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h THE PRINCIPLES OF cognition still remain to be

unraveled. Nevertheless, neuroscience has made

great strides toward understanding the complex op-

erations of the brain and the characteristics of neuro-

biological processing systems. In general, instead of

Boolean logic, synchronous operation, and precise

digital computations, neurobiological systems are

hybrid analog/digital structures, event driven, distrib-

uted, fault tolerant, and massively parallel. They

make extensive use of adaptation, self-organization,

and learning, and outperform existing most powerful

computers in everyday tasks, such as vision and mo-

tor control, yet remain energy efficient [1].

To mimic the operation

of neural computing systems,

neuromorphic engineering

(NE) was introduced by

Mead in the late 1980s [2]

as the research field that

uses electronic neural net-

works whose architectures

and operations are based on those of biological

nervous systems [3]. Mead’s initial contribution to

the evolution of NE can be distinguished in two

parts. First, he observed that despite the advan-

tages of digital computers in terms of precision

and noise-free computation, the principles of the

physics of neural computation are analog, rather

than digital. For example, to compensate for the

lack of parallelism, which is a key feature of the

brain, computers have to run instructions faster,

albeit at the cost of energy. Therefore, Mead was the

first in the NE area to exploit the analog properties

of transistors, rather than simply operating them as

on–off switches [3]. His second observation regard-

ing the common physical characteristics between

protein channel in neurons and analog neuro-

morphic circuits resulted in the exploitation of the

low power that transistors consume when operating

below their threshold voltage. Specifically, he no-

ticed that neuronal ion channels have a sigmoid
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input–output characteristic similar to the one that

output current and input voltage have in comple-

mentary metal–oxide–semiconductor (CMOS) tran-

sistors operating in subthreshold [4].

The ultimate goal of NE is to demonstrate cogni-

tive systems using hardware neural processing ar-

chitectures integrated with physical bodies, e.g.,

humanoid robots [3]. Therefore, real-time response

is a fundamental requirement. However, simulating

large networks of neurobiological systems with dig-

ital computers proves to be unrealistic in terms of

time. For example, the Blue Gene rack, a 2048-

processor computer, needs 1 h and 20 min to simu-

late 1 s of neural activity in a relatively complex

scenario entailing eight million neurons and four

billion synapses. Similar time limitations are also

observed when graphic processing units (GPUs)

and field-programmable gate arrays (FPGAs) are

used for simulating complex networks. These ob-

servations resulted in the advent of analog VLSI im-

plementations of silicon neurons (SiNs) which lie

between biological neurons and digital computers,

in terms of area and power, as shown in Figure 1

[4], and which can emulate brain computation

mechanisms in real time. To date, neuromorphic

silicon architectures have been used for imple-

menting silicon retinas [5] and cochleas [6], SiNs

and synapses, and networks of SiNs and synapses.

In this survey paper, we focus on presenting the

general concepts of NE VLSI implementations and

analyzing their building blocks. To this end, we first

describe the basic structures of hardware models of

spiking neurons, ranging from conductance-based

and integrate-and-fire (I&F) structures to a mixture

thereof. Next, we address plastic synapses and

long-term weight storage mechanisms, as well as

spike-based learning algorithms. Then, we discuss

the asynchronous address–event-representation

(AER) protocol, which is used to transmit spikes

across chip boundaries and which contains both an-

alog and digital components for local computation

(on-chip) and long distance communication (off-

chip), respectively. Combination of the above neuro-

morphic components results into single-chip or mul-

tichip spiking neural networks (SNNs), such as

recurrent and winner take all (WTA) architectures.

These neural networks have been proposed for per-

forming a number of tasks, such as pattern recogni-

tion, working memory, and decision making. Finally,

we discuss challenges on bridging the gap between

reactive and cognitive systems, we present existing

frontiers in NE, and we investigate potential solutions

to emerging issues.

Neuron circuits
The history of artificial neurons extends back to

the 1940s with the first model proposed in 1943 by

McCulloch and Pitts and its implementation ap-

pearing soon after. A first approach to neurorobo-

tics was made in the 1950s by Walter

implementing an electronic tube-based, neuron-

like element to control a simple mobile robot. In

1958, Rosenblatt introduced the perceptron, an ar-

tificial neuron with a learning rule for classification

tasks, which was also implemented in hardware.

