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I. INTRODUCTION

As our reliance on network services and online applications
increases, sensitive data are inevitably exposed to the threat of
cyberattacks. Malicious software is designed to bypass security
policies and compromise defense mechanisms, in order to
launch Denial-of-Service (DOS) attacks or steal private data
by taking advantage of vulnerabilities in system design. Ac-
cordingly, methods that are able to monitor program execution
and identify suspicious behaviors are of great value. To this
end, workload forensics collects and analyzes information to
identify or reconstruct the behavior of a program executed in
the past. Such solutions strengthen hardware security based
on their ability to detect and track certain behaviors, includ-
ing both malicious and benign ones. A successful workload
forensics system should require as few physical and temporal
resources as possible. Collecting and analyzing hardware-
based features requires tracing CPU behaviors, which leads
to increased design complexity. Moreover, the time spent in
the analysis stage should, ideally, be limited to the extent
that defense mechanisms can take immediate action against
a possible malicious behavior before it finishes execution.

Current forensics solution can be further categorized into
software-based and hardware-based methods. For the former
type, various data-centric software analysis methods have
become standard tools for forensic investigation in industry.
For instance, EnCase ensures data integrity and enables data
recovery by creating disk images [1]. However, because of
the growing capacity of electronic devices and data volumes,
these methods exhibit limitations in processing capability.
Alternatively, instead of analyzing the data footprint left in
storage media, program-centric methods focus on analysis of
program behavior based on primitives such as system calls and
system events. Software-based methods of this type generally
employ statistical analysis and machine learning techniques to
perform intrusion detection and workload forensics. Neverthe-
less, software-based methods could themselves be the target
of a software attack. For example, sensitive variables used by
forensics programs are stored in a memory area which should
not be accessible by other programs, yet recently-developed
attacks, such as Spectre, could allow attackers to compromise
this barrier [2].

On the other hand, software execution traces cannot be
hidden from the hardware as software has to be executed on
hardware. Based on this premise, hardware-based forensics
solutions have been developed. For instance, performance
counter-based methods that monitor the frequency of a variety
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Figure 1: Overview of the proposed system architecture

of system events and executed instructions have been proven
to be effective in malware detection [3]. However, perfor-
mance counter-based mechanisms that monitor execution of
all instructions and system events lead to a relatively high
data logging rate. Alternatively, forensics methods that per-
form analysis with compacted data collected from a complete
process profile have also been proposed. While such methods
require a drastically lower logging rate, they cannot respond
promptly to a running intrusion until a malicious process
finishes its execution.

In order to address the weaknesses mentioned above, we
propose a forensics methodology which relies on compact
information exclusively collected from hardware to identify
a process, but which also enables real-time identification at
any point during execution of a program, without requiring
knowledge of process creation, switching or termination times-
tamps. To achieve this, we introduce a novel approach that
utilizes system mode switching as a flag to divide a process
into separate frames. Descriptive features can be extracted
from each frame and further processed through machine
learning algorithms to realize real-time process identifica-
tion. In addition, hardware-based forensics requires process
identification at the circuit level, without information from
software execution or operating system status. This leads to
a semantic gap problem, which requires bridging between
hardware-based information, such as data stored in registers,
and high-level software behavior. Earlier work resolves this
problem by utilizing architectural conventions. For example,
the CR3 register of an x86 machine that stores the base address
of the page table of a process works as a proxy for process
ID [4]. Any change in the value of this register corresponds
to a crucial system event, such as process creation, switching
and termination.
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As we mentioned above, previous hardware-based meth-
ods incur high logging overhead. Inspired by the successful
paradigm of utilizing Translation Lookaside Buffer (TLB)
miss profiles in malware detection [5], we focus on such TLB
features for our forensic analysis rather than using all system
events. Moreover, besides realizing a single-frame process
identification solution, we also introduce a majority voting
strategy to improve process accuracy by combining results
generated by multiple neighboring frames. Our method is eval-
vated using Spike, an open-source RISC-V simulator, running
the MiBench testbench suite on a Linux operating system.
Experimental results show that our system achieves overall
accuracy of 98.9% with single-frame identifiers and 99.7%
when majority voting strategy is applied. data-processing
latency and frame run-time are also evaluated to demonstrate
real-time feasibility of our solution.

II. ARCHITECTURE OVERVIEW

As shown in Figure 1, our architecture comprises four
main modules: logging module, frame division module, feature
extraction module and analysis module. The hardware-based
logging module collects TLB-related data from directly from
the hardware. To enable real-time process identification func-
tionality, we design a frame-division mechanism to split the
instruction flow into frames. The feature extraction module
continuously collects, then, descriptive features from each
frame. The software-based analysis module which uses a
machine learning-based strategy is built in a separate secure
environment. Below, we introduce these components in detail
to illustrate how real-time process identification is realized.

