
2168-2356 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2020.3013727, IEEE Design
and Test

Hunting Security Bugs in SoC Designs:
Lessons Learned

Mohammad Mahdi Bidmeshki, Yunjie Zhang, Monir Zaman, Liwei Zhou, Yiorgos Makris
Department of Electrical and Computer Engineering

The University of Texas at Dallas
Richardson, Texas

{bidmeshki, yunjie.zhang, monir.zaman, lxz100320, yiorgos.makris}@utdallas.edu

Abstract—Security of hardware designs is gaining more atten-
tion due to the pervasiveness of computing and communication
elements in our everyday lives and the constant discovery of
previously unknown vulnerabilities, such as Spectre and Melt-
down, in hardware computing devices. Consequently, a shift in
the thinking of hardware developers is necessary to prioritize
security in addition to correct functionality during the hardware
design and development cycle. Towards providing insight to
other researchers, in this article we present our experience from
participating in Hack@DAC, a hardware security contest where
teams were tasked with finding security bugs in large System-
on-Chip (SoC) designs.

Index Terms—Hardware Security, SoC Vulnerability, Security-
Oriented Design

I. INTRODUCTION

Increased complexity of hardware designs has caused the
emergence of previously unknown vulnerabilities, which can
be exploited by an adversary to develop new attacks for gain-
ing access to private and sensitive information, or disrupting
the operation of computer systems. For example, out-of-order
execution, branch prediction, and speculative execution of
instructions are techniques used by modern microprocessors
to fill the empty slots of an execution pipeline and improve
performance. While these techniques have been implemented
in modern microprocessors for many years, the security impli-
cations of their specific implementation were overlooked until
2018, when their vulnerability to attacks known as Meltdown
[1], Spectre [2], and Foreshadow [3] was revealed.

Although this example shows an extreme case of overlooked
vulnerabilities in high-performance, modern microprocessors,
other new vulnerabilities in a wide range of hardware or soft-
ware systems are being constantly discovered. Unlike software
vulnerabilities, hardware vulnerabilities are very difficult, if
not impossible, to patch through firmware, software or oper-
ating system (OS) modifications. In addition, such software
patches for hardware vulnerabilities may disable hardware
capabilities or introduce additional overhead, causing perfor-
mance degradation [2]. In turn, this can result in customer
dissatisfaction, as certain features which were paid for to
improve performance, e.g., speculative execution, cannot be
fully utilized due to security concerns.

Security concerns are not limited to top of the line, high-
performance processors and systems. While smart-phones,

personal computers and server or cloud systems mostly uti-
lize high-performance processors, embedded and Internet of
Things (IoT) devices which have lower processing capabilities
are an important part of our connected world and constitute a
wide attack surface which can be exploited by adversaries.
Most of these attacks may exploit software vulnerabilities;
however, hardware features can also provide opportunities to
be exploited. Therefore, establishing a security-aware design
process, both from the software and from the hardware per-
spective, is paramount.

Hardware design and development follows a life cycle
similar to software, namely requirement analysis, design, man-
ufacturing, testing, distribution, deployment (use and mainte-
nance), and disposal [5]. Attack vectors can be introduced
in every stage of this life-cycle [6] and, therefore, hardware
security should be studied from different perspectives, e.g.,
security bugs in the design, hardware Trojans (malicious
capabilities planted in the hardware at the design or at the
manufacturing stage, which can be exploited later by attacks),
or recycled/unreliable devices which may enter the system at
the distribution stage.

In 2018, we participated in the Hack@DAC two-phase
competition [7] where we were tasked with finding bugs with
security implications in the HDL code of two SoC designs.
Given a brief requirement description, we had to analyze a
considerable amount of HDL source code and report possible
security vulnerabilities. This article summarizes our experi-
ence in this competition, and points out procedures which
may help in extending the hardware developer’s mindset to
a security-oriented approach. Considering the task at hand, in
this article we focus on security vulnerabilities (inadvertent or
malicious) in the design stage, i.e., in the HDL source code of
the hardware. Since we were not involved in the development
of the design, our strategy is centered on streamlining our
search, in order to identify and report as many bugs as
possible. We also introduce other procedures which could be
useful in order to improve our bug-finding approach.

