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h DESPITE THE GROWING complexity of semicon-

ductor devices, adaptive test deployments for such

devices remain elusive. The high cost and difficul-

ties of developing a custom adaptive test solution

are likely causes for this sparsity. Indeed, there are

many requirements that an adaptive test solution

should meet. A good adaptive test system should

dynamically adjust to process variation statistics that

may not be stationary. It should modulate the test

program at high granularities (die level or even sub-

die level), have low adaptation latency to achieve

real-time adaptivity, and comfortably handle learn-

ing from terabyte-scale historical test data. Moreover,

it should achieve these goals without violating strin-

gent industrial requirements on permissible test

error. Finally, many of the specific details of these

requirements are likely to differ across product lines,

e.g., consumer products certainly have very differ-

ent comfort levels for permissible test

error than automotive products.

However, the advantages of a suc-

cessful adaptive test deployment are

clear: test time reduction, test quality

improvement, improved data analysis

ability, and acceleration of yield learn-

ing. Therefore, substantial industrial

interest exists for making adaptive test

a reality in the near term. This interest is driving

groups from a broad swath of industry to collaborate

on adaptive test development. The Test & Test

Equipment team within the International Technolo-

gy Roadmap for Semiconductors (ITRS) has created

a subgroup specifically targeted at the adaptive test

problem [1].

The requirements that an adaptive test system

must meet can be broken down to three discrete sets

of challenges. First, there is the problem of data

handling: device, wafer, and lot measurements

should be linked and traceable throughout the fa-

brication process, data should be standardized and

easy to exchange between adaptive test programs

and throughout the organization, and large data sets

should be readily accessible. Second, innovation

within the adaptive test community is rapidly in-

creasing the number of adaptive test techniques that

have been demonstrated in literature. Thus, an

adaptive test system should simplify integration of

new adaptive test techniques as they become avail-

able. Third, test engineers should be provided with a

convenient means of obtaining deep visibility into

the inner workings of an adaptive test system. For
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example, the system should provide real-time statis-

tics and information on the adaptive test techniques

which have been deployed as well as a detailed

history of how the test flow has been adapted to

process conditions over time.

As it turns out, developers creating modern web

applications have already largely solved these chal-

lenges. The model-view-controller (MVC) software

architecture, originally described in [2], is a para-

digm that prescribes specific patterns for partition-

ing and solving software engineering problems. In

this work, we argue that MVC is also a particularly

suitable approach to adaptive test for semiconduc-

tor devices, as it provides a means to decouple the

challenges of adaptive test analysis from data repre-

sentation and presentation. Moreover, solving these

challenges within an industry-standardized MVC

framework is clearly superior to deploying custom

solutions across the industry. In this work, we lay the

groundwork for applying MVC design patterns to

adaptive test, in particular, for analog and radio-

frequency (RF) devices, although the principles

developed are applicable across the broader semi-

conductor test community. Analog and RF test is a

particularly rich domain given the high availability

of parametric test data and high cost of test.

We envision that broad adoption of MVC as the

path forward for adaptive test will lead to an

‘‘application ecosystem,’’ where university research-

ers or third party vendors can release adaptive test

applications as MVC controller modules that can be

readily integrated into existing adaptive test systems

without significant customization. Thus, by adopting

a standardized MVC platform, novel open-source or

commercial adaptive test techniques can be re-

leased, tested, and deployed with near-zero custom

code; fragmentation of industry solutions is avoided;

and broader industrial adoption can be achieved.

Ultimately, we see the MVC

design pattern not only as a

solution for adaptive test, but

also as the bedrock of our vision

for learning from semiconduc-

tor data. Ongoing research ac-

tivity across the semiconductor

industry is focused on topics

such as yield learning, adaptive

test, failure analysis, etc. We see

all of these as symptomatic of a

broader problem: the need for a

unified semiconductor learning and data analysis

solution. Adopting a standardized platform built on

a time-tested design pattern such as MVC would

assist in combating stratification of industry data

sources and hasten learning by unifying data across

semiconductor manufacturing. The proposed data

analysis methodology, applied in this work to

adaptive test, is readily extensible across all of

semiconductor manufacturing.

Models, views, controllers
The MVC architecture comprises three compo-

nents: models, views, and controllers. We detail the

specifics of each component and link them to adap-

tive test challenges within this section.