A. Logging Mechanism

To reduce logging overhead, we rely on only profiling
instructions which cause TLB misses rather than the complete
instructions flow. In modern computer architecture, a TLB is
a cache which stores the recently-used translations of virtual
to physical addresses. This translation mechanism helps flex-
ible programming of application software without requiring
knowledge of the specific memory hierarchy design of a CPU.
Prior research shows that the average TLB miss rate is about
0.01-1%][6], which implies that profiling TLB misses induces
a lower logging overhead to our forensics system, as compared
with performance counter-based methods that monitor and log
all changes of CPU status at the instruction level. In modern
CPU designs, based on the cached content, a TLB can be
further divided into two parts: instruction TLB (iTLB) and data
TLB (dTLB). In this work, we only focus on instruction flow-
related information, so we profile exclusively iTLB misses and
disregard dTLB misses. Additionally, our analysis module only
considers user-space instructions and disregards system-mode
instructions, as the former normally better reflect information
related to program behavior. To locate switching between user-
mode and system-mode, we leverage the operating system
convention that, in 64-bit Linux OS, virtual addresses lower
than 0x0000 8000 0000 0000 are regarded as user space.

2

Our analysis module uses features extracted from frame-
related data that occurs at any point during execution of a pro-
cess, which means that knowledge of process creation, switch-
ing and termination timestamps is not required. However,
for the purpose of training and testing our machine learning
model, features need to labeled with a corresponding process
ID. To this end, similarly to the previously mentioned CR3
register in X86 architectures, we use a RISC-V conventional
register, sptbr, which holds the physical page number of the
root page table and address space identifier to relate hardware
information with program behavior. This naturally provides a
solution to this problem as any change in sptbr corresponds
to a context switch in the OS. The logging module is able
to label each frame with its process ID by logging related
instructions and its corresponding sptbr value. This establishes
a semantic connection between hardware-level instructions and
the workload to be reconstructed. The logged data can be
divided into three parts: instructions that cause an iTLB miss,
values seen by the sptbr register and program counter values
which can be used to distinguish user-space instructions from
kernel-space instructions.

B. Frame Division

Our real-time workload forensic analysis is performed using
features extracted at the granularity of a single frame. A
uniform size is used for all frames to simplify the frame
construction process. Here size refers to the maximum number
of instructions contained in a frame. In Figure 2, to better
explain our frame division strategy, we introduce the concept
of “gap sequence”, which encompasses user-level instructions
that cause iTLB misses between two mode switches. The
instructions of a gap sequence are pushed into the current
frame if the whole gap sequence can fit into the remaining
space of the frame. Otherwise, the current frame is passed to
the analysis module and a new frame is generated. Another
special scenario is when a gap sequence is too large to fit into a
single frame. In this case, its instructions are used to construct
as many frames as possible, until all instructions in this gap
sequence have been handled. This frame creation strategy does
not require any extra information about system events or any
additional logging capability.

C. Feature Extraction

Feature extraction is critical for our analysis module, as
features are expected to reflect both order and content of
workload execution. Herein, we consider as our features the
raw instruction sequences contained in frames that cause iTLB
misses. Typically, a 64-bit RISC-V instruction set includes
more than 200 types of operators and operands, which would
make the feature space overly large for hardware implemen-
tation of feature collection. Therefore, we focus exclusively
on operators and categorize them into 18 types based on
semantics given by the RISC-V design specification. For each
frame, a feature vector is extracted and a list of vectors
is collected from each process. The uniform size for all
frames is a crucial parameter of our method indeed, since
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Figure 2: Frame construction in hardware

our analysis module utilizes machine learning, frame size
will impact classification performance. A small-sized frame
containing less information may have a negative impact on
the overall process identification accuracy. On the other hand,
a large-sized frame increases the complexity of the analysis
module and requires more hardware resources for the logged
data. Thus, an optimal unified size of all frames is sought
experimentally in our work, in order to balance performance
and overhead.

D. Analysis module

The analysis module consists of three main steps: frame
identification, majority voting and outlier detection. A basic
frame identifier is required as our workload forensics is per-
formed at the granularity of a single frame. This fundamental
identifier is designed to perform multi-class classification
based on the features extracted from each frame, where each
class corresponds to a single process. Similar classification
problems can be found in Natural Language Process (NLP)
tasks, such as machine translation and speech recognition.
Recurrent Neural Networks (RNN) have been widely applied
in NLP research areas, as they can efficiently handle temporal
sequential input by storing previous status of neural networks.
Two types of RNNs with gating units, namely Long Short-
Term Memory (LSTM) and Gated Recurrent Units (GRUs),
have been developed to address these tasks. While there is no
significant difference observed in the performance of these
two models, GRUs-RNN may have a slight advantage in
computational time [7]. Thus, the latter model is selected in
our work to save computational resources during the training
stage.