While the competition organizers presented a thorough
analysis of various testing and verification approaches, and
tools to find the introduced or inherent security bugs in SoC
designs [7], they were aware of what bugs they are looking
for in their analysis, which makes the task easier. We, on
the other hand, were the participants in the competition and,

1

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 04,2020 at 23:37:37 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2020.3013727, IEEE Design
and Test

Instr.
RAM

Data
RAM

Boot
ROM

SPI
Slave

Adv.
Debug Unit

APB

Bridge

B
rid

ge

AXI4 Interconnect

B
rid

ge

B
rid

ge

FLL
Control

GPIO UART I2C
SPI

Master

SoC
Control Timer Event

Unit

Core

instr data

debug

GPIO UART I2C SPI SPI JTAG

Fig. 1. Block diagram of one of the analyzed SoC designs (i.e., the PULPino platform [4])

therefore, did not have the foreknowledge of the security bugs
to develop or evaluate our approach. Also taking into account
the time limitations of the competition, we were successful in
finding many, but not all of the bugs in those SoC designs.
As a result, we believe that our findings in combination with
the experience of other participants and the organizers [7],
can provide valuable security awareness insight to the SoC
designers and the hardware security research community.

II. SOC STRUCTURE AND SPECIFICATION

The SoC designs provided in the competition were modified
versions of the single-core microcontrollers in the PULP
platform [4], specifically, PULPino in the initial phase, and
PULPissimo in the final phase. Both of these SoC designs
are based on a RISC-V processor architecture [8], and can be
customized as either a 32-bit 4-stage core called RI5CY, or
a 32-bit 2-stage core called Ibex (formerly Zero-riscy). These
platforms are equipped with various peripherals, such as gen-
eral purpose input/outputs (GPIOs), universal asynchronous
receiver/transmitter (UART), serial peripheral interface (SPI),
inter-integrated circuit (I2C) interface, debug unit and JTAG
interface, etc., with the PULPissimo being the higher-end
platform equipped with direct memory access (DMA) unit
and supporting the addition of hardware processing engines
(HWPE), i.e., hardware accelerators. Fig. 1 shows the block
diagram of the PULPino platform.

The PULP platform provides the HDL code for the SoC
and includes simulation scripts and a software development
kit (SDK). In addition to the original specification of the
SoC designs and their security requirements, the competition
organizers introduced additional requirements, including the
protection of the debug unit and GPIOs against unauthorized
access. However, these additional specifications were brief and

incomplete, which made our bug-hunting task rather difficult.
Moreover, the provided code included test benches which
allowed loading the software code, running it on the processor
in a simulation environment and observing and monitoring the
state and the outputs. As expected, at first glance, the normal
operation of the platforms was not disturbed by the introduced
security bugs.

The attacker modeled in the contest was assumed to have
physical access to the device and to be familiar with the
overall design of the SoC systems. Also, the attacker could
launch attacks on the systems through software, hardware
interfaces or a combination thereof; therefore, protecting the
debug interface from unauthorized access was added as a
security specification to the SoC designs.

III. SECURITY ANALYSIS PROCEDURE

While various methodologies can be adopted in security bug
finding in hardware designs, we suggest the following steps
which we followed to the extent that time constraints of the
contest and our access to specialized tools allowed. While we
are advocates of a security-aware development process and we
believe that security analysis should be part of the design and
development process, these steps might provide guidelines for
a scenario where the hardware is already developed and further
scrutiny of the SoC design is performed by independent teams,
as was the objective of this competition. Moreover, following
guidelines and procedures for developing verifiable designs, as
described in [9], can also help in streamlining the verification
of security-related functions. Fig. 2 summarizes the suggested
procedure which is described next.

A. Specification and Requirement Analysis of the Design

The first step in analyzing a design is to understand its
specifications and requirements. In the contest, since our first

2

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 04,2020 at 23:37:37 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2020.3013727, IEEE Design
and Test

Specification and Requirement Analysis

Analysis of Possible Threats

Checking Code Using Lint Tools

Code Review

Developing Additional Test Cases

Model Checking and Formal Methods

Utilizing Specialized Hardware Security Tools

A

B

C

D

E

F

G

Fig. 2. Our suggested bug-finding procedure

encounter with the PULP platform was during the initial
competition phase, we had to perform a detailed analysis of the
design, understand the system and the processor architecture,
its peripheral and debug units, and interconnections used for
communication with the processor and the instruction and data
memories.

