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Abstract
Fault identification capabilities are becoming increasingly important in modern designs, not
only in support of design debugging methodologies, but also for the purpose of process
characterization and yield enhancement. At the same time, hierarchical test approaches are
becoming the prevalent means for addressing the size and complexity of large designs and for
accommodating the varying individual test needs of each design module. In this paper, we
discuss a module diagnosis and design-for-debug methodology through hierarchical test paths.
Based on debug information inherently attainable from hierarchical test paths, we outline a
diagnosisalgorithmthatidentifiesthe minimal setof faultymodulecandidates, under the single
faulty modulemodel Wefurther providea disambiguatiorrule to ensureunfailing identification
of the single faulty module. Low-cost, design-for-debug techniques are subsequently proposed
for establishing the disambiguation rule and for providing a module diagnosis capability.

1. Introduction

In an effort to address size and complexity considerations, hierarchical approaches [6, 9, 10,
13, 14] have become the dominant strategy for testing modern designs. Within such
hierarchical strategies, highly efficient test is locally generated for each module, tuned to the
individual module test requirements. However, the success of these approaches relies on the
ability to apply the locally generated test to each module through the surrounding logic. For
this purpose, reachability paths through the upstream and downstream modules are utilized for
justifying vectors and propagating responses to the module under test, as depicted in figure (1).
Such paths may be either inherent in the design specification or explicitly incorporated in the
design implementation through DFT hardware. The transparency behavior of the surrounding
modules is utilized on these paths, establishing bijective functions between the primary inputs
(outputs) of the design and the inputs (outputs) of the module under test. Through these
bijective functions [1, 2, 8], test vectors and responses can be justified to the inputs and
propagated from the outputs of the module under test respectively.
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Figure (1): Hierarchical test generation and application through bijective test paths
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Current hierarchical test approaches detect the existence of faults in the design and do not
aim at identifying faults. For reasons such as design debugging, manufacturing process
characterization and yield enhancement, fault diagnosis capabilities [5, 11, 12] are becoming
increasingly desirable. Interestingly, despite being able to reach any module for test application
purposes, the structure of hierarchical test paths is not always suitable for providing sufficient
information for identifying the faulty module. As an example, consider the 8-bit shift-&-add
multiplier [4] depicted in figure (2). Although bijective paths for testing each module exist in
the design, if a faulty test response is reported through a path, we cannot diagnose whether the
fault is in the module under test or in the surrounding modules used in the path. Set theory can
be applied in order to combine the information attained from each path; however, in order for
such a process to be effective, it needs to address efficiently feedback loops and variable
bitwidth signals that are present in the test paths. Moreover, design-for-debug paths need to be
introduced when the provided test paths are not able to disambiguate the faulty module.

In section 2, we define the hierarchical test path notion used for establishing bijective
functions to and from the module under test. A hierarchical test path example is provided and
the debug-related information that can be attained from the outcome of each path is extensively
discussed. In section 3, we introduce an algorithm that utilizes this information in order to
identify the minimal set of possibly faulty modules under the single faulty module assumption.
In section 4, we prove a necessary and sufficient condition relating the modules on the
hierarchical paths so that we can always identify the faulty module, under any combination of
test path outcomes. Finally, in section 5, we propose a low-cost, design-for-debug hardware
methodology through which the aforementioned condition can be imposed on the design.
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Figure (2): An 8-bit shift-&-add multiplier

2. Hierarchical test paths

In this sectionyve providea formaldefinitionandanexampledemonstrating the hierarchical
test path concept. We then examine the debug information that can be attained through
hierarchical test paths and discuss their capacity for diagnosing faulty design modules.



v
OUT = f (INL, IN2)
fis a Bj jection Function

Figure (3): Hierarchical test path definition
2.1. Path definition
Figure (3) shows the hierarchical test path concept for a MUT, which is defined as a 6-tuple:

PATH={MUT (m, n), Depth, TI (m), TO (n), CI (k), PC (Depth)where

a MUT (m, n): The MUT is the module that is targeted for test using the hierarchical test
path. TheMUT hasm inputs that need to be justified from primary inputs arautputs
that need to be propagated to primary outputs during test application.

o Depth: The time depth of the path in terms of clock cyclesdth= 1).