Moreover, in order to further improve the accuracy of our
forensics methods beyond the abilities of a single frame classi-
fier, a majority voting strategy has been employed to combine
multiple frame identification results. This method improves
the overall accuracy by suppressing sporadic frame prediction
errors through the decisions of neighboring frames. In case of
a tie, our method picks the earliest frame identification result.

E. Outlier Detection

Frames from unseen processes can be identified through
outlier detection. We leverage the fact that the softmax output
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layer of our neural network model returns a vector of prob-
abilities of frame classes. If a frame has never been seen in
training, it is less likely to produce a dominating likelihood in
any one of the target classes. This property of ambiguity is,
then, utilized to perform outlier detection.

III. EXPERIMENTAL RESULTS

We evaluate our process identification method and its data
logging overhead using Spike, an open-source RISC-V sim-
ulator. We configured Spike to work with the 64-bit RISC-V
instruction set, we installed a 64-bit Linux kernel with the
necessary applets and we used the MiBench testbench suite
for our experiments. However, due to the on-going develop-
ment of RISC-V compiler library, some MiBench applications
cannot be properly compiled and were, therefore, excluded
from our experiments. Binaries were executed with different
arguments and in random order so as to eliminate any possible
bias introduced by program execution order. As an open-
source simulator, Spike provides us with great flexibility in
implementing our data logging and feature extraction modules.
Specifcially, we embedded an iTLB tracer in the MMU class
of the Spike simulator to track TLB accesses and to log the
TLB profile. Each time an iTLB miss occurs, another modified
function is called to log the user-level instructions that cause
iTLB misses, along with their corresponding program counter
(PC) values, before they are executed. We also added a counter
to record the total number of instructions executed while
each frame is constructed, in order to calculate the logging
rate. Data analysis and result evaluation is performed with
TensorFlow 1.10.

A. Process Ildentification Performance

To evaluate the performance of frame-level process identi-
fication, a dataset containing iTLB miss profiles from a total
of 71 processes has been logged for both training and testing.
More specifically, a total of 59246 frames were generated by
our frame division strategy with uniform frame size set to 30,
and each frame was labeled with its corresponding process ID.
For each process, 60% of the samples were randomly selected
as training set while the rest were used as testing set. The
results of single process identification are shown in Table I.
As can be observed, the GRUs-RNN exhibits excellent process
identification performance, reaching an overall accuracy of
98.9%. These results not only outperform previous post-
execution methods [5] but can also be performed in real-time.

To explore the impact of frame size on identification accu-
racy, we conducted the same experiment with various frame
sizes ranging from 16 to 34. Based on the results shown in
Figure 3, which show that the overall process identification
accuracy starts to increase after frame size exceeds 22, but
stops improving once it reaches 30, we adopted the latter as
our optimal frame size.

B. Majority Voting

Next, rather than relying on a single frame for identifying a
process, we proceed to evaluate the effectiveness of a majority
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Table I: Frame-level process identification results on RISC-V

application class training samples testing samples accuracy

overall 34367 24879 98.9% 100
cre 2557 1705 99.6% o8
fft 3225 2150 99.2%

gsort 3125 2084 99.4% 96
toast 3624 2428 99.4% 9
search 3676 2450 99.4% <
bitcnts 2784 1864 98.7% = 92
untoast 2670 1782 99.4% g .
dijkstra 2538 1692 98.4% 3
patricia 2857 1904 99.3% I 88
basicmath 2934 1956 96.0% a6
bf 3576 2384 100%

susan 3704 2480 98.0% 84

voting strategy, which makes decisions based on multiple
successive frames. To this end, we use the collected in-order
execution profile and applied this strategy for a range of
different latency values. Latency here refers to the number of
frames that we rely on to make a majority-vote decision. As
shown in Figure 4, the overall accuracy improves significantly
from 98.9% to 99.7%, when latency is set to 7.