Moreover, we performed analysis on the security specifica-
tions, both from the original design point of view and as related
to the additional security requirements of the contest. As an
example, the debug unit does not have any access restriction
in the original platform and any entity with knowledge of the
system can communicate with the PULP system and perform
debugging operations. However, access restriction was added
to the specifications of the altered PULP platforms provided
in the contest. On the other hand, the security specifications
are sometimes (in the case of this contest, deliberately) incom-
plete. Therefore, in such cases, we tried to make reasonable
assumptions. In a general security analysis, such incomplete
specifications should be revised to be more comprehensive, if
at all possible.

In addition, the degree of protection a system requires,
should be defined. For example, side-channels might be a
concern in an application of the SoC design, and therefore,
it may require special preventive measures, which may be
implemented at the design or the circuit level. While another
application may be only concerned about direct data leakage.

B. Analysis of Possible Threats

Based on the specifications of the design, its functional units
and peripherals, in this step we seek to envision possible se-
curity threats for these units and the system as a whole. In this
process, learning about security vulnerabilities that previously
have been discovered in similar systems is really helpful. For
example, as we mentioned earlier, various implementations
of advanced features, such as out-of-order execution, branch
prediction, and speculative execution of instructions in modern
CPUs, can be vulnerable and enable attacks leading to the
violation of data isolation or causing information leakage,

1 csr_restore_mret_i: begin // MRET
2 unique case (mstatus_q.mpp)
3 PRIV_LVL_U: begin
4 mstatus_n.uie=mstatus_q.mpie;
5 priv_lvl_n =PRIV_LVL_U;
6 mstatus_n.mpie=1'b1;
7 mstatus_n.mpp=PRIV_LVL_U;
8 end
9 PRIV_LVL_M: begin

10 mstatus_n.mie=mstatus_q.mpie;
11 priv_lvl_n =PRIV_LVL_M;
12 mstatus_n.mpie=1'b1;
13 mstatus_n.mpp=PRIV_LVL_U;
14 end
15 default:;
16 endcase
17 epc_o = mepc_q;
18 end // csr_restore_mret_i

Fig. 3. Privilege level handling for MRET instruction in RI5CY core

as shown by attacks such as Meltdown [1], Spectre [2], and
Foreshadow [3]. If a processor in an SoC design implements
such advanced features, such known vulnerabilities should also
be considered while analyzing its design. However, additional
thought has to be given on other vulnerabilities that may be
specific to the design at hand.

Another aspect that deserves special attention in this step
is threat analysis of the system as a whole. For example, if
access to the system requires authentication at one hardware
interface, we need to ensure that there is no other interface or
backdoor in the system that can provide similar access, or if
such other interface exists, that it is also protected.

In our case, one of the security features of the processor was
the implementation of several privilege levels. RISC-V specifi-
cations define four levels of privilege, namely user/application-
, supervisor-, hypervisor- and machine-level [10]. Only the
implementation of machine level is mandatory. Programs with
the highest privilege level, i.e., the machine level, can have
access to all memory addresses and manipulate critical control
registers, e.g., specific control and status registers (CSR). On
the other hand, a user-level program must not be allowed to
execute with a higher privilege in which it can read or corrupt
memory locations with unauthorized access. The RI5CY core
in the PULP platform implements two of the above privilege
levels and, therefore, correct implementation of this feature is
important for the security of this platform. As an example, the
code excerpt in Fig. 3 shows the handling of privilege level
upon the execution of the MRET instruction, i.e., return from
trap (interrupt) in machine mode.

As shown by this code, the privilege level after the exe-
cution of the MRET instruction is determined by the value of
mstatus_q.mpp, which consists of the bits of the status
register storing the privilege level before entering the trap.
Interrupt-enable bits are also manipulated by this instruction,
according to the RISC-V specifications.

