
AVF Analysis Acceleration via
Hierarchical Fault Pruning

Michail Maniatakos
EE Department
Yale University

michail.maniatakos@yale.edu

Chandra Tirumurti
Design and Test Solutions

Intel Corporation
chandra.tirumurti@intel.com

Abhijit Jas
Design and Test Solutions

Intel Corporation
abhijit.jas@intel.com

Yiorgos Makris
EE & CS Departments

Yale University
yiorgos.makris@yale.edu

Abstract—The notion of Architectural Vulnerability Factor
(AVF) has been extensively used by designers to evaluate various
aspects of design robustness. While AVF is a very accurate way of
assessing element resiliency, its calculation requires rigorous and
extremely time-consuming experiments. In response, designers
have introduced various methodologies that allow AVF calcula-
tion within reasonable time, at the cost of some loss of accuracy.
In this paper, we present a method for calculating the AVF of
design elements -using Statistical Fault Injection (SFI)- with equal
accuracy but several orders of magnitude faster than traditional
SFI techniques. Our method partitions the design into various
hierarchical levels and systematically performs incremental fault
injections to generate the AVF numbers. The presented method
has been applied on an Intel microprocessor, where experimental
results corroborate its ability to achieve great speed-up while
maintaining perfect accuracy in calculating AVF.

I. INTRODUCTION

The increasing threat of soft errors in nanometer tech-
nologies has resulted in a plethora of design solutions for
protecting latches from Single Event Upsets (SEUs) [1], [2],
as well as combinational logic from Single Event Transients
(SETs) [3], [4]. Despite the demonstrated effectiveness of
these solutions, applying them blindly across an entire design
incurs prohibitive cost. As a result, various methods for
assessing the susceptibility of individual latches or logic gates
have also been proposed [5], [6], in order to support partial
hardening approaches [7], [8], [9], [10], [11]. Susceptibility
evaluation and the corresponding ranking of latches or logic
gates typically takes into account a number of factors, includ-
ing electrical device characteristics, timing issues, as well the
actual logic function implemented. These factors reflect the
circuit-level and gate-level reasons that may prevent an SEU
or an SET from causing a soft error in a circuit. However, they
are unable to capture error masking causes at higher levels
and, therefore, they prove rather insufficient when applied to
modern microprocessors.

Modern microprocessors exhibit a high degree of
architectural-level and application-level masking, resulting in
many errors being suppressed or having a low probability of
affecting the workloads that are typically executed. Indeed,
the multitude of functional units and stages in the deeply-
pipelined superscalar microprocessors, along with advanced
architectural features such as dynamic scheduling and
speculative execution, imply that rather complex conditions
need to be satisfied in order for an error to affect the
architectural state of the microprocessor or the outcome
of an application. In an effort to capture these additional

masking factors, vulnerability analysis methods have been
developed specifically for microprocessors [12], [13], [14],
[15], [16]. These methods typically employ statistical fault
injection (SFI) and simulation of actual workload using an
architectural performance model, a Register Transfer (RT-)
or a gate-level model of the microprocessor and aim to
assess the probability that a transient error in a state element
will affect workload execution, commonly known as the
Architectural Vulnerability Factor (AVF). As we discuss in
the next section, however, the use of performance models
limits the accuracy of the vulnerability analysis, while the
use of RT- or gate-level models of an entire microprocessor
requires prohibitive simulation time.

In this paper, we propose a new method for calculating AVF
in modern microprocessors using Hierarchical Fault Pruning
(HFP). The proposed method is faster, yet maintains the
accuracy of the traditional SFI approach, which employs the
entire microprocessor all at once. HFP leverages the high
masking factors of microprocessor modules to quickly prune
the fault list as it progresses towards larger partitions where
simulation is slower and, thereby, accelerate AVF analysis.
The remainder of the paper is structured as follows. Previous
architectural vulnerability analysis methods are discussed in
Section II. The proposed method is presented in Section III.
The experimental setup employed to perform a comparative
evaluation of the proposed method is introduced in Section
IV and the results are discussed in Section V.

II. EXISTING AVF ANALYSIS METHODS

The notion of Architectural Vulnerability Factor has been
extensively used in the past to rank state elements based
on their criticality to program execution correctness. AVF
expresses the probability of a bit-flip resulting in a visible
system error. Previously proposed methods for performing
AVF analysis employ either performance models [12], [17],
[18] or RT-Level models [13], [14], [15] of a microprocessor.
As we explain below, the former enable fast AVF estimation
but suffer in terms of accuracy, while the latter offer far more
accurate results but require prohibitive simulation times.