Considering the neurobiological perspective, in

1952, Hodgkin and Huxley described the electrical

activity of squid axons in a series of papers [7],

eventually receiving the Nobel Prize in 1963. They

showed that two types of channels are essential to

generate an action potential (neuronal voltage re-

sponse, whose typical form is shown in Figure 2

from the snail helisoma trivolvis) and they devel-

oped an electrical model to describe them. This

model, which is shown in Figure 3, has become a

typical circuit model simulating the physical neu-

ral activity. Despite its simplicity, this model has a

key drawback for the circuit designer: the variable

resistors (or conductances) gK and gNa are difficult

to realize using simple circuit elements.

Figure 1. SiN compared to biological
neuron and digital computer in terms of
area and power [4].
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Inspired by the natural neural performance,

extensive research efforts have been invested

on spiking neurons and their hardware implemen-

tations. Based on the conductance model of

Hodgkin and Huxley, Mahowald and Douglas pro-

posed a SiN circuit with properties quite similar

to those of real cortical neurons [8]. Other imple-

mentations of conductance-based models have

also been proposed [9], [10]. The major draw-

back of these models is the silicon area they re-

quire, which makes them impractical for large

neural network implementations. Simpler models

are the Axon–Hillock circuit (Figure 4), proposed

by Mead in the late 1980s [2]. In this circuit, an in-

tegrating capacitor is connected to two inverters, a

feedback capacitor, and a reset transistor driven by

the output inverter. The Axon–Hillock circuit is

very compact and allows for large dense SiN

arrays, but it suffers from a drawback of large

power consumption due to the slow transition

time (time constants in the order of milliseconds)

imposed to the internal digital inverters, which

are used as amplifiers. A further drawback is that

it has a spiking threshold that only depends on

CMOS process parameters (i.e., the switching

threshold of the inverter) and does not model

additional neural characteristics, such as spike-

frequency adaptation properties or refractory pe-

riod mechanisms [11]. A newer implementation

is found in [12], consuming less power than pre-

viously proposed ones, but still lacking spike-

frequency adaptation.

Several other variants have also been proposed

for modeling many additional neural characteris-

tics which are not included in the simple initial

model. A recent circuit introduces a compact lea-

ky I&F circuit which is optimized for power con-

sumption and which implements spike-frequency

adaptation, as well as tunable refractory period

and voltage threshold modulation [11]. An even

more recent neuron circuit integrated in the

ROLLS neuromorphic processor chip [14] is de-

rived from the adaptive exponential I&F circuit

and can exhibit a wide range of neural behaviors,

such as spike-frequency adaptation properties, re-

fractory period mechanism, and adjustable spiking

threshold mechanism.

Analog neuron implementations lying between

the biology-inspired yet complex Hodgkin and

Huxley model and the simplified Axon–Hillock

circuit have also been developed. An extensive over-

view of such propositions can be found in [13].

Synapses
The role of synapses in biological systems was

first defined in 1897 by Charles Sherrington, who

introduced the term synapse as the structure at the

point of contact between two neurons which com-

municate. Projecting this definition onto VLSI cir-

cuits, synapses can implement a multiplication

between the neuron input signal and its corre-

sponding synaptic weight, in the case of classical

neural networks [15]. In pulse-based neural net-

works, along with multiplication, synapses can also

carry out linear or nonlinear integration of the in-

put spikes with elaborate temporal dynamics and

Figure 2. Typical action potential.

Figure 3. Original circuit model of neural electrical
conductivity as devised by Hodgkin and Huxley [7].
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short-term plasticity (STP) and long-term plasticity

(LTP) mechanisms. Synaptic plasticity, i.e., the

ability of synapses to adapt their gain over time

in response to increases or decreases in their ac-

tivity, is extremely important in biological neural

systems, as it is generally accepted that learning

in the brain and formation of memories arise

from synaptic modifications [16]. Indeed, the abil-

ity of biological synapses to exhibit STP and LTP

is one of their fundamental features. In general,

STP produces dynamic modulation of the synap-

tic strength by the timing of the input stimulation,

whereas LTP produces long-term modifications on

the synaptic gain based on the presynaptic and

postsynaptic history [17]. A more detailed de-

scription on plasticity mechanisms is provided in

the next section.