Models
The ‘‘model’’ component of the MVC architecture

describes a means of abstracting data into standard-

ized structures, typically implemented as a layer

positioned directly above low-level relational data-

bases, as shown in Figure 1. These can effectively be

considered as high-level database abstractions that

simplify software engineering, while allowing the

low-level databases to take care of database infra-

structure, data storage, and data integrity problems

independently. For example, a chip model may

have fx; yg coordinates, measurement data, and a

wafer ID. A wafer model then would be treated as a

collection of chip models, perhaps with a product ID

linking it further up the hierarchy. Depending on the

specific implementation, the test engineer may also

desire to encapsulate data from different stages of

fabrication and associate such data with each chip. A

chip model would then be defined as containing

collections of these models from throughout the

fabrication process. Thus, once defined, such

abstract model objects encapsulate key data segments

Figure 1. Model architecture example.
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from throughout the entire semiconductor fabrication

process, and form the atomic elements that are sim-

ilarly transported and analyzed throughout the MVC

architecture. In terms of adaptive test, industry already

collects massive amounts of semiconductor test data

in industrial information warehouses. Layering ab-

stract MVC models on top of such information

warehouse databases is a straightforward task, and

once performed, enables complete standardization of

analysis approaches across an organization and even

interorganization across the industry by completely

decoupling database-specific logic from analysis tasks.

Views
The ‘‘view’’ component of the MVC architecture

provides a means for the test engineer to directly ob-

serve and interact with adaptive test analyses during

execution. Views typically comprise graph, chart, or

table-generating code, and collectively titled pre-

sentation logic. In the context of adaptive test, such

views are designed to provide the test engineer with

information on the adaptive test techniques in use and

present related statistical data. The important feature

of views is the total separation of presentation logic,

which is encapsulated in the views, from database

logic or business/analytic logic, which is located in

models and controllers, respectively. Thus, general-

ized views can be defined which aggregate results

from several controllers, and views can be devel-

oped and debugged independently from controllers.

Controllers
Last, the ‘‘controller’’ component of the MVC ar-

chitecture combines models and inputs from the

user (via the views), and uses these inputs to perform

actions on the data encapsulated in the models. We

expect that specific analysis tasks can live in the MVC

system as ‘‘applications’’; with sufficient develop-

ment effort and attention from industry, we hope this

could develop into a complete application ecosys-

tem, with application-specific controller modules

broadly available for use. Given this ecosystem of

modular controller applications, custom analysis

tasks can be realized with dramatically lower com-

plexity by simply wiring together the appropriate

controllers with custom code. At the same time, the

test engineer’s full control over the analysis is not

sacrificed: all controllers can act as superclasses for

user code allowing for complete customizability and

overriding of default behaviors, if required. For ex-

ample, consider the support vector machine (SVM)

controller developed in the experimental demon-

stration. Because application-specific code is

pushed into the models, the SVM controller is suffi-

ciently abstracted to suit a broad range of applica-

tions. On the other hand, implementing a subclass is

always possible if a particular application requires a

unique SVM implementation.

Putting it all together
In Figure 2, we show a high level diagram of the

MVC paradigm as applied to

semiconductor device fabrica-

tion. During semiconductor fab-

rication, an immense wealth of

data is captured from wafers

and devices. Our proposed

MVC framework would overlay

seamlessly on top of the existing

flow. A platform controller han-

dles basic functionality, and ad-

ditional functionality is added to

the system via MVC ‘‘applica-

tions,’’ or additional controller

modules. Finally, web-based

views present the test engineer

with live results and the ability to

interact with the controllers in

place.

One element of the infra-

structure that is not presentedFigure 2. Overview of proposed MVC framework.
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explicitly in the diagram in Figure 2 is the high

temporal specificity of adaptive test analysis tasks.

Such tasks typically fall into three categories, as

shown in Figure 3. Real-time tasks should be

addressed directly on the testing platform to ensure

precious tester time is not wasted. Obvious con-

straints exist on the complexity of analysis that is

possible at this level, and code should be written to

ensure very fast operation. Near-real-time tasks

should ideally be accomplished on-tester or nearby,

permit for slightly higher complexity of analysis,

and generate results or actionable test choices in

very short time frames, e.g., coinciding with wafer-

level test adaptation instead of die-level test

adaptation. Finally, offline analysis tasks do not

immediately interact with the test plan, but instead

affect test plans at time scales of a few seconds or

minutes, at the wafer level or above. The advantage

of performing analysis tasks offline is the orders-of-

magnitude increase in complexity of analyses that

can be performed offline: data from many wafers

can be aggregated and analyzed jointly to provide

deeper insight into the statistics of the fabrication

process.