The performance model-based method described in [12]
introduces the concept of Architecturally Correct Execution
(ACE) and defines ACE bits as those that can cause corruption
in the final output of the program. In contrast, un-ACE bits are
those which under no conditions may produce a discrepancy
in the final program outcome (i.e. branch predictor bits). ACE
analysis is performed and evaluated on an IA-64 performance

Sixteenth IEEE European Test Symposium

1530-1877/11 $26.00 © 2011 IEEE

DOI 10.1109/ETS.2011.42

87

simulator, using which the authors can generate deterministic
AVF estimates for the ACE bits and rank the corresponding
state elements based on their criticality. For this purpose,
workload is simulated to completion and the impact of faults
in these state elements is analyzed in a single simulation
pass, which is performed rapidly. Furthermore, another major
benefit of ACE analysis is that it can be performed early in
the design cycle. The major drawback of ACE analysis and
AVF estimation using the architectural performance model,
however, is the lack of detail about the actual hardware
structures of the microprocessor. Therefore, the analysis is
only performed for the modeled components, which in the case
of [12] includes only components that affect the performance
of a microprocessor. This results in significant loss of accuracy
in AVF estimation. Furthermore, extensive manual effort is
required to classify a bit as ACE or un-ACE.

The methods described in [13], [14], [15] resolve the AVF
estimation accuracy problem by performing SFI in the RT-
Level model, which reflects the actual hardware structures of
the microprocessor. This accuracy, however, comes at a cost:
RT-Level simulations are far slower than performance models
and fault simulation tools are not readily available at this
level. Furthermore, a rigorous transient fault injection cam-
paign requires excessive simulation times in order to provide
statistically significant results. In [13], the authors provide
a qualitative comparison of the AVF estimation accuracy of
their extensive RT-Level simulations to the ACE analysis
presented in [12]. Their findings conclude that ACE analysis
overestimates soft error vulnerability by about 3.5x and that
this discrepancy stems from the model’s lack of hardware
detail and the single-pass simulation methodology. In [18],
the authors of [13] replied that added detail to the ACE
analysis can lead to tighter AVF bounds. Still, the limited
details available at the performance model remain the main
contributor to AVF overestimation.

III. HIERARCHICAL FAULT PRUNING METHODOLOGY

In this paper we propose a methodology that employs
statistical fault injection in a hierarchical manner in order
to perform AVF analysis. In this context, by “hierarchical”
we imply that fault simulation is incrementally performed
in gradually expanding partitions of the design. Assume, for
example, that we are interested in computing the AVF of the
instruction scheduler module of the Aplha 21264 processor,
shown in Figure 1. In this case, a possible hierarchy could
involve the instruction scheduler by itself in Level 1, the
out-of-order execution cluster, which includes the instruction
scheduler, in Level 2, and the entire microprocessor in Level
3. As can be observed, successive levels always include the
preceding ones, therefore fault simulation becomes increas-
ingly more expensive. At the same time, the size of the fault
list that needs to be simulated is drastically reduced due to
masking, as we proceed from each level to the next. Indeed,
modern microprocessors exhibit high masking factors [19],
[20], reported to be up to 98% (AVF=2%) [19]. Based on these
two observations, HFP aims to accelerate AVF computation by

Fig. 1. Sample partitioning (Alpha 21264)

reducing the simulation effort without sacrificing accuracy.
The HFP method is presented in detail in Algorithm 1. First,

we partition the design into the various hierarchy levels and
create the list of latches to be injected. Then, we generate
a fault list with random transients for each latch in the first
level. After initializing the algorithm, we fault simulate all
faults in this fault list. At the end of this simulation, any fault
which causes some discrepancy at the primary outputs (POs)
of the first level is stored and set to be injected again at the
next level. We define the fraction of the faults that appear
at the POs of the partition as Module Vulnerability Factor
(MVF), to avoid confusion with AVF which is defined based
on faults propagating to the POs of the entire design. When all
faults are simulated at the first level, all stored faults become
the input fault list of the second level and the same process
is applied. These faults are simulated again, since the next
partition contains the previous one, but now the design is much
larger and more faults will be masked and not appear at the
POs of this new level. This process repeats for each of the
defined levels. At the end of the algorithm, the AVF of each
latch is calculated as the product of the MVFs of this latch
across all the different levels.