Silicon synapses which are able to reproduce

the physics of real synapses have been demon-

strated by several groups [14], [18]. In these imple-

mentations, the response of the synapse I syn , i.e.,
the postsynaptic current (PSC), is a decaying expo-

nential and is typically modeled as

Isyn ¼ te�t=�fall (1)

where �fall is typically in the order of 0.5–2 ms [19].

The main concern about neuromorphic synap-

tic models with learning capability is the storage of

the synaptic weights, which are bounded and have

limited precision. This constraint makes memory

retrieval impossible, when new experiences, con-

tinuously producing new memories, saturate the

storage capacity [20]. To address this problem,

several synaptic storage implementations have

been proposed, as follows.

1) Digital memory cells: A viable solution to the

problem is digital memory cells. However, if

the processing of the synapse is to be analog,

additional analog-to-digital converter (ADC)

and digital-to-analog-converter (DAC) are re-

quired to interface between the analog and

digital worlds, thus, occupying more space on

the chip die and increasing complexity and

power consumption.

2) Capacitive storage: Capacitive storage provides

a simple and analog alternative to digital mem-

ory cells. However, if the storage capacitance

is connected to a transmission gate, the un-

avoidable leakage would call for mechanisms

to mitigate the issue, e.g., using a bigger capac-

itor, at the cost of sacrificing area and power.

3) Floating-gate (FG) transistors: A completely ana-

log, long-term, asynchronously accessible and

nonvolatile storage can be realized using FG

transistors. Employing a single FG device has en-

abled both PSC generation and long-term stor-

age. Moreover, arraying single FG devices in a

mesh architecture allows support of LTP learning

approaches [15]. The major drawback of the FG

device stems from the difficulties of precisely

controlling the erase and programming process.

4) Bistable synapse: Using only two stable synap-

tic states can solve the problem of long-term

storage, as has been shown in [20]. In this

work, memory is preserved even in the ab-

sence of stimuli, or when the presynaptic activ-

ity is low, by using a bistable circuit that

restores the synaptic state to either its high or

its low rail, depending on whether the weight

is above or below a certain threshold. Bistable

synaptic dynamics make the synaptic weight

more robust against spurious spikes, yet at the

cost of plasticity sensitivity to temporal spike

patterns, since multiple spike patterns may

lead to the same binary synaptic weights [21].

5) Nanodevice technologies: Recent advances in

nanotechnology have resulted in new devices

which can carry out long-term multivalued

weight storage and also allow for synaptic plas-

ticity. Three such devices are the memristor

[21], [22], the phase change memory [23], and

the spin-transfer torque magnetic memory [24].

Figure 4. The Axon–Hillock circuit [13].
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Learning algorithms
As previously mentioned, the two main plastic-

ity mechanisms are STP and LTP. STP is effective for

representing temporal signals and dynamics and

comes in two different forms, depression and po-

tentiation. The former occurs when postsynaptic

potential falls rapidly, i.e., within 1 s or less, during

repetitive stimulation, whereas the latter corre-

sponds to a rapid growth in the postsynaptic poten-

tial, after repeated occurrences of a stimulus, also

resulting in an increase of synaptic efficacy. Circuit

implementations for these types of dynamics can

be found in [3]. On the other hand, LTP occurs at

excitatory synapses lasting minutes or more and

plays a crucial role in learning. Particularly, in

SNNs, spike-timing-dependent plasticity (STDP) con-

stitutes the most intensively studied neural learning

mechanism and can be considered as a spike-based

formulation of the Hebbian learning rule [25]. In

1949, Hebb postulated the existence of synaptic

strengthening, when a presynaptic neuron repeat-

edly takes part in firing a postsynaptic one. This pro-

cess is commonly referred to as long-term

potentiation in STDP, whereas long-term depression

corresponds to the process inwhich anti-causal spike

sequences with a postsynaptic spike preceding a pre-

synaptic one lead to a decay in the synaptic weight.