a TI (m): The m test inputs. These are primary inputs from which there is a bijection
function, through the hierarchical test path, tortheputs of thevUT. EachTl is defined
as a 2-tuplgPlI, t}, wherePl is the primary input participating in the bijection function and
t is the time at which the primary input participates in the bijection function.

o TO (n): The n test outputs. These are primary outputs to which there is a bijection
function, through the hierarchical test path, from theutputs of theMUT. EachTO is
defined as a 2-tuplgPO, t}, wherePO is the primary output participating in the bijection
function and is the time at which the primary output participates in the bijection function.

o CI (k): Thek condition inputs. These are primary inputs that are kept to specific values in
order to establish the path. EaChis defined as a 3-tupil, Value, t} wherePI is the
primary input to be held constaMalueis the constant to which th is held and is the
time at which thé°l is held to the/alue

o PC (Depth): The path connectivity model. THeC for each clock cycle is a 2-tuple
{Bijections, Conditions} where Bijections capture the main test path connectivity and
Conditionscapture the condition connectivity necessary for establishing the path. Each
Bijectionis defined as a list of one or more 3-tup{e®dule Inputs, Bijection Function,
Module Outputs}where theModule Inputsare bijected through thijection Functionto
the Module OutputsSimilarly, eachConditionis defined as a list of one or more 4-tuples
{Module Inputs, Input Values, Module Outputs, Output Valuelsgre theModule Outputs
attain theOutput Valuesvhen theModule Inputsare held to thénput Values

Hierarchical test paths provide a mechanism for accessing and testing a module through the
surrounding logic. Through the bijective functions of the path, any test vector can be justified
and any test response can be unambiguously propagated to and frawiUTheBoth
combinational and sequential modules are allowed on a path. Reconvergence and cycles are
supported and variable bitwidth signals are allowed. Finally, a module may multiply
participate across the justification, propagation and condition portions of the path.
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Figure (4): Hierarchical test path for the ADDER module of the example circuit

2.2. Path example

The hierarchical test path for testing the ADDER module in the example circuit of figure (2)
is demonstrated in figure (4). In this example the path definition is as follows:

]
]
]

TheMUT is the 7-bit ADDER and haws=14 inputs aneh=8 outputs.
TheDepthof the path is 4 clock cycles.
Them=14TI (Test Inputs) are the seven least significant inputs of the register M dt time
and at timd+1, that are bijected through the path tofel4 inputs of the ADDER.
Then=8 TO (Test Outputs) are the seven outputs of the INVERTER#1 and the output of
the BUFFER at time+3, to which then=8 outputs of the ADDER are bijected.
The path requires=17 CI (Condition Inputs) that establish the path:

+ Attimet: C1=1, C3=0, C5=1, C6=0, C7=0, Q_IN[0]=1

+ Attimet+1: C1=1, C3=0, C5=0, C6=1, C7=0, Q_IN[0]=1

* Attimet+2: C2=1, C4=1, C5=0, C6=1, C7=0
ThePC (Path Connectivity) for each clock cycle is depicted in figure (4). For example, at
timet, there is ondijection and threeConditions.The Bijectionis a 3-tuple (M_IN[6:0],
Identity, M_OUT[6:0]), defined on register M, that propagates the inputs M_IN[6:0]
identically to the M_OUT[6:0] signal entity. The fir€onditionis the 4-tuple (C5 C6 C7,
100, A_OUT[6:0], 0000000) defined on register A for clearing it. The seComnditionis
the 4-tuple (C1 C3 Q_INJ[0], 101, Q_OUT]I0], 1) defined on register Q for setting its LSB.
The thirdConditionis the 4-tuple (C1, 1, M_OUT[6:0], M_IN[6:0]) defined on register M
for loading the test inputs. THEC is similarly defined for the remaining clock cycles.

2.3 Debugging information
The module reachability capacity of hierarchical test paths is currently extensively exploited

for the purpose of hierarchical test application. Based on such paths, hierarchical test methods
reveal the existence of faults in the design. However, the capabilities of the hierarchical test



paths are not fully exploited. Additional information, relevant to fault diagnosis and design
debugging, is inherently attainable through these paths. Thorough utilization of each path may
not only provide information for the MUT, but also assist in identifying possibly faulty
modules and exonerating unambiguously non-faulty modules.

