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Abstract
Fault identification capabilities are becoming increasingly important in modern designs, not
only in support of design debugging methodologies, but also for the purpose of process
characterization and yield enhancement. At the same time, hierarchical test approaches are
becoming the prevalent means for addressing the size and complexity of large designs and for
accommodating the varying individual test needs of each design module. In this paper, we
discuss a module diagnosis and design-for-debug methodology through hierarchical test paths.
Based on debug information inherently attainable from hierarchical test paths, we outline a
diagnosis algorithm that identifies the minimal set of faulty module candidates, under the single
faulty module model. We further provide a disambiguation rule to ensure unfailing identification
of the single faulty module. Low-cost, design-for-debug techniques are subsequently proposed
for establishing the disambiguation rule and for providing a module diagnosis capability.

1. Introduction

In an effort to address size and complexity considerations, hierarchical approaches [6, 9, 10,
13, 14] have become the dominant strategy for testing modern designs. Within such
hierarchical strategies, highly efficient test is locally generated for each module, tuned to the
individual module test requirements. However, the success of these approaches relies on the
ability to apply the locally generated test to each module through the surrounding logic. For
this purpose, reachability paths through the upstream and downstream modules are utilized for
justifying vectors and propagating responses to the module under test, as depicted in figure (1).
Such paths may be either inherent in the design specification or explicitly incorporated in the
design implementation through DFT hardware. The transparency behavior of the surrounding
modules is utilized on these paths, establishing bijective functions between the primary inputs
(outputs) of the design and the inputs (outputs) of the module under test. Through these
bijective functions [1, 2, 8], test vectors and responses can be justified to the inputs and
propagated from the outputs of the module under test respectively.

Figure (1): Hierarchical test generation and application through bijective test paths
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Figure (2): An 8-bit shift-&-add multiplier

Current hierarchical test approaches detect the existence of faults in the design and do not
aim at identifying faults. For reasons such as design debugging, manufacturing process
characterization and yield enhancement, fault diagnosis capabilities [5, 11, 12] are becoming
increasingly desirable. Interestingly, despite being able to reach any module for test application
purposes, the structure of hierarchical test paths is not always suitable for providing sufficient
information for identifying the faulty module. As an example, consider the 8-bit shift-&-add
multiplier [4] depicted in figure (2). Although bijective paths for testing each module exist in
the design, if a faulty test response is reported through a path, we cannot diagnose whether the
fault is in the module under test or in the surrounding modules used in the path. Set theory can
be applied in order to combine the information attained from each path; however, in order for
such a process to be effective, it needs to address efficiently feedback loops and variable
bitwidth signals that are present in the test paths. Moreover, design-for-debug paths need to be
introduced when the provided test paths are not able to disambiguate the faulty module.

In section 2, we define the hierarchical test path notion used for establishing bijective
functions to and from the module under test. A hierarchical test path example is provided and
the debug-related information that can be attained from the outcome of each path is extensively
discussed. In section 3, we introduce an algorithm that utilizes this information in order to
identify the minimal set of possibly faulty modules under the single faulty module assumption.
In section 4, we prove a necessary and sufficient condition relating the modules on the
hierarchical paths so that we can always identify the faulty module, under any combination of
test path outcomes. Finally, in section 5, we propose a low-cost, design-for-debug hardware
methodology through which the aforementioned condition can be imposed on the design.

2. Hierarchical test paths

In this section, we provide a formal definition and an example demonstrating the hierarchical
test path concept. We then examine the debug information that can be attained through
hierarchical test paths and discuss their capacity for diagnosing faulty design modules.
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Figure (3): Hierarchical test path definition

2.1. Path definition

Figure (3) shows the hierarchical test path concept for a MUT, which is defined as a 6-tuple:

PATH={ MUT (m, n), Depth, TI (m), TO (n), CI (k), PC (Depth)}, where
� MUT (m, n): The MUT is the module that is targeted for test using the hierarchical test

path. The MUT has m inputs that need to be justified from primary inputs and n outputs
that need to be propagated to primary outputs during test application.