The change of synaptic connections ðIw=wÞ , where

w is the synaptic weight, versus the relative tim-

ing of presynaptic and postsynaptic spikes is shown

in Figure 5. STDP mechanisms, effective in learning

how to classify spatio–temporal spike patterns,

have been implemented in both analog and mixed-

signal VLSI technologies, as described in [1].

To mitigate the constraints of bounded weight

and limited precision of synapses, which was de-

scribed in the previous section, Brader et al. [20]

proposed a spike-based plasticity rule with bistable

synaptics, which was implemented in silicon [1],

[26]. This rule uses two stable states for every syn-

apse, i.e., the depressing and potentiated states,

using a stochastic mechanism for transitioning be-

tween them, based on spiking history. The protocol

modifies only a random portion of all stimulated

synapses with a small probability, significantly in-

creasing storage capacity and lifetime memory of

SNNs, which has been shown to increase inversely

proportional with the probability of synaptic modi-

fication [27]. Unlike the STDP protocol, synaptic

weight updates depend on: 1) the timing of the

presynaptic spike; 2) the state of the postsynaptic

neuron potential; and 3) a slow variable, related to

the calcium concentration in biological neurons,

proportional to the postsynaptic neuron mean fir-

ing rate. Brader’s model also implements a “stop-

learning” mechanism, preventing overfitting when

the input pattern is highly correlated to the pattern

stored in the synaptic weights. Overall, this bistable

synaptic model is able to reproduce the STDP pro-

tocol and supports both unsupervised and super-

vised learning.

Information transmission
The number of connections between neurons in

the brain is staggering. The human brain contains

about 1011 neurons, while a cortical neuron typi-

cally makes 104 connections with other neurons.

Thus, there is a total of 1015 point-to-point connec-

tions between neurons in the brain. Accordingly,

the density of connections in large neural system

implementations using analog integrated circuits

comprises a major bottleneck. Although connec-

tions on an integrated circuit can be thinner than

an axon, the brain uses its 3-D volume to route

those connections, whereas integrated circuits

and/or printed circuit boards have been limited,

until recently, to a discrete number of 2-D layers.

To overcome this obstacle, the basic idea of

AER, shown in Figure 6, is widely used. It practi-

cally trades in the advantage of speed of

Figure 5. Change of synaptic connections as a function
of timing between presynaptic and postsynaptic spikes.
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electronics for its inferior interconnection density.

Instead of an individual connection between each

pair of neurons, two assemblies of neurons share

one digital bus. An event (i.e., an action potential

from a neuron) is encoded as a digital ID/address

(i.e., a number that identifies the neuron produc-

ing the action potential) and is transmitted on this

time-multiplexed, digital bus. On the receiver side,

this address is, then, again converted into pulses,

which are distributed to the receiving neurons that

are connected to the sender [28].

The AER event-driven data representation and

communication protocol was initially studied in

Mead’s lab by Mahowald and Sivilotti. It is an asyn-

chronous handshaking protocol used to transmit sig-

nals between neuromorphic systems over a common

communication bus, which is shared between chips

and in which addresses are explicitly transmitted.

Each transmission of an address is referred to as a

spike. A unit in a system triggers a request for trans-

mission when its internal state has crossed a thresh-

old; its address is transmitted onto a common bus

once this request is granted. Arbitration circuits on

the periphery of the chip ensure that the addresses

are sent off sequentially. The AER handshaking proto-

col ensures that the sender and the receiver write and

read from the bus, respectively, only when they are al-

lowed to. The activity level of each unit is represented

by the frequency at which its address is transmitted.

The information being trans-

mitted may be analog or digital,

but must be communicated via

spikes, thus raising the critical

and exciting issue of signal

encoding, which is currently a

very active topic in neurosci-

ence. Digital AER infrastruc-

tures allow construction of

large multichip networks with

nearly arbitrary connectivity

and dynamic reconfiguration of

the network topology for experi-

mentation [3].