We first examine which modules didly testablethrough a pathEull testability implies
that a complete test set, capable of 100% fault coverage, can be applied to a module. Each
hierarchical test path has the ability to provide the complete test set and evaluate all the
responses of th®UT. Additional modules may also lfelly testablethrough this particular
test path, if theMlUT exhibits appropriate bijection behavior. Such modules need to have all
their inputs and outputs on the bijection path usedulbyr testingthe MUT. For example, the
path of figure (4), targeting the ADDER module, can also be useduligr testing the
BUFFER and the INVERTER#1. All inputs and outputs of these modules are on the bijection
path and furthermore the ADDER exhibits bijection behavior if one of its inputs is kept
constant. Therefore, this path can be usedulty testingthe ADDER, the BUFFER and the
INVERTER#1. For eaclully testablemodule on the path, we can apply the complete set of
test vectors and attain the following information, depending on the test application outcome:

i) If no faulty response is reported then we certainly know that the module for which the
complete test set was applied is not faulty and can be exonerated. However, no additional
conclusions can be drawn about other modules in the design.

ii) If a faulty response is obtained, any module on the path can be the faulty one. However,
under the single faulty module assumption, if a fault has already been reported while
applying the test set of a previous module, then the faulty module has to be in the
intersection of the cones of logic used for testing the current module and the previous
module. All other modules can be exonerated.

Furthermore, as a special case, we may be able to exonerate some modules if the
observation path splits and one of the sub-paths always produces correct responses.
Under the single faulty module assumption, the fault has to be in the cone of logic driving
the observation sub-path that reports the fault. Any module on the path outside this cone
of logic can be exonerated. Notice that modules on the common portion of the path
cannot be exonerated, since a fault in them may possibly affect only one of the sub-paths.

For example, if we send the test vector set for the ADDER through the path of figure (4) and
all responses are correct, then the ADDER is not faulty. In case a fault is reported however,
any module on the path (M, Q, A, ARRAY_AND, ADDER, MUX, A7, INVERTER#1,
BUFFER) can be the reason. If additionally, the test vectors for INVERTER#1 report a fault,
we can exonerate the MUX, A7 and BUFFER, since they are not in the intersection of the cone
of logic used foffully testingthe ADDER and the INVERTER#1.

As an example of the special case, let us assume again that the test vectors for the ADDER
report faults but the faulty responses appear only at the output of the INVERTER#1, and never
at the output of the BUFFER. In this case, we can safely exonerate the MUX, A7 and BUFFER
modules since they are not in the cone of logic driving the faulty outputs.

3. Faulty module diagnosis

In this section we utilize the debug information provided by hierarchical test paths in order
to devise a faulty module diagnosis algorithm, which we further demonstrate by an example.
The input to the faulty module diagnosis algorithm is a set of hierarchical test paths available



in a design. Each path has associated with it a list of modules tHialiyatestablethrough this

path and the test vectors for each of these modules. The algorithm utilizes these paths in order
to apply the test vectors to edcily testablemodule and combines the attained information in
order to provide a minimal list of possibly faulty modules. Initially the candidate list comprises

all design modules. Each time the complete test-set of a module is applied through a path,
modules are removed from the list according to the disambiguation criteria of the previous
section. The algorithm is provided below in pseudo-code form:

Candidate_List = {All Design Modules};
For each Path
{For each Fully Testable Module on the Path
{Apply Complete Set of Test Vectors to Module;
If no fault is reported
{Reduce Candidate_List according to case (i);}
else
{Candidate_List=Candidate_ListAll Modules on Path;
Reduce Candidate_List according to case (ii);}}}

Application of the RTL hierarchical testability analysis described in [7] on each module of
the circuit of figure (2)revealed the following 1 paths,with the modulesthat each path can
fully testin bold & italicized face:

ADDER: Path #1 {A, M, Q, ARRAY_ANDADDER, BUFFER, A7, MUX, INVERTER#1}
M: Path #2 {A M, Q, SIGN, ARRAY_AND, MUX, ADDER, A7BUFFER, INVERTER#1}
Q: Path #3 {A, M,Q, ARRAY_AND, ADDER, INVERTER#2}