For example, in the 3-level hierarchy shown in Figure 1,
let us assume that the MVF of a latch in the scheduler (i.e.,
MVF1) is 25% at the first level, i.e., 1 out of 4 transients in
this latch makes it to the POs of the scheduler. Let us also
assume that out of these faults, 25% make it to the POs of
the out-of-order cluster (e.g., MVF2=25%) and, out of those,
25% leave the full-chip model and are stored in memory (i.e.,
MVF3=25%). Evidently, the probability that a fault will reach
the POs of the second level (out-of-order cluster) is MVF1−2 =
MVF1*MVF2 = 25%*25%=6.25%, while the probability that
it will reach the POs of the third level (entire design) is AVF
= MVF1−3 = MVF1*MVF2*MVF3= 25%*25%*25% = 1.5%,
consistent with what is reported in [19]. As a result, assuming
an initial fault list size of 100K faults in the scheduler, only
25K faults will be simulated at level 2, and only 6.25K faults
will be simulated at the entire design level. In contrast, without

88

Algorithm 1: Hierarchical Fault Pruning algorithm

1 Assume T is the list of latches to be injected;
2 Assume n is the number of hierarchical levels;
3 Initialize Level = 1;
4 foreach Latch in T do
5 Generate random fault list F (Level, Latch) for

Level = 1;
6 end
7 for Level = 1 to n do
8 foreach Latch in T do
9 Initialize activated fault list A(Level, Latch) = ∅;

10 foreach Fault in F (Level, Latch) do
11 Fault simulate Fault;
12 if Fault propagates to partition’s POs then
13 Add Fault to A(Level, Latch);
14 end
15 end
16 MV F (Level, Latch) =

|A(Level, Latch)|/|F (Level, Latch)|;
17 F (Level + 1, Latch) = A(Level, Latch);
18 end
19 end
20 foreach Latch in T do
21 AV F (Latch) = MV F (1, Latch) ∗

MV F (2, Latch) ∗ ... ∗MV F (n, Latch)
22 end

the proposed hierarchical approach, all 100K faults would have
to be simulated at the entire design level.

Defining the design hierarchy is a key part of the process
where designer expertise is important. A small number of
large partitions require fewer iterations of the HFP algorithm,
yet each iteration takes longer to complete. A larger number
of smaller partitions results in faster iterations of the HFP
algorithm, yet many faults are repeatedly injected at successive
levels. A balanced approach used herein, which serves as a
good starting point, is to define a hierarchy consisting of (i)
sub-block level, (ii) layout block level, and (iii) full-chip level.

IV. EXPERIMENTAL SETUP

In order to evaluate the effectiveness of HFP, we performed
extensive experiments on a contemporary Intel microprocessor
implementing the P6 architecture1. Figure 2 shows the basic
P6 architecture [21]. Instructions flow from the instruction
cache to the decoders, where they enter the out-of-order cluster
and are stored in the Reservation Station (RS). The Reorder
Buffer (ROB) guarantees in-order retirement after out-of-order
instruction execution. The Memory Reorder Buffer (MOB)
interacts with the data cache in order to fetch the required
information.

Our study focuses on the control units of the out-of-order
cluster, namely the Reservation Station and the Reorder Buffer.

1A non-disclosure agreement between Yale University and Intel Corp. pre-
vents us from providing further information about the actual microprocessor.

Fig. 2. P6 sample architecture [21]

Following the guidelines provided in Section III, our hierarchy
includes 3 levels. Level 1 corresponds to the module (i.e.,
either the RS or the ROB). Level 2 corresponds to the partition
(i.e., the out-of-order execution engine, shown as the dark gray
area in Figure 2). Level 3 corresponds to the entire chip.

The flow of our simulation experiment is shown in Figure 3.
Before starting the HFP algorithm, certain initialization steps
are needed so that workload may be executed:
• Workload execution: A variety of workload should be

selected for effective AVF analysis. A typical workload
requires several million cycles to be completed, render-
ing full workload execution at the gate-level infeasible.
Thus, after compiling the workload for the specific x86
architecture, we use pinLIT [22] to extract workloads in
the object file format.

• Vector generation: The object file has to be simulated
in order to generate appropriate vectors for use during
fault simulation. A logic simulator is used to simulate the
workload and Value Change Dumps (VCDs) are extracted
at the input boundary of each level.