The AER protocol has been

utilized in several neuro-

morphic systems. In cases of

large neuromorphic chips,

such as the ROLLS neuro-

morphic processor, SpiNNaker,

HICANN, which are discussed

in the following section, or in systems like CAVIAR

[30], implementation variants of the AER tech-

nique can be found [17].

Neural networks
Combining SiNs, synapses, and learning mech-

anisms presented in the previous sections, net-

works of spiking neurons can be formed. In 1943,

McCulloch and Pitts formulated the first neural net-

work computing model. Based on this model, in

1958 Rosenblatt introduced a two-layer network,

namely the perceptron, which was capable of solving

linearly separable classification problems. Research

in neural networks decelerated until the early 1980s

when the backpropagation training algorithm was

proposed, allowing for the construction of multilayer

neural networks capable of solving more compli-

cated tasks. These classical artificial neural networks

(ANNs) can be viewed as an interconnection of pro-

cessing elements where the strength of connections

is controlled by synapses which act as multipliers of

input signals and their local weight values. The sum

of synaptic products is passed through a nonlinear

activation function of a neuron. In contrast, SNNs dif-

fer from ANNs in two main points. First, SNNs incor-

porate the concept of time in neural simulation.

Second, spike-based neurons and synapses emulate

their biological counterparts.

Figure 6. AER communication protocol [29].
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Similarly to the classical neural networks, SNNs

can be feedforward or recurrent. In a feedforward

SNN, spike signals flow in only one direction, from

input to output, one layer at a time, as depicted in

Figure 7a. Addition of feedback loops allows the

spike signals to flow in both directions and forms

the recurrent neural network (RNN) shown in

Figure 7b. Feedback adds some new properties in

these networks such as associative memory [27]

and context-dependent pattern classification, i.e.,

speech recognition [31], as compared to the feed-

forward neural networks which are mainly used

for complex pattern classification. RNNs that per-

form a WTA computation are believed to play a

central role in cortical processing. They can per-

form powerful computations, including nonlinear

selection, signal restoration, and state-dependent

processing [1]. In its simplest abstract form, a WTA

network consists of a group of interacting neurons

which compete with each other for activation.

Neurons that receive the strongest input signal will

suppress the activation of other neurons to win the

competition. However, a variation that allows the

activation of more than one neuron also exists,

namely the soft WTA network.

Recently, spiking deep networks have also been

proposed, aiming to overcome the large computa-

tional cost of the current state-of-the-art deep net-

works, such as convolutional and deep belief

networks. Training these spiking deep networks is

challenging because, instead of applying spike-

based rules, a conversion from a conventional

ANN, fully trained using backpropagation, into a

spiking ANN is required. This conversion comes at

a cost of performance losses [32].

There are numerous mixed-signal VLSI imple-

mentations of SNNs [9], [11]. These general-

purpose computational networks consist of analog

neurons that emulate the biophysics of real spiking

neurons, synapses with STDP learning mecha-

nisms, and the asynchronous AER communication

protocol. The latter enables the configuration of a

wide range of network topologies, including feed-

forward and recurrent networks. Additionally, due

to their ability to simulate spike-based algorithms

in real time, these VLSI networks may be inter-

faced to neuromorphic AER sensors, constructing

VLSI sensory systems [30].

Six large-scale neuromorphic systems capable

of simulating SNNs with a large number of neurons

and synapses are presented below. Four of them

are mixed-signal designs, in the sense that the cir-

cuits for neurons and synapses are analog,

whereas the control of the analog circuit parame-

ters, the network connectivity, and the multichip

connectivity are based on asynchronous digital

logic circuits. The remaining two are fully digital

implementations. A more extensive review of these

platforms can be found in [17].

The FACETS project [33] aims to develop a

large-scale neuromorphic system, capable of im-

plementing most of the neural systems modeled

in computational neuroscience. To this end, a

mixed-signal hardware neural network architec-

ture consisting of analog neurons and a digital

two-layer bus communication scheme was inte-

grated on a wafer. The central element of this ar-

chitecture is an analog neural network chip

(HICANN), containing a total of 131072 synapses

and up to 512 conductance-based adaptive expo-

nential I&F neurons, which can be grouped

together to form neurons with up to 14336 synap-

ses. An important aspect of this type of neuron

model is its operation at accelerated biological

time. The acceleration factor ranges from 103 up

to 105 as compared to the biological real time

(BRT). Its synapses support both STP and LTP

based on the STDP protocol mechanisms, whereas

the synaptic weights are stored locally using 4-b

SRAM cells. Following the AER paradigm, the digi-

tal communication scheme allows the integration

of 384 HICANN chips on a single wafer. The main

drawback of this wafer-scale system is the power

consumption of 1 KW, which is mainly attributed

to the acceleration scheme.