82

80

Frame Size

Figure 3: Process identification accuracy vs. frame size

100
C. Outlier Detection
99.8
In order to detect previously unseen processes, we utilize s
the probability estimations provided by the softmax layer -
of GRUs-RNN, which reflects the likelihood that a frame 3\; 99.4
comes from certain known classes. What has been observed 8 o)
in the experiment is that frames from a seen process come 3
with dominating probability values. However, for frames from < %
previously unseen processes, no class exhibits a dominant 98.8
likelihood. An example of likelihood distribution is shown
in Figure 5 for each of above cases. It can be observed that e
predicted outputs of seen processes are more likely to fall into 98.4
ranges from 0.7 to 1.0, while unseen processes are prone to ! } > / ’ " B
Latency

be predicted with probabilities between 0.2 and 0.5. Based
on these results, we can screen outlier processes by setting a
minimum threshold for the highest probability given by the
output softmax layer of GRUs-RNN. Any frame where no
predicted likelihood exceeds this threshold can be regarded
as belonging to an unknown process.

Experiments have been conducted for multiple iterations to
eliminate possible bias. Each time, a randomly selected 75% of
processes are used as seen processes while the remaining 25%
are kept as outliers (i.e., previously unseen) processes. Based
on our experimental results,0.65 is selected as the optimal
threshold for accepting the highest likelihood. Results from
5 random iterations with threshold 0.65 are summarized in
Table II. In our study, outliers are defined as the positive class.
Thereby, the False Oositive (FP) rate indicates seen process
predicted as outliers, while the False Negative (FN) rate
reflects outliers that are classified as seen processes. As can be

Figure 4: Process identification accuracy vs. latency

learning models, our method relies on the existing analysis
model and does not require additional processing. This is
particularly important as any added overhead could jeopardize
our ability to perform this analysis in real-time, along with our
future research direction of implementing the entire forensic
system on chip.

D. Logging Rate

Logging rate refers to the amount of data that needs to be
passed to the analysis module per unit time for processing.

Table II: Summary of FP/FN rates in outlier detection

observed from the shown results, our straightforward method test # No. of No. of FP rate  FN rate
. . . . seen frames outlier frames

of outlier detection achieves reasonably accurate results,.wnh average 4 47%  7.95%
average FP and FN rates of 14.47% and 7.95% respectively. test 1 19501 5378 1574%  6.96%
While better detection accuracy can be achieved by applying ~ test2 18137 5146 14.55%  8.46%
. lassifi ith hi test 3 18940 5939 11.26% 9.90%
a separate binary classifier or with more advanced machine . 4 17632 6261 1838%  5.57%
test 5 18097 6782 12.41% 8.87%

4
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Figure 5: Probability distribution of top classes

This metric can be used to evaluate the overhead introduced
by the logging and feature extraction modules. Higher logging
rate requires higher processing capability and potentially a
storage buffer if collected data cannot be processed at the
rate of arrival. To compute the logging rate of our frame-
level analysis, two critical values have been collected in our
experiments, namely frame generation rate and frame feature
size. The former indicates how many frames are generated per
clock cycle and the later refers to the minimum number of
bits required to represent features extracted from each frame.
The frame feature size is the product of optimal frame size
and bits needed to represent a, operator category, which are
30 and log, 18 respectively. Our experiments show that the
average value of frame generation rate is 2.78 x 1075, The
equation for estimating logging rate is shown below:

Logging Rate = Frequency x Generation Rate

1
x Feature Size x CPI M

Cycles per instruction (CPI) is estimated to be 1 for modern
CPUs. Assuming a 1.3Ghz clock frequency reported in a
RISC-V prototype, our logging rate is estimated to be about
66.1 KB/sec, which outperforms the performance counter-
based method [3].

E. Analysis Latency

The time required for analyzing the collected data should
not exceed the time for constructing a frame, as our system
performs continuous process identification. While our analysis
module is implemented in software and runs on a separate
system where the logged data is passed to and analyzed by,
real-time processing is still feasible. Even without the usage
of any custom hardware accelerator, such as a GPU, the time
needed for analysis is much less than the frame construction
time. In our experiment, the average time for constructing
a frame is 0.277 ms, while the single frame identification
delay and majority vote decision delay are 0.0679 ms and
0.00146 ms, respectively. Data transmission delay is estimated
based on the results described in a survey [8] where less than
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0.01 ms of one-way latency is introduced at a bandwidth of
2.1Gbps when TCP/IP Ethernet is used. As can be calculated,
all delays combined are still much shorter than our frame
construction time, which corroborates feasibility of real-time
process identification.

IV. CONCLUSION

Our work explores feasibility of hardware-based real-time
workload forensics. Unlike software-based approaches, the
proposed method is immune to software attacks, as it does not
involve data collected from the OS or software applications.
Features extracted directly in hardware from instructions that
cause iTLB misses are used to construct frames which are
further analyzed through trained machine learning models to
identify the running processes. Our experiments, which were
conducted on Spike, a RISC-V ISA simulator, show an overall
process identification accuracy of 99.7% when majority voting
is employed on successive frames.
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