� Depth: The time depth of the path in terms of clock cycles (Depth ≥ 1).
� TI (m):  The m test inputs. These are primary inputs from which there is a bijection

function, through the hierarchical test path, to the m inputs of the MUT. Each TI is defined
as a 2-tuple {PI, t}, where PI is the primary input participating in the bijection function and
t is the time at which the primary input participates in the bijection function.

� TO (n): The n test outputs. These are primary outputs to which there is a bijection
function, through the hierarchical test path, from the n outputs of the MUT. Each TO is
defined as a 2-tuple {PO, t}, where PO is the primary output participating in the bijection
function and t is the time at which the primary output participates in the bijection function.

� CI (k):  The k condition inputs. These are primary inputs that are kept to specific values in
order to establish the path. Each CI is defined as a 3-tuple {PI, Value, t}, where PI is the
primary input to be held constant, Value is the constant to which the PI is held and t is the
time at which the PI is held to the Value.

� PC (Depth): The path connectivity model. The PC for each clock cycle is a 2-tuple
{Bijections, Conditions}, where Bijections capture the main test path connectivity and
Conditions capture the condition connectivity necessary for establishing the path. Each
Bijection is defined as a list of one or more 3-tuples {Module Inputs, Bijection Function,
Module Outputs}, where the Module Inputs are bijected through the Bijection Function to
the Module Outputs. Similarly, each Condition is defined as a list of one or more 4-tuples
{Module Inputs, Input Values, Module Outputs, Output Values}, where the Module Outputs
attain the Output Values when the Module Inputs are held to the Input Values.

Hierarchical test paths provide a mechanism for accessing and testing a module through the
surrounding logic. Through the bijective functions of the path, any test vector can be justified
and any test response can be unambiguously propagated to and from the MUT. Both
combinational and sequential modules are allowed on a path. Reconvergence and cycles are
supported and variable bitwidth signals are allowed. Finally, a module may multiply
participate across the justification, propagation and condition portions of the path.
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Figure (4): Hierarchical test path for the ADDER module of the example circuit

2.2. Path example

The hierarchical test path for testing the ADDER module in the example circuit of figure (2)
is demonstrated in figure (4). In this example the path definition is as follows:

� The MUT is the 7-bit ADDER and has m=14 inputs and n=8 outputs.
� The Depth of the path is 4 clock cycles.
� The m=14 TI (Test Inputs) are the seven least significant inputs of the register M at time t

and at time t+1, that are bijected through the path to the m=14 inputs of the ADDER.
� The n=8 TO (Test Outputs) are the seven outputs of the INVERTER#1 and the output of

the BUFFER at time t+3, to which the n=8 outputs of the ADDER are bijected.
� The path requires k=17 CI (Condition Inputs) that establish the path:

• At time t:  C1=1, C3=0, C5=1, C6=0, C7=0, Q_IN[0]=1
• At time t+1: C1=1, C3=0, C5=0, C6=1, C7=0, Q_IN[0]=1
• At time t+2: C2=1, C4=1, C5=0, C6=1, C7=0

� The PC (Path Connectivity) for each clock cycle is depicted in figure (4). For example, at
time t, there is one Bijection and three Conditions. The Bijection is a 3-tuple (M_IN[6:0],
Identity, M_OUT[6:0]), defined on register M, that propagates the inputs M_IN[6:0]
identically to the M_OUT[6:0] signal entity. The first Condition is the 4-tuple (C5 C6 C7,
100, A_OUT[6:0], 0000000) defined on register A for clearing it. The second Condition is
the 4-tuple (C1 C3 Q_IN[0], 101, Q_OUT[0], 1) defined on register Q for setting its LSB.
The third Condition is the 4-tuple (C1, 1, M_OUT[6:0], M_IN[6:0]) defined on register M
for loading the test inputs. The PC is similarly defined for the remaining clock cycles.

2.3 Debugging information

The module reachability capacity of hierarchical test paths is currently extensively exploited
for the purpose of hierarchical test application. Based on such paths, hierarchical test methods
reveal the existence of faults in the design. However, the capabilities of the hierarchical test
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paths are not fully exploited. Additional information, relevant to fault diagnosis and design
debugging, is inherently attainable through these paths. Thorough utilization of each path may
not only provide information for the MUT, but also assist in identifying possibly faulty
modules and exonerating unambiguously non-faulty modules.