A: Path #4 f, M, Q, ARRAY_AND, ADDER, A7 INVERTER#1}

SIGN: Path #5 {M, QSIGN, MUX, BUFFER, A7}

MUX: Path #6 {A, M, Q, ARRAY_AND, ADDERBUFFER, A7, MUX, SIGN}

A7: Path #7 {M, Q, SIGN, MUXBUFFER, A7}

BUFFER: Path #8 {M, Q, SIGN, MUXBUFFER, A7}

INVERTER#1: Path #9 {A, M, Q, ARRAY_AND, ADDERINVERTER#1}
ARRAY_AND:Path #10 {A, M, QARRAY_AND ADDER, INVERTER#1}
INVERTER#2: Path #11 {QINVERTER#2}

Let us assume that test application through these paths gave the following results:

Path #1: ADDER (FAULT BUT BUFFER OUTPUT OK), INVERTER#1 (OK), BUFFER (OK)
Path #2:M (FAULT BUT BUFFER OUTPUT OK), INVERTER#1 (OK), BUFFER (OK)
Path #3:Q (FAULT), INVERTER#2 (OK)

Path #4:A (OK), INVERTER#1 (OK)

Path #5:SIGN (OK), BUFFER (OK)

Path #6:MUX (FAULT), BUFFER FAULT)

Path #7:A7 (OK), BUFFER (OK)

Path #8:BUFFER (OK)

Path #9:INVERTER#1 (OK)

Path #10:ARRAY_AND (FAULT), INVERTER#1 FAULT)

Path #11:INVERTER#2 (OK)

Based on the outcome of the tests and the connectivity of each hierarchical test path, the
faulty module diagnosis algorithm reduces @endidate_Listo the 3-element set {ADDER,
ARRAY_AND, M}. However, the provided paths have no way of further disambiguating
among these 3 modules. The reason is that the paths are constructed in such a way that they
cannot fully disambiguate all combinations of test path outcomes. The following section
provides a rule for checking if a given set of paths can always diagnose the faulty module.



4. Disambiguation rule

Assuming a single faulty module model, the following observations are used in devising a
disambiguation rule for the hierarchical paths. If an arbitrary mdduefaulty then:
o Paths through which is fully testablewill report a fault. After examining all these paths,
in the worst case the faulty modWeandidate_Liswill contain their intersection.
o Paths not usings at all will not report a fault. Therefore, we will always be able to
exonerate any module thaffigly testablethrough these paths.
o PathsonwhichM is usedbutis notfully testablemay or may not reportfault. Since in the
worst case a fault will be reported, we cannot rely on such paths for exonerating modules.

Theorem:If M is a module in the design, IBT(M) be the set of paths that carly test
moduleM, and IetPNC(M) be the set of paths that do not contdin Let alsoAM(P) be the
set of all modules on a pakthand letTM(P) be the set of all modules that a pBtleanfully
test We will always be able to diagnose the faulty module if and only if:

] d O ]

oM:0 AMO-0  JTMxo={m}
EXOPT(M) H EOPNC(M) H

Proof: Let us first assume that there is a moddiéor which the above equation does not
hold. We will show that there is at least one possible outcome of the paths, based on which we
cannot fully disambiguate the faulty module. If the above equation does not hold for module
M, the right-hand side yields a set with at least two elements, one of wMclh.& us assume
that moduleNzM is one of the elements of this set. In this case, the two parts of the left-hand
side of the equation show that all the paths capabigllgftestingM containN and that there
is no path capable délly testing Nwithout usingM. Consequently, if all paths capable of
fully testing Mreport a fault but no other path does, eittdesr N can be faulty.

Let us now examine the case where the equation holds for every module in the design and
that M is the faulty module. In this case, all paths reporting a fault will comaiAlso, no
paths that exclud® will report a fault and the moduléslly testablethrough such paths will
all be exonerated. We claim that when we subtract the modules exonerated through the non-
faulty paths from the intersection of the modules on the faulty paths we will always get the
one-element setM} and we prove this claim by contradiction. Let us assume that there is a
second element in this set, moddle This means thall exists on all faulty paths and that
there is no good path capablefalfy testing N We also know tha¥l exists on all faulty paths
and that there is no good path capabliilhf testing M From these two pieces of information
it can be concluded that modulgsandN are either always together on a path, or if they are
not together on a path, neither one carfutlg testedthrough this path. Consequently, if we
apply the equation for either modie or moduleN, the left-hand side will yield at least the
two-element setNl, N}. But this contradicts the initial assumption that the equation holds for
all design modules. Therefore, for any faulty module M the algorithm of section 3 always
provides the one-element sé} for any combination of test path outcomes.