Figure 7. (a) Feedforward neural network. (b) Recurrent
neural network.
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The Neurogrid project [18] implements a

mixed-signal neuromorphic hardware platform

which serves as a brain simulation tool for neuro-

scientists. It uses analog computation to emulate

ion-channel activity and a digital communication

scheme to support synaptic connections. Its cen-

tral processing element is called neurocore and

contains 65536 quadratic I&F neurons which

operate in BRT and use energy-efficient subthresh-

old operation. Neurogrid consists of 16 neuro-

cores, yielding a total of 1048576 neurons and

up to six billion synapses, which is much higher

than in the FACETS project. Digital communica-

tion between neurocores is achieved by employ-

ing an external FPGA and a bank of SRAMs.

Unlike the fully connected network of the

HICANN chip, with separate circuits for every sin-

gle synapse, all synapses of a neurocore neuron

share only four synaptic population circuits, also

feeding its neuron’s neighbors. Although this re-

sults in a more compact implementation with

considerably larger numbers of synapses per neu-

ron, it also imposes a limitation as it precludes

synaptic plasticity. It should be mentioned that

the individual weights of the synapses are stored

in a 1-b dedicated RAM. Finally, the overall sys-

tem consumes only 5 W.

The HRL SyNAPSE project [34] developed a

mixed-signal fully integrated neuromorphic chip

which is scalable and can be configured to im-

plement various large-scale neural network to-

pologies. It uses analog neurons and, instead of

the AER protocol, the synaptic time multiplex-

ing (STM) paradigm is applied. STM is used

both as a communication protocol and for con-

figuring the network topology. The chip contains

576 nodes, each of which emulates a neuron

with 128 synapses. As a result, the maximum

number of neurons is 576 and the corresponding

number of synaptic connections is 73728. Con-

trary to the two previous architectures, a more ba-

sic leaky I&F neuron model was designed. The

neuron operates in BRT and has very low power

consumption. Each node contains only a single

synaptic circuit but, due to STM, this circuit can

compute multiple (up to 128) logical synapses,

provided that it is able to operate at much higher

speeds than the neurons. The corresponding syn-

aptic weights can be stored in memristor arrays.

Furthermore, the synapses support STDP but,

compared to the HICANN chip, only a limited

number of different STDP types is supported.

Similarly to neurogrid, the overall power con-

sumption of the whole neuromorphic chip is as

low as 130 mW.

The ROLLS neuromorphic processor [14] is

also a mixed-signal VLSI architecture which can

be used as an experimental platform for explor-

ing the properties of computational neuroscience,

as well as for developing brain-inspired large-

scale neuromorphic systems. Once again, the syn-

apse and neuron circuits are implemented in the

analog domain and are combined with digital cir-

cuits, such as latches and asynchronous digital

AER logic blocks. The ROLLS neuromorphic pro-

cessor operates in real time, consumes approxi-

mately 4 mW and contains, in total, 256 neurons

and 131072 synapses. An adaptive exponential

I&F neuron model similar to the one used in the

HICANN chip is also employed here. By default,

each neuron is connected to a specific set of

512 synapses. Half of them are learning synapses,

modeling the LTP mechanisms, and the other half

are STP synapses with programmable synaptic

weights. LTP is implemented based on the bis-

table spike-driven plasticity rule [20]. Additionally,

a control circuit is used to enable allocation of

multiple sets of synapses to the neurons by dis-

connecting and sacrificing the unused neurons.

Moreover, there are 512 extra virtual synapses for

modeling all types of synapses that have shared

weights and time constants.