We first examine which modules are fully testable through a path. Full testability implies
that a complete test set, capable of 100% fault coverage, can be applied to a module. Each
hierarchical test path has the ability to provide the complete test set and evaluate all the
responses of the MUT. Additional modules may also be fully testable through this particular
test path, if the MUT exhibits appropriate bijection behavior. Such modules need to have all
their inputs and outputs on the bijection path used for fully testing the MUT. For example, the
path of figure (4), targeting the ADDER module, can also be used for fully testing the
BUFFER and the INVERTER#1. All inputs and outputs of these modules are on the bijection
path and furthermore the ADDER exhibits bijection behavior if one of its inputs is kept
constant. Therefore, this path can be used for fully testing the ADDER, the BUFFER and the
INVERTER#1. For each fully testable module on the path, we can apply the complete set of
test vectors and attain the following information, depending on the test application outcome:

 i) If no faulty response is reported then we certainly know that the module for which the
complete test set was applied is not faulty and can be exonerated. However, no additional
conclusions can be drawn about other modules in the design.

 ii)  If a faulty response is obtained, any module on the path can be the faulty one. However,
under the single faulty module assumption, if a fault has already been reported while
applying the test set of a previous module, then the faulty module has to be in the
intersection of the cones of logic used for testing the current module and the previous
module. All other modules can be exonerated.

Furthermore, as a special case, we may be able to exonerate some modules if the
observation path splits and one of the sub-paths always produces correct responses.
Under the single faulty module assumption, the fault has to be in the cone of logic driving
the observation sub-path that reports the fault. Any module on the path outside this cone
of logic can be exonerated. Notice that modules on the common portion of the path
cannot be exonerated, since a fault in them may possibly affect only one of the sub-paths.

For example, if we send the test vector set for the ADDER through the path of figure (4) and
all responses are correct, then the ADDER is not faulty. In case a fault is reported however,
any module on the path (M, Q, A, ARRAY_AND, ADDER, MUX, A7, INVERTER#1,
BUFFER) can be the reason. If additionally, the test vectors for INVERTER#1 report a fault,
we can exonerate the MUX, A7 and BUFFER, since they are not in the intersection of the cone
of logic used for fully testing the ADDER and the INVERTER#1.

As an example of the special case, let us assume again that the test vectors for the ADDER
report faults but the faulty responses appear only at the output of the INVERTER#1, and never
at the output of the BUFFER. In this case, we can safely exonerate the MUX, A7 and BUFFER
modules since they are not in the cone of logic driving the faulty outputs.

3. Faulty module diagnosis

In this section we utilize the debug information provided by hierarchical test paths in order
to devise a faulty module diagnosis algorithm, which we further demonstrate by an example.
The input to the faulty module diagnosis algorithm is a set of hierarchical test paths available



in a design. Each path has associated with it a list of modules that are fully testable through this
path and the test vectors for each of these modules. The algorithm utilizes these paths in order
to apply the test vectors to each fully testable module and combines the attained information in
order to provide a minimal list of possibly faulty modules. Initially the candidate list comprises
all design modules. Each time the complete test-set of a module is applied through a path,
modules are removed from the list according to the disambiguation criteria of the previous
section. The algorithm is provided below in pseudo-code form:

Candidate_List = {All Design Modules};
For each Path
     {For each Fully Testable Module on the Path
           {Apply Complete Set of Test Vectors to Module;
             If no fault is reported
                   {Reduce Candidate_List according to case (i);}

     else
                   {Candidate_List=Candidate_List @ $OO 0RGXOHV RQ 3DWK�

             Reduce Candidate_List according to case (ii);}}}

Application of the RTL hierarchical testability analysis described in [7] on each module of
the circuit of figure (2), revealed the following 11 paths, with the modules that each path can
fully test in bold & italicized face:

ADDER: Path #1 {A, M, Q, ARRAY_AND, ADDER, BUFFER, A7, MUX, INVERTER#1}
M: Path #2 {A, M, Q, SIGN, ARRAY_AND, MUX, ADDER, A7, BUFFER, INVERTER#1}
Q: Path #3 {A, M, Q, ARRAY_AND, ADDER, INVERTER#2}
A: Path #4 {A, M, Q, ARRAY_AND, ADDER, A7, INVERTER#1}
SIGN: Path #5 {M, Q, SIGN, MUX, BUFFER, A7}
MUX:  Path #6 {A, M, Q, ARRAY_AND, ADDER, BUFFER, A7, MUX, SIGN}
A7: Path #7 {M, Q, SIGN, MUX, BUFFER, A7}
BUFFER:  Path #8 {M, Q, SIGN, MUX, BUFFER, A7}
INVERTER#1: Path #9 {A, M, Q, ARRAY_AND, ADDER, INVERTER#1}
ARRAY_AND: Path #10 {A, M, Q, ARRAY_AND, ADDER, INVERTER#1}
INVERTER#2: Path #11 {Q, INVERTER#2}

Let us assume that test application through these paths gave the following results:

Path #1: ADDER (FAULT  BUT BUFFER OUTPUT OK), INVERTER#1 (OK), BUFFER (OK)
Path #2: M (FAULT  BUT BUFFER OUTPUT OK), INVERTER#1 (OK), BUFFER (OK)
Path #3: Q (FAULT ), INVERTER#2 (OK)
Path #4: A (OK), INVERTER#1 (OK)
Path #5: SIGN (OK), BUFFER (OK)
Path #6: MUX (FAULT ), BUFFER (FAULT )
Path #7: A7 (OK), BUFFER (OK)
Path #8: BUFFER (OK)
Path #9: INVERTER#1 (OK)
Path #10: ARRAY_AND (FAULT ), INVERTER#1 (FAULT )
Path #11: INVERTER#2 (OK)

Based on the outcome of the tests and the connectivity of each hierarchical test path, the
faulty module diagnosis algorithm reduces the Candidate_List to the 3-element set {ADDER,
ARRAY_AND, M}. However, the provided paths have no way of further disambiguating
among these 3 modules. The reason is that the paths are constructed in such a way that they
cannot fully disambiguate all combinations of test path outcomes. The following section
provides a rule for checking if a given set of paths can always diagnose the faulty module.



4. Disambiguation rule

Assuming a single faulty module model, the following observations are used in devising a
disambiguation rule for the hierarchical paths. If an arbitrary module M is faulty then:
� Paths through which M is fully testable will report a fault. After examining all these paths,

in the worst case the faulty module Candidate_List will contain their intersection.
� Paths not using M at all will not report a fault. Therefore, we will always be able to

exonerate any module that is fully testable through these paths.
� Paths on which M is used but is not fully testable may or may not report a fault. Since in the

worst case a fault will be reported, we cannot rely on such paths for exonerating modules.

Theorem: If M is a module in the design, let PT(M) be the set of paths that can fully test
module M, and let PNC(M) be the set of paths that do not contain M.  Let also AM(P) be the
set of all modules on a path P and let TM(P) be the set of all modules that a path P can fully
test. We will always be able to diagnose the faulty module if and only if:
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Proof: Let us first assume that there is a module M for which the above equation does not
hold. We will show that there is at least one possible outcome of the paths, based on which we
cannot fully disambiguate the faulty module. If the above equation does not hold for module
M, the right-hand side yields a set with at least two elements, one of which is M. Let us assume
that module N≠M is one of the elements of this set. In this case, the two parts of the left-hand
side of the equation show that all the paths capable of fully testing M contain N and that there
is no path capable of fully testing N without using M.  Consequently, if all paths capable of
fully testing M report a fault but no other path does, either M or N can be faulty.

Let us now examine the case where the equation holds for every module in the design and
that M is the faulty module. In this case, all paths reporting a fault will contain M. Also, no
paths that exclude M will report a fault and the modules fully testable through such paths will
all be exonerated. We claim that when we subtract the modules exonerated through the non-
faulty paths from the intersection of the modules on the faulty paths we will always get the
one-element set {M} and we prove this claim by contradiction. Let us assume that there is a
second element in this set, module N.  This means that N exists on all faulty paths and that
there is no good path capable of fully testing N.  We also know that M exists on all faulty paths
and that there is no good path capable of fully testing M.  From these two pieces of information
it can be concluded that modules M and N are either always together on a path, or if they are
not together on a path, neither one can be fully tested through this path. Consequently, if we
apply the equation for either module M or module N, the left-hand side will yield at least the
two-element set {M, N}. But this contradicts the initial assumption that the equation holds for
all design modules. Therefore, for any faulty module M the algorithm of section 3 always
provides the one-element set {M} for any combination of test path outcomes.