5. Design-for-debug

In this section, we propose four design-for-debug techniques that introduce additional paths
to the desigmo impose thalisambiguation rulel hefirst techniquds calledpath augmentation
and utilizes test path fan-out to unused primary outputs in order to augment the path. As shown
in figure (5), we search for path modules that have fan-out to non-path primary outputs,



through non-path modules. In this case, we can reduce the ambigBty/Aetf each module

A [JP2,that is not part of the cone of logid driving the fan-out module. All modules in P1

are eliminated from the ambiguity set S (A). This technique requires only a number of new
conditions but no additional hardware and therefore is low-cost and non-intrusive.

The second technique is calledndition checkingnd utilizes simple comparators in order
to check the condition modules. The technique requires one comparator for each path condition
as shown in figure (6). We connect the output of each condition module to one of the
comparator inputs and tie the second input to the expected condition value. The outputs of the
comparators are connected to a “parallel in / serial out” register. Correctness information for
each condition module is captured in the register and subsequently shifted out through a
primary output. The Load/Shift input of the register is controlled through a primary input.
These are the only two pins that the scheme requires. The basic principhalition checking
is similar topath augmentatianAdditional observability information is obtained through a
fan-out node, only this time observabilityachieved through hardware and is applicable only
for condition modules. Ambiguity sets are reduced according to the same principles used in
path augmentatianAlthough condition checkingequires hardware modifications, it is non-
intrusive since no fault in the added hardware will affect the functionality of the circuit.

The third technique, callgahath probing explicitly introduces observability at the outputs of
the modules in the ambiguity sets. The technique is depicted in figure (7), through an example.
The TO (Test Outputs) of the path are multiplexed with fan-out signals coming from each
module in the ambiguity set. The control signals are provided to the multiplexer through a
“serial in / parallel out” register that is loaded from an external pin. This is the only pin that the
technique requires. Through the register we can probe the hierarchical test path at the outputs
of each module on the ambiguity set. Therefore, if the ambiguity set contaiogules, we
can diagnose the faulty module in O(log(n)) test applicat®athprobingis very efficient but
also intrusive. The multiplexer introduces additiomalby and any fault in it affectle circuit
functionality. O(n) fan-out connections are required, where the size of the ambiguity set,
but this cost can be amortized among the modules of all ambiguity sets.

The fourth technique is callgzhth reconstructiorand is demonstrated in figure (8). This
techniquecombines portionsf existingpaths to provide additional paths. Using multiplexers
and a simple control scheme similar to the one usedndition checkingwe reconstruct the
paths, including or excluding modules as necessary for imposing the rule. The challenge now
is to to identify the minimum number and the appropriate locations to place the multiplexers.
In [3], an efficient fault isolation mechanism that embeds error correction capabilities into test
tracks during synthesis is described. Based om#mamingandMirror-Hammingcodes [3], a
O(log(n))number of tracks are constructed so that any faulty module will always be diagnosed.
We utilize the same approach for addressing this challenge and guiding path reconstruction.
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Figure (5): Path augmentation Figure (6): Condition checking
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6. Conclusion

We introduced a faulty module diagnosis and design-for-debug methodology for
hierarchical designs, based on bijective test paths. We defined the hierarchical test path notion
and extensively discussed the debug-related information that such paths may provide in order
to assist faulty module diagnosis. We devised an algorithm for identifying faulty module
candidates in a design, according to the test application outcome of the hierarchical test paths.
Subsequently, we proved a necessary and sufficient condition, relating the modules on the test
paths, so that the faulty module can always be disambiguredly, we described a low-cost,
design-for-debug hardware insertion methodology for imposing the disambiguation rule on the
hierarchical test paths. The aforementioned elements compose a unified framework for
efficient modular test application and faulty module diagnosis in hierarchical designs.
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