of the
proposed method in detecting errors in the output logic. In this particular example, only 58% of the
targeted errors in the output logic were detected through this method. We clarify that this aliasing
problem does not exist for errors in the next state logic, since by construction of the code keys any
error will result in an incorrect and invalid sequence of the convolutional code.

4.2. Combined Output/Next State Convolutional Encoding

An alternative way to detect not only errors affecting the next state but also the output logic of
the FSM is to include the output logic in the actual assignment of the keys. This will resolve the
aliasing problem of the previous method and will guarantee that any error in the either the next state
or the output logic will result in an incorrect and invalid sequence of keys that will be detected by the
convolutional code checker. On the down side, since computation of the keys is performed one clock
cycle later, the outputs will also need to be latched for one clock cycle, incurring additional cost.
More specifically, the keys will now be computed using the current inputs, the previous response of
the next state logic, which is stored in the state register of the FSM, and the previous response of
the output logic, which is stored in the newly added latches. Through this minor hardware addition,
the method proposed in the previous sections may now be extended to detect errors in both the next
state and the output logic of the FSM. Consider again the FSM example with one output bit which
was used in the previous subsection. Following the method described above, the three state bits
and the one output bit are all considered when assigning keys to convolutionally encode the next
state and the output logic of the FSM. Figure 7 shows the conflict graph arising in this case and a
coloring with 4 colors that will guarantee detection of all targeted errors. The same convolutional
code shown in Figure 6 is employed and the assigned keys are shown in the table of Figure 7.
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5. Conclusions

We presented two extensions to a previously proposed CED method based on convolutional
codes for FSMs. The first extension provides a framework for reducing the hardware cost incurred
for generating the sequences of convolutionally encoded keys during normal FSM operation. The
second extension provides the ability to detect errors in the output logic of the FSM, which cannot
be detected through convolutional encoding of FSM states. In conjunction, the proposed extensions
yield a reduced-cost, enhanced-effectiveness, convolutional code based CED method for FSMs.
While we only discussed error detection with latency of one clock cycle, further hardware reduction
at the cost of greater latency may also be also possible and is currently under investigation.
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