As the majority of machine-learning-based test

research published to-date is grounded in the offline

locale, this work presents a case study and develops

indispensible components of an MVC framework

targeted at offline adaptive test analysis. Specifically,

we tackle the problem of early test metric estimation

when deploying a low-cost test adaptive test system

within the context of an MVC framework. We plan to

extend the proposed MVC framework to address

near-real-time and real-time adaptive tests, as these

are natural extensions of the offline adaptive test

MVC framework.

MVC implementation
The particular experiment presented in this pa-

per is designed to showcase a specific use case for

the proposed MVC framework by targeting the prob-

lem of low-cost testing for analog and RF devices.

Low-cost testing is concerned with developing alter-

native test methods that reduce the cost of testing

devices without sacrificing test quality. This is a long-

standing area of interest in the test community, as

traditional specification testing is extremely expen-

sive by comparison. Anecdotally, test cost for analog

and RF devices can reach as high as 50% of the

manufacturing cost.

Specifically, the analysis presented herein ad-

dresses the challenge of cost-effectively evaluating

candidate test methods. Some approaches to low-

cost testing may introduce intolerable test metrics,

while others may not achieve sufficient test cost re-

duction to merit implementation. Identifying these

error rates correctly and efficiently early on can dra-

matically reduce the risk of bringing low-cost testing

online in production. In this section, we outline the

software components we architected to implement

a low-cost test evaluation methodology within our

MVC framework.

Models
We implemented several models for the analysis

demonstrated in this work. Specifically, we required

encapsulation of the specifications for each perfor-

mance, data sets with device-level measurements,

andwithin eachwaferwewished to breakout low-cost

tests and specification performances into separate

collections to facilitate the use of low-cost tests with a

trained classifier, and derivation of pass/fail labels for

the performances via the specifications.

Figure 3. Temporal locality of analyses.
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Thus, we defined a specification class that encap-

sulates the device specifications and provides key-

value access to upper and lower limit specifications

for each performance. For each wafer data set, we

defined a general hierarchical data model for our

framework. The data model class is instantiated by

passing a comma-separated value (CSV) filename to

the constructor, which loads device data into a stan-

dardized data structure containing column names,

device-level raw data (i.e., each row corresponds to

a single device), a pass/fail matrix (which stores the

result of comparing each cell in the raw data matrix

to device specifications), and an overall pass/fail

label column. This data structure is the atomic

model unit of our MVC framework. Finally, we added

convenience methods directly to the data structure

for subsetting by column/row, joining by column/

row, and a CSV export method.

However, as noted previously, it is often desirable

to partition data into various subsets for many com-

mon analysis tasks. Thus, within our framework, we

also implemented a higher level data set model

(associated with each block of data from, say, a

wafer) possessing a collection of DataStructs. As

with the DataStruct, the data set model was defined

with associated convenience methods: subsetting,

joining, exporting to CSV, and computing the pass/

fail matrices for all subordinate DataStructs.

Views
In offline analyses, the most important informa-

tion to provide in a view is 1) a running log of the

analysis, and 2) charts which describe the results

once the run has terminated. Typically, user interac-

tion during the run is not required for offline ana-

lyses. Thus, our views heavily relied on the model

view convenience classes to output model informa-

tion during the analysis run, along with several helper

methods that generated plots from the outcome of the

analysis. The information generated by these views

was used in collecting the experimental results

presented in the subsequent ‘‘Results’’ section.

Controllers
Last, we implemented three controllers within

the context of our MVC framework. The first con-

troller implements nonparametric kernel density

estimation, the second implements Laplacian score

feature selection, and the third implements an SVM.

Details of the implementation of each of these con-

trollers, and rationalization of their necessity for the

early test metric estimation adaptive test analysis

task undertaken in this work, can be found in [5].

Each controller operates on a DataStruct argument

and parameters required to complete the designed

task. Note that the controllers are defined to be as

general as possible, and are not specific to the ana-

lysis at hand, maximizing code reusability. The

MVC framework we have implemented is shown

in Figure 4, showing all models, views, and control-

lers; a distinction is made between general modules

constructed as part of the framework and analysis-

specific modules required for the example analysis

demonstrated in this work.