• Fault list generation: In order to apply SFI, a set of fault
locations is needed, on which transient error injections are
performed in order to calculate the AVF. Since our focus
is the AVF of sequential elements, the design is parsed
and the fault locations (latches) are enumerated. Given
this latch list, transient errors are randomly generated
and injected uniformly over time, ensuring that the same
number of errors is injected in each latch.

89

Fig. 3. Experimental flow

An in-house fault enumerator is used to convert the fault
list to the internal fault input format. This database, along
with the extracted VCDs, constitute the inputs to the in-house
fault simulator. When the simulation is completed, the faults
are analyzed and a new fault list is generated. This new list
includes the faults that propagated to the primary outputs of
the current level and is, once again, converted to the internal
format in order to start simulation at the next level. When the
top level is reached, the final fault list is analyzed and AVF
numbers are calculated.

The workload used in our experiments comprises various
SPEC benchmarks, namely astar (path-finding algorithms),
bzip (compression), h264 (video compression), lucas
(primality checking) and mcf (combinatorial optimization).
The benchmarks represent different workload types, which
is needed for accurate AVF calculation. Workloads were
executed to completion using minimal inputs. All experiments
were performed within Intel’s environment, on machines with
similar capabilities. Moreover, the times reported in Section V
are averages of several simulations to ensure fair comparison
in terms of required resources.

V. RESULTS

In this section, we demonstrate the AVF calculation ac-
celeration obtained by the proposed HFP method over the
Traditional SFI (TSFI) approach. Furthermore, we investigate
possible options for further speed-up at the expense of some
minor accuracy loss.

A. AVF calculation speed-up

Table I compares the simulation time of TSFI to that of HFP
for our fault-injection campaign of 175K faults. The reported

TABLE I
SIMULATION TIME (IN SECONDS) COMPARISON BETWEEN HFP AND TSFI

FOR 175K FAULTS

astar bzip2 h264 lucas mcf

RS

HFP1 4,119 4,066 4,130 3,350 2,687
HFP1−2 9,984 8,245 7,837 5,365 9,197
HFP1−3 17,075 18,154 18,745 31,704 23,873

TSFI 263,802 181,417 410,383 372,545 121,792
Speed-up 15x 10x 21x 12x 5x

ROB

HFP1 6,628 7,035 6,702 7,341 6,195
HFP1−2 7,883 8,533 7,983 8,708 7,549
HFP1−3 16,869 25,313 25,564 26,433 29,564

TSFI 314,856 226,754 566,338 458,721 352,610
Speed-up 18x 9x 22x 17x 12x

times are averages among 20 fault simulation runs on a single
machine. The simulation time needed for each level in the HFP
method is also shown in the table. Specifically, HFP1 refers to
the simulation time needed to obtain results at the boundary
of the first level (i.e., the RS or the ROB module), HFP1−2

refers to the cumulative simulation time to obtain results at the
boundary of the second level (i.e., the out-of-order execution
engine), and HFP1−3 refers to the cumulative simulation time
to obtain results at the boundary of the full chip. Evidently,
HFP1−3 > HFP 1−2 > HFP1.

In order to calculate AVF with equal accuracy as with TSFI,
the results of HFP1−3 are needed, hence, the fair comparison
is between the simulation time of these two approaches. The
corresponding entries in Table I show that HFP outperforms
TSFI by several orders of magnitude. For example, calculating
AVF for the latches of RS while running the astar workload
on 175K faults via TSFI requires 3 days (263,802 seconds),
while the same results are obtained via HFP within only 5
hours (17,075 seconds), corresponding to a 15x speed-up.
On average, across our simulations, HFP accelerated AVF
calculation by 12.6x for RS and 15.6x for ROB. The key
implication of the obtained speed-up is that we can now use
HFP to generate statistically significant AVF numbers (i.e., 5
benchmarks, 175K faults per benchmark) for a module within
a day (on a single machine), as opposed to the two weeks
required by TSFI.