Privilege levels may also be utilized for limiting physical
addresses accessible by a lower-privilege context, which is im-

3

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 04,2020 at 23:37:37 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2020.3013727, IEEE Design
and Test

plemented by an optional physical memory protection (PMP)
unit, as defined by the RISC-V specification [10]. To our
knowledge, the RI5CY processor provided in the altered PULP
platforms in the contest did not implement a PMP unit and,
therefore, we did not perform a memory protection analysis
in this case.

Among all the peripherals and functional units, we paid
more attention to the debug unit and the GPIOs, as those
were specified as in need of access protection in the security
specifications of the contest. Specifically, external access to
the debug unit through the JTAG interface was protected by a
password checking mechanism, whose correct implementation
and operation was crucial for the security of the SoC.

C. Checking Code Using Lint Tools

Static analysis tools, also known as Lint tools, were mainly
developed for checking software source code and are also
available for hardware description languages (HDLs) such
as Verilog, SystemVerilog and VHDL. These tools check
compliance of the code with a series of customizable rules
and guidelines and are, nowadays, part of the hardware devel-
opment and verification process [9]. Lint tools check how the
HDL constructs are used in the design. For example, a rule
may check whether a signal is used but never assigned, or
whether there is a mismatch in the bit-length of two signals in a
compare statement. Devising high-quality rules and enforcing
them by revising code to comply with Lint checks can reduce
the number of errors that may occur and may be captured in
later simulation steps, thereby making functional verification
much easier. In the same way, efficient use of Lint tools can
also reduce the number of bugs with security implications. As
we show later, a few of the introduced bugs in the provided
PULP platforms could have been captured by Lint checking.

D. Reviewing Code Implementing Critical Security Aspects

Code review is part of any production level software or
hardware development process and, in such reviews, paying
attention to the security aspects of the design is important for
reducing the number of security bugs which can appear in
the end system. Anything suspicious is documented in this
step and corrections or remedies are recommended. This can
lead to revising the specifications and/or implemented code,
as well as adding to additional test cases to cover the points
of concern.

In the context of this competition, while we reviewed
most of the units and their code as much as time allowed,
we prioritized code review of the functional units based
on the threat analysis of Section III-B. We went through
the implementation of the privilege levels in the processor
and checked whether changes in the privilege level are in
accordance with the specifications of RISC-V and only occur
during execution of authorized instructions or interrupts. We
also checked whether register access for each privilege level
complies with the specifications. Other units for which security
specification were provided and/or required, including the
password checking methodology for accessing the debug unit,

as well as the mechanisms for accessing GPIOs, also caught
our attention and were subjected to more detailed scrutiny and
review. We documented any part of the code that we found
suspicious for the next step of our analysis.

E. Developing Additional Test Cases

Directed (deterministic) and random tests are among the
test types that are used in the hardware design process. While
directed tests are effective in verifying the anticipated corner
cases, random tests can be used to find complex problems
arising from fine interactions between the functional units
or complex sequences of multiple simultaneous events [9].
Adding new test cases based on the analysis described in the
previous steps is, generally, a good idea. Indeed, such tests can
document any identified concerns in the previous steps, and
can be used to verify security aspects of the design in current
and future revisions.

Consistent with this principle, in the altered PULP platforms
of the competition we identified several points of concern with
regards to the specified security features and we developed
various test cases to verify or disprove these concerns. This
was streamlined by the excellent project architecture of the
PULP platform, which allowed us to add and run our custom
developed test cases for the altered platform without much
difficulty.

F. Employing Model Checking and Formal Methods

Model checking and formal methods could be effective
approaches for verification and security validation, especially
for security-critical blocks such as the privilege-level imple-
mentation or the authentication mechanism for the debug unit
in our altered PULP platforms. This requires formalizing the
properties to be verified using assertions in temporal logic, us-
ing Property Specification Language (PSL) or SystemVerilog
Assertions (SVA).

Due to time limits, we did not use formal verification in our
analysis. However, the altered PULP platform included a few
assertions used in simulations and we also added a few more
in our test cases to understand and verify critical and security-
related functionality of the provided code in the simulation of
our test cases. We could have formalized some of the critical
security functionalities and employed formal verification tools
in our efforts, if we had enough time. On the other hand,
formal verification’s ability to capture security bugs also has its
limits. As reported by the organizers of Hack@DAC [7], for-
malizing some of the desired security properties might not be
easy or even possible, hence, preventing the formal verification
tools from capturing certain security bugs. We believe that as
security gains more attention in hardware designs, testing and
verification tools, including formal verification methodologies,
will be augmented and enhanced to fill this gap.