SpiNNaker [35] is a massively parallel, fully dig-

ital multiprocessor architecture for modeling and

simulating large-scale SNNs. It can model neural

networks up to a billion neurons and a trillion syn-

apses with computations performed in BRT. The

main processing building block is the SpiNNaker

chip multiprocessor (CMP), which contains 18

ARM microprocessors and two routers. One of

the routers handles the communication between

the microprocessors and the peripherals, while the

other handles the communication between micro-

processors of different CMPs. Each of the micro-

processors is capable of simulating up to 1000

spiking neurons and around 1000 synapses. How-

ever, out of the 18 microprocessors, only 16 are

available for emulating neurons, as the rest are

used for monitoring and fault tolerance purposes.

The architecture allows for an integration of up to
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65536 CMPs, with each CMP consuming 1 W. The

fact that ARM microprocessors are used makes it

possible to implement arbitrary neuron models

and learning rules, a big advantage when com-

pared to the analog neuromorphic chips previ-

ously analyzed. Furthermore, the synaptic weights

are 16-b quantities stored in a tightly coupled

memory (TCM) or SDRAM and the asynchronous

AER protocol is used to model the massive inter-

connectivity of SNNs.

IBM TrueNorth [36] is also a fully digital neuro-

morphic chip. It is fabricated in Samsung’s 28-nm

CMOS process technology and is well-suited for

many applications that use complex low-power

neural networks in real time, such as classification

and multiobject detection tasks. It is assembled

from 4096 parallel and distributed neurosynaptic

cores, interconnected in an on-chip mesh network

that integrates one million programmable spiking

neurons and 256 million configurable synapses.

The digital neurons in the neurosynaptic cores are

an implementation of the standard leaky I&F neu-

ron model. Each core has allocated 100 kb on-

chip SRAM memory in order to store synaptic and

neuron parameters, as well as a router. The router

passes spike packets between adjacent cores and

delivers them to target cores, asynchronously.

Although TrueNorth is a flexible architecture that

leverages advances in packaging, 3-D integration,

and novel devices, synaptic plasticity mechanisms

are not supported.

Table 1 summarizes the most important features

of the aforementioned six neuromorphic platforms.

Measurements related to power are not from the

same benchmark so they cannot be compared di-

rectly. Specifically, for the HICANN chip, there are

no power data available in the literature. Also, the

fact that, in some cases, the number of neurons

and synapses varies is because the supported neu-

ral network topologies are not fixed, i.e., they can

be reconfigured.

Discussion
In the low-power, mixed-signal, neuromorphic

implementations surveyed herein, analog CMOS

circuits are used for the design of SiNs and synap-

ses. These silicon circuits typically operate in the

subthreshold region and are, thus, susceptible to

1) noise and 2) mismatch, which become domi-

nant when the device operating voltage falls well

below the device threshold voltage. A common

mismatch reduction technique is to increase de-

vice dimensions. However, in the case of large neu-

romorphic networks with many neurons and

TABLE 1 Main characteristics of six large neuromorphic platforms.
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synapses, this is impractical, since the area re-

quired for integrating these structures into a single

chip would become prohibitive. To alleviate this

problem, processes that are dedicated to low-

power, subthreshold, system-on-chip (SoC) circuits,

e.g., depleted silicon-on-insulator (SOI), thereby re-

ducing the threshold voltage variation, have been

available for implementing neuromorphic analog

VLSI circuits [4]. In [27], the inherent CMOS de-

vice mismatch is addressed at the network and sys-

tem level, where it is argued that plasticity

mechanisms (both STP and LTP) are robust to de-

vice mismatch and do not require precisely

matched transistors.

THE NE COMMUNITY has made a remarkable

progress in building technology platforms for simu-

lating neurobiological models. However, additional

steps are required toward the ultimate goal of im-

plementing hardware neural processing systems

which are: 1) autonomous; 2) able to interact with

the environment in real time; and 3) able to ex-

press cognitive abilities. These steps are not hing-

ing upon scaling or hardware restrictions but,

rather, on a better understanding of computational

principles used by the brain and computational

models that neurons can support. Thus, the role of

neuroscience and psychology in identifying these

principles is crucial, before neuromorphic cogni-

tive systems can become a reality. h
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