We also point out that the speed-up obtained by HFP is
larger as the initial fault list size increases. To demonstrate
this point, Figure 4 shows the impact of the initial fault list
size on the HFP and TSFI simulation time. More faults per
simulation pass require more processing and more memory,
thus greatly increasing the simulation time required for TSFI.
HFP, on the other hand, is almost unaffected because the first
level is extremely small compared to the full chip, allowing
many faults to be injected during a single pass. And given the
large amount of error masking, as explained in Section III,
only a very small percentage of faults ends up being simulated
at the entire chip level. The key implication of Figure 4 is that
the HFP speed-up would be much higher than what is reported
in Table I, if a larger initial fault list was utilized (Table I
compares the two methods for a fault list of 175K faults).

90

Fig. 4. Simulation time (in seconds) comparison between TSFI and HFP for
various numbers of injected faults

B. AVF to MVF correlation

Further AVF calculation speed-up can be obtained, at the
cost of some minor accuracy loss, by leveraging an interesting
observation regarding the correlation of AVF to MVF. Evi-
dently, since a fault may be masked at a subsequent level in
an n-level hierarchy, MVF1 ≥ MVF1−2 ≥ . . . ≥ MVF1−n

= AVF for every latch. However, as we approach the full-
chip level, masking becomes less likely and depends mostly
on the application behavior (application masking) rather than
the properties of the injected latch; therefore, it is likely that
the MVF will become increasingly correlated to the AVF. For
example, the correlation coefficient between MVF1−3 = AVF
and MVF1−2 in our experiment is 97%. This does not come
as a surprise, due to the nature of the partitioning chosen. A
fault escaping Level 2 guarantees incorrect execution of an
instruction, since Level 2 contains all the execution function-
ality.

The implication of this observation is that we can speed-
up AVF calculation by using the –much faster to compute–
MVF of preceding levels instead. For example, suppose that
AVF is used to rank the state elements of a module in order
to select and protect the most vulnerable ones. The top line
(MVF1−3=AVF) in Figure 5 reports the coverage (Y-axis) that
would be achieved by protecting the corresponding percentage
of the state elements shown in the X-axis2. This is the point of
reference, reflecting an optimal state element ranking. Suppose
now that the same state elements are ranked based on MVF1−2

instead. In this case, the coverage achieved by protecting the
corresponding percentage shown in the X-axis is given by the
middle line on the plot of Figure 5. Evidently, the accuracy
lost when selecting based on MVF1−2 instead of AVF is
fairly small, while the computational gains are very large. For
example, the 15x speed-up reported in Table 4 for astar
becomes 27x if the simulation stops at HFP1−2.

We note, however, that the correlation between
MVF1−3=AVF and MVF1 is only 61%, implying that a
fault escaping the boundary of a small module such as the

2Values on the axis are omitted and results are reported only for a subset
of the latches due to the confidential nature of the actual data.

Fig. 5. Correlation between AVF and MVF calculated at different levels

RS or the ROB is not a good indication of whether it will
actually affect execution. As a result, ranking and protecting
state elements based on MVF1, as shown on the bottom line
of Figure 5, yields very sub-optimal results.

C. Fault injection window

AVF calculation may also be accelerated, again at the cost
of minor accuracy loss, by limiting the number of simulation
cycles after a fault is injected. A similar approach is taken in
the RT-Level AVF calculation method described in [20], where
faults are not simulated until the end of the workload due to
limited resources. Instead, a fault is injected during a limited
number of cycles (up to 10,000). Indeed, fault simulation of
RT- or Gate-Level models is feasible only for a few thousand
cycles.

In the results presented herein, complete workloads were
executed exclusively at the Gate-Level, yet with minimal
inputs in order to keep the clock cycles below 1 million. Figure
6 shows how many cycles, after injection of a fault, the fault
appears at the primary outputs of the corresponding partition.
As can be observed, over 96% of the faults appear within
1,000 cycles after injection, and almost all faults (i.e, 99.96%)
reach the outputs within 10,000 cycles. Thus, we can safely
stop the simulation 10,000 cycles after fault injection and still
compute very accurate AVF numbers with the data available
at that point in time. In our experiments, this approach would
result in an additional 10x AVF calculation speed-up, since
we would fault simulate 10,000 cycles instead of 100,000+
typically used as a safety margin.

D. Fault list size

Finally, additional AVF calculation speed-up may be ob-
tained by moderating the fault list size, possibly at the expense
of minor accuracy loss. In our experiments, we used a sample
size of 2,500 injections per latch (5 benchmarks, 500 injections
per latch) to compute the AVF numbers, which we use as our
baseline. In this section, we examine the impact of reducing
this sample size on the accuracy of the computed AVF.