Experimental demonstration
As a first deployment of our proposed MVC

framework for adaptive test, we analyzed a data set

Figure 4. MVC framework implementation.
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from Texas Instruments including more than 1.1 mil-

lion Bluetooth/wireless local area network (WLAN)

RF devices and more than 1000 measurements per

device. Our objective was to construct a tool run-

ning on the MVC platform that provides early esti-

mates of test escapes ðTEÞ and yield loss ðYLÞ test

metrics incurred by low-cost testing [6], [10]. This

tool was based on the approach described in [7],

where an early sample of devices is used to evaluate

a candidate set of low-cost tests. To date, most low-

cost test implementations have provided test metric

estimates based on a limited data set, e.g., from one

wafer. Given such small test sets, it is uncertain

whether the test metric estimates are reliable at the

parts-per-million levels required by industry. Here,

we present an MVC framework-based general

technique to obtain reliable parts-per-million early

test metric estimates of candidate low-cost test tech-

niques without incurring the cost of explicitly testing

one million devices. A more involved discussion of

this methodology can be found in [5], and we refer

the reader to [8] and [9] for further background on

the state-of-the-art in machine-learning-based low-

cost testing.

To accomplish the early test metric estimation

objective within the MVC framework context, we

implemented all of the models, views, and control-

lers of Figure 4. The total framework lines-of-code

count is approximately 1500, with about 150 addi-

tional lines-of-code for the particular analysis pre-

sented herein. The first production wafer is used

along with the Laplacian score feature selection

controller to reduce the number of candidate low-

cost tests from more than 700 to 10. Nonparametric

density estimation was used to generate a synthetic

population of one million devices based on the

measurements collected on the first wafer. An SVM

controller was trained on the first wafer data, and TE

and YL estimates were obtained by applying the

trained classifier to the synthetic population. Given

the large data set from Texas Instruments, we were

then able to verify the efficacy of the proposed

approach by similarly predicting on the complete

true data set and comparing the test metric estimates

with the true test metrics. The complete analysis

flow is shown in Figure 5. A complete experiment

run took approximately 4 h on a 2010 2.4-GHz

Core i5 processor.

Finally, we present the results of the analysis in

Figure 6, where we show realized test metrics (in

percent) against each wafer as the difference with

respect to the long-term mean. The test escape and

yield loss estimates are presented as the solid hori-

zontal lines. As can be observed, test escape is

slightly overestimated, and yield loss is slightly un-

derestimated. Specifically, the early estimates differ

from the true long-term means by �TE 0.491% and

�YL 0.517%. We remind that the objective of this

analysis is not to propose a state-of-the-art alterna-

tive test technique, but to evaluate a candidate

Figure 5. MVC framework implementation.
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technique at an early phase; that is, the key indi-

cators of success in this case are �TE and �YL,

and not the absolute values of the observed test

metrics. Thus, via the proposed MVC framework,

we have implemented an offline adaptive test ana-

lysis methodology that efficiently estimates viability

of candidate low-cost test methods prior to full

production.

In software engineering, there are a plethora of

design patterns available. To some degree, the classi-

fication of software design patterns as good or bad is

qualitative. Our litmus test for whether an effective

design pattern has been found is when the time

spent chasing marginal bugs dramatically de-

creases. Our group has been working on low-cost

testing problems similar to the analysis presented

herein for quite a long time, and every new analysis

we undertook often required a great deal of custom

code. With the move to MVC, our turnaround time

from problem definition to meaningful results has

improved significantly, and we have spent far less

time fixing marginal bugs due to the effective ab-

stractions MVC affords.

WE HAVE OUTLINED some of the key ideas forming

the basis of an adaptive test infrastructure based on

the MVC paradigm. Our MVC platform is in the very

early stages of development; however, we are al-

ready able to demonstrate publishable adaptive test

analysis tasks. We implemented kernel density esti-

mation and an SVM as controller applications, and

look forward to continuing development as much

work remains to be done. Finally, in the interest of

making the MVC platform for adaptive test an indus-

try standard, we have open-sourced all of our code

with a nonviral MIT license at https://github.com/

trela/qikify. The software is decidedly in pre-alpha

state, but we enthusiastically invite participation

from the adaptive test community in developing a

mature MVC framework to serve as an industry stan-

dard for adaptive test deployment. h
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