G. Utilizing Specialized Tools and Methods Developed for
Hardware Security

The recent attention paid by the research community to
the security of hardware has stimulated the development of

4

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 04,2020 at 23:37:37 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2020.3013727, IEEE Design
and Test

special tools and methodologies for ensuring hardware trust.
Depending on the application and the type of the design,
utilization of such tools can provide higher security assurance
for the design.

As an example, SecVerilog [11] and its improved variants
introduce an information flow tracking (IFT) methodology
for securing a hardware design against timing channels. This
method enforces information flow policies by introducing a
type system, wherein type annotations determine the security
levels of the signals and can be defined as a function of digital
signal values, i.e., it employs dependent types. It is essentially
Verilog, which has been extended with type annotations.
SecVerilog is powerful and provides a very accurate infor-
mation flow model. It can be effectively utilized to enforce
isolation properties ensuring that sensitive and secure data do
not leak to public sites.

As another example, VeriCoq and VeriCoq-IFT [12] are
tools based on a proof-carrying hardware intellectual property
(PCHIP) framework and can be utilized to develop and check
the validity of security properties for the hardware designs in
an interactive theorem prover such as Coq. Due to time limi-
tations, in our analysis for this competition, we did not utilize
any specialized tools such as the aforementioned solutions.

IV. EXAMPLES OF BUGS FOUND

In this section, we provide examples of bugs that we
identified in the modified PULP platforms, i.e., PULPino and
PULPissimo. We tried to follow the approach described in
Section III as much as possible. However, as mentioned, we
did not employed Lint tools, model checking and specialized
hardware security tools in the competition. While the bugs
were deliberately inserted in these SoC designs for the purpose
of the competition, a brief review of some of them may give
insight regarding the consequences of incomplete verification
of a design, especially from a security point of view.

A. Debug Unit

As mentioned earlier, both PULP platforms are equipped
with a debug unit which is accessible through a JTAG interface
and requires protected access. In our analysis, we found that
this protected access is implemented by requiring the user
to provide a secret binary sequence, i.e., a password, to
enable the JTAG controller to accept and execute commands.
Assuming that such an access control mechanism is sufficient
for this design, which may not be the case in general due
to shortcomings such as having a single, short, hardcoded
password for all chips, we still found several flaws in the
implementation of this mechanism in both platforms, as we
describe below.

1) Existence of Another Open Interface: As seen in Fig. 1,
in addition to the JTAG interface, PULPino provides an
SPI Slave interface which has direct access to the AXI4
interconnect. This allows direct access and modification of
the processor registers through its debug interface using the
SPI slave, which essentially gives the SPI slave interface a
similar capability as what is provided by the JTAG interface.

1 // ...
2 reg [31:0] idcode_reg;
3 reg [31:0] tmp_pwd;
4 //sequential logic
5 always @(posedge tck_pad_i or
6 negedge trstn_pad_i) begin
7 if(trstn_pad_i == 0) begin
8 // ... reset logic
9 end else begin

10 idcode_reg[counter] <= tdi_pad_i;
11 counter <= counter + 1'b1;
12 end
13 end
14 always @(*) begin // combinational logic
15 if(counter == 5'b11111) begin
16 pwd_check = (tmp_pwd[7:0]
17 == idcode_reg[7:0]);
18 end
19 logic_reset = (idcode_reg[counter]
20 != tmp_pwd[counter])? 1: 0;
21 end

Fig. 4. JTAG password checking bugs

In our analysis, we found that, unlike the JTAG interface,
there is no external access control mechanism implemented in
the SPI slave unit. Accordingly, based on the aforementioned
requirements, this poses a security risk.

2) JTAG Password Checking: The implementation of pass-
word checking in both of the provided PULPino and PULPis-
simo platforms suffered from several bugs. The code snippet in
Fig. 4 shows the part in the PULPino platform where the input
password is compared with the hardcoded on-chip password,
and the result is assigned to the pwd_check signal. From
lines 16-17 in this code, it is evident that only 8 bits of the
input password are compared to the hardcoded one, reducing
the effectiveness of this mechanism and enabling brute-force
password hacking using only 256 tries.

Even if this issue is resolved, we found another bug related
to the reading of the user password from the JTAG input.
Through close inspection of this code, we realized that serially
reading in the user-provided password is coded in sequential
logic (lines 5-13 in Fig. 4), while validating the password
is done in combinational logic (lines 14-21). As a result,
when the counter reaches the value of 5’b11111, the
last bit of the input password is assigned to the MSB of
idcode_reg in the next clock cycle, while the password
comparison is performed in the current cycle. Therefore, the
MSB of the input password is not correctly compared with the
hardcoded password. One potential mitigation of this issue is
to implement the validation logic to perform comparison after
the full password is read.

Another bug we found in this interface was the incorrect
initial reset value of the pwd_check signal, upon activation
of the reset input of the JTAG interface. Such bugs may be
prevented by proper use of Lint tools and its associated rule
checks. Fig. 5 shows a sample simulation code to exploit this
bug. Normally, to have a successful write to an AXI address

5

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 04,2020 at 23:37:37 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2020.3013727, IEEE Design
and Test

1 initial begin
2 // ...
3 logic [31:0] my_pwd;
4 logic [31:0] tmp_do;
5 my_pwd = 32'h9010_0101;
6 #400ns;
7 adv_dbg_if.jtag_reset();
8 /* adv_dbg_if.
9 jtag_cluster_dbg.shift_nbits_noex

10 (32, my_pwd, tmp_do); */
11 adv_dbg_if.jtag_softreset();
12 adv_dbg_if.init();
13 adv_dbg_if.axi4_write32
14 (32'h1A11_0000, 1, 32'h0001_0001);
15 // ...
16 end

Fig. 5. Sample simulation code to exploit JTAG bugs

through the JTAG interface (lines 13-14), the JTAG password
has to be sent in serially first. However, as can be seen in
commented lines of this code (8-10), the password checking
mechanism can be bypassed just after JTAG reset. The other
bugs can be exploited similarly by uncommenting lines 8-10 to
allow sending in the JTAG password, and changing the value
assigned to my_pwd in line 5 of the code in Fig. 5 to try 8-bit
or 31-bit passwords accordingly, as described in the bugs.

Similar bugs were also found in the implemented password
checking mechanism for the PULPissimo platform provided
in the competition.

B. AXI4 Interconnect

The AXI4 protocol, which is used as the interconnect
in the PULPino platform, defines different levels for access
permissions, including flags indicating secure/not-secure, and
privileged/non-privileged access. We found that special con-
siderations were implemented for accessing the status register
through the debug unit, including having another layer of
password-checking for such access. However, the security
flags for transactions accessing the status register were not
set correctly in the code.

C. GPIO Protection

As mentioned earlier, GPIO access protection through the
debug unit was another security requirement of the provided
SoC designs. In our analysis, we found several bugs in the
implementation of this requirement, as shown in Fig. 6.

From this code, we see that the range-checking for pro-
tecting the read access to the GPIO address range is not
inclusive of the start and end addresses (lines 3-4). Also,
password checking in Fig. 6 is essentially ineffective since
lines 9-12 in this code assign data_out_reg to data_o
irrespective of pwd_check value or range checking of lines
3-4. Furthermore, we found that although an attempt was made
to implement a read protection mechanism for the GPIO range,
there was not any protection against the write access through
the debug unit, which may create security concerns based on
the provided requirements.

1 always_comb begin
2 if (!(pwd_check)) begin
3 if((addr_i > `GPIO_START_ADD)
4 && (addr_i < `GPIO_END_ADD))
5 begin
6 data_o = 64'b0;
7 end
8 end
9 if (AXI_DATA_WIDTH == 64)

10 data_o=data_out_reg;
11 else if (AXI_DATA_WIDTH == 32)
12 data_o={32'h0,data_out_reg};
13 end

Fig. 6. Security bugs in GPIO access protection

V. CONCLUSION

This article summarized our experience from participating
in the 2018 Hack@DAC competition, where we were tasked
with finding security-related bugs in two SoC designs. While
the bugs were deliberately inserted into the designs, because
of the relatively large size of the SoCs, finding them was
challenging. We demonstrated a few of the bugs that we
identified, with the hope that their description may be helpful
to other researchers in this area. Certainly, our hunting effort
may have not been complete and may have missed several
other bugs. Nevertheless, we feel that a disciplined approach,
such as the one we presented here, as well as proper utilization
of security and verification tools and methodologies, can result
in successful finding of many more complicated issues which
we may have missed.

REFERENCES

[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security 18), Baltimore, MD, Aug. 2018,
pp. 973–990.

[2] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 2019
IEEE Symposium on Security and Privacy (SP), 2019, pp. 1–19.

[3] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in 27th USENIX Security Symposium (USENIX Security 18),
Baltimore, MD, Aug. 2018, p. 991–1008.

[4] PULP platform. Accessed July 10, 2020. [Online]. Available:
https://pulp-platform.org/

[5] S. L. He, N. H. Roe, E. C. L. Wood, N. Nachtigal, and J. Helms,
“Model of the product development lifecycle,” Sandia National
Laboratories, Tech. Rep. SAND2015-9022, September 2015, accessed
July 10, 2020. [Online]. Available: https://prod-ng.sandia.gov/techlib-
noauth/access-control.cgi/2015/159022.pdf

[6] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware
Trojan attacks: Threat analysis and countermeasures,” Proceedings of
the IEEE, vol. 102, no. 8, pp. 1229–1247, 2014.

[7] G. Dessouky, D. Gens, P. Haney, G. Persyn, A. Kanuparthi, H. Khattri,
J. M. Fung, A.-R. Sadeghi, and J. Rajendran, “HardFails: Insights
into software-exploitable hardware bugs,” in 28th USENIX Security
Symposium (USENIX Security 19), Santa Clara, CA, Aug. 2019, pp.
213–230.

6

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 04,2020 at 23:37:37 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2020.3013727, IEEE Design
and Test

[8] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi, “The RISC-V
instruction set manual. volume 1: User-level ISA, version 2.0,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2014-54, 2014.

[9] L. Bening and H. Foster, Principles of verifiable RTL design. Springer,
2001.

[10] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanović,
“The RISC-V instruction set manual volume II: Privileged architecture
version 1.9,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2016-129, 2016.

[11] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” in Proceedings
of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’15,
2015, pp. 503–516.

[12] M.-M. Bidmeshki, X. Guo, R. G. Dutta, Y. Jin, and Y. Makris, “Data
secrecy protection through information flow tracking in proof-carrying
hardware IP - part II: Framework automation,” IEEE Transactions on
Information Forensics and Security (TIFS), vol. 12, no. 10, pp. 2430–
2443, Oct 2017.

Mohammad Mahdi Bidmeshki received his Ph.D. in com-
puter engineering from The University of Texas at Dal-
las in Richardson, Texas in 2018, where he is currently
a post-doctoral research associate. His current research in-
cludes hardware-based security, trusted hardware design, for-
mal methods in security and verification, and the applications
of machine learning in computer security.

Yunjie Zhang is pursing his Ph.D. in electrical and computer
engineering at The University of Texas at Dallas. His research
interests include applications of machine learning in workload
forensics and malware detection. He is a student member of
the IEEE.

Monir Zaman received his Ph.D. in the field of digital hard-
ware security and cross-layer power estimation improvement,
and M.S. in electrical engineering from The University of
Texas at Dallas in Richardson, Texas, in 2019 and 2011
respectively.

Liwei Zhou received his Ph.D. and M.S. degrees in electrical
engineering from The University of Texas at Dallas, Richard-
son, Texas in 2018 and 2013 respectively. His research inter-
ests lie in trustworthy security-enforced computer architecture
for system security applications, e.g., computer forensics and
malware detection.

Yiorgos Makris is a Professor of Electrical and Computer
Engineering at The University of Texas at Dallas, Richardson,
TX, USA. His research focuses on applications of machine
learning in test, reliability, and security of ICs, with particular
emphasis in the analog/RF domain. Makris has a PhD in
computer engineering from the University of California San
Diego, La Jolla, CA, USA. He is a Senior Member of the
IEEE.

7

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 04,2020 at 23:37:37 UTC from IEEE Xplore. Restrictions apply.