Figure 7 shows how the AVF computed using smaller fault
list sizes (i.e., 1,000, 500, 250, 125, 60 and 30 injections per

91

Fig. 6. Statistics driving fault injection window selection

latch) correlates to the baseline AVF. For each sample size,
the average over 10 different fault lists is reported (along with
the deviation). For example, a sample size of 60 injections
per latch correlates, on average, 78% with the optimal list, yet
this number may be as low as 40%. The key take-away point
from this graph is that accurate AVF estimations (i.e., with
both minimum and average correlation coefficient >90%) can
be obtained using a fault list size of as few as 250 samples.
This leads to an additional 10x speed-up, since 250 instead of
2,500 injections are performed.

VI. CONCLUSION

The Hierarchical Fault Pruning method proposed herein ex-
ploits the high masking factors of modern microprocessors in
order to accelerate AVF analysis. By hierarchically partition-
ing the design and incrementally fault simulating each level
only for the subset of faults that evade masking in previous
levels, the number of simulation cycles required is drastically
reduced. Experimental results on a modern microprocessor
demonstrate that, on average, HFP speeds-up AVF calculation
by 14.1x as compared to the traditional SFI approach, without
sacrificing any accuracy. Additional speed-up is obtained, at
the cost of minor accuracy loss, by leveraging the correlation
between intermediate and final results of HFP, by limiting the
fault injection window and by moderating the fault list size.

ACKNOWLEDGEMENT

This work was supported by a generous gift from Intel
Corp. The first author performed part of this research during
a summer internship with Intel Corp. in Santa Clara, CA.

REFERENCES

[1] L.R. Rockett Jr, “An SEU-hardened CMOS data latch design,” IEEE
Transactions on Nuclear Science, vol. 35, no. 6, pp. 1682–1687, 1988.

[2] M. Zhang, S. Mitra, T.M. Mak, N. Seifert, N.J. Wang, Q. Shi, K.S.
Kim, N.R. Shanbhag, and S.J. Patel, “Sequential element design with
built-in soft error resilience,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 14, no. 12, pp. 1368–1378, 2006.

[3] Q. Zhou and K. Mohanram, “Transistor sizing for radiation hardening,”
in International Reliability Physics Symposium, 2004, pp. 310–315.

[4] N. Miskov-Zivanov and D. Marculescu, “MARS-C: modeling and
reduction of soft errors in combinational circuits,” in Design Automation
Conference, 2006, pp. 767–772.

[5] C. Zhao, X. Bai, and S. Dey, “A scalable soft spot analysis method-
ology for compound noise effects in nano-meter circuits,” in Design
Automation Conference, 2004, pp. 894–899.

Fig. 7. Correlation between AVFs produced by different number of samples

[6] M. Zhang and N.R. Shanbhag, “Soft-error-rate-analysis (SERA) method-
ology,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 25, no. 10, pp. 2140–2155, 2006.

[7] R. Garg, N. Jayakumar, S.P. Khatri, and G. Choi, “A design approach
for radiation-hard digital electronics,” in Design Automation Conference,
2006, pp. 773–778.

[8] Q. Zhou and K. Mohanram, “Gate sizing to radiation harden com-
binational logic,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 25, no. 1, pp. 155–166, 2006.

[9] S. Almukhaizim, Y. Makris, Y. Yang, and A. Veneris, “Seamless
Intergration of SER in Rewiring-based Design Space Exploration,” in
International Test Conference, 2006, vol. 2, pp. 29.3.1–29.3.9.

[10] C.G. Zoellin, H.J. Wunderlich, I. Polian, and B. Becker, “Selective
Hardening in Early Design Steps,” in European Test Symposium, 2008,
pp. 185–190.

[11] S. Krishnaswamy, S.M. Plaza, I.L. Markov, and J.P. Hayes, “Signature-
based SER analysis and Design of Logic circuits,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 1, pp. 74–86, 2009.

[12] S.S. Mukherjee, C. Weaver, J. Emer, S.K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,” in International Sym-
posium on Microarchitecture, 2003, pp. 29–40.

[13] N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ACE analysis relia-
bility estimates using fault-injection,” SIGARCH Computer Architecture
News, vol. 35, no. 2, pp. 460–469, 2007.

[14] E.W Czeck and D.P Siewiorek, “Effects of transient gate-level faults
on program behavior,” in International Symposium on Fault-Tolerant
Computing, 1990, pp. 236–243