5. Design-for-debug

In this section, we propose four design-for-debug techniques that introduce additional paths
to the design to impose the disambiguation rule. The first technique is called path augmentation
and utilizes test path fan-out to unused primary outputs in order to augment the path. As shown
in figure (5), we search for path modules that have fan-out to non-path primary outputs,



through non-path modules. In this case, we can reduce the ambiguity set S (A) of each module
A ∈ P2, that is not part of the cone of logic P1 driving the fan-out module. All modules in P1
are eliminated from the ambiguity set S (A). This technique requires only a number of new
conditions but no additional hardware and therefore is low-cost and non-intrusive.

The second technique is called condition checking and utilizes simple comparators in order
to check the condition modules. The technique requires one comparator for each path condition
as shown in figure (6). We connect the output of each condition module to one of the
comparator inputs and tie the second input to the expected condition value. The outputs of the
comparators are connected to a “parallel in / serial out” register. Correctness information for
each condition module is captured in the register and subsequently shifted out through a
primary output. The Load/Shift input of the register is controlled through a primary input.
These are the only two pins that the scheme requires. The basic principle of condition checking
is similar to path augmentation. Additional observability information is obtained through a
fan-out node, only this time observability is achieved through hardware and is applicable only
for condition modules. Ambiguity sets are reduced according to the same principles used in
path augmentation. Although condition checking requires hardware modifications, it is non-
intrusive since no fault in the added hardware will affect the functionality of the circuit.

The third technique, called path probing, explicitly introduces observability at the outputs of
the modules in the ambiguity sets. The technique is depicted in figure (7), through an example.
The TO (Test Outputs) of the path are multiplexed with fan-out signals coming from each
module in the ambiguity set. The control signals are provided to the multiplexer through a
“serial in / parallel out” register that is loaded from an external pin. This is the only pin that the
technique requires. Through the register we can probe the hierarchical test path at the outputs
of each module on the ambiguity set. Therefore, if the ambiguity set contains n modules, we
can diagnose the faulty module in O(log(n)) test applications. Path probing is very efficient but
also intrusive. The multiplexer introduces additional delay and any fault in it affects the circuit
functionality. O(n) fan-out connections are required, where n is the size of the ambiguity set,
but this cost can be amortized among the modules of all ambiguity sets.

The fourth technique is called path reconstruction and is demonstrated in figure (8). This
technique combines portions of existing paths to provide additional paths. Using multiplexers
and a simple control scheme similar to the one used in condition checking, we reconstruct the
paths, including or excluding modules as necessary for imposing the rule. The challenge now
is to to identify the minimum number and the appropriate locations to place the multiplexers.
In [3], an efficient fault isolation mechanism that embeds error correction capabilities into test
tracks during synthesis is described. Based on the Hamming and Mirror-Hamming codes [3], a
O(log(n)) number of tracks are constructed so that any faulty module will always be diagnosed.
We utilize the same approach for addressing this challenge and guiding path reconstruction.

Figure (5): Path augmentation Figure (6): Condition checking
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      Figure (7): Path probing Figure (8): Path reconstruction

6. Conclusion

We introduced a faulty module diagnosis and design-for-debug methodology for
hierarchical designs, based on bijective test paths. We defined the hierarchical test path notion
and extensively discussed the debug-related information that such paths may provide in order
to assist faulty module diagnosis. We devised an algorithm for identifying faulty module
candidates in a design, according to the test application outcome of the hierarchical test paths.
Subsequently, we proved a necessary and sufficient condition, relating the modules on the test
paths, so that the faulty module can always be disambiguated. Finally, we described a low-cost,
design-for-debug hardware insertion methodology for imposing the disambiguation rule on the
hierarchical test paths. The aforementioned elements compose a unified framework for
efficient modular test application and faulty module diagnosis in hierarchical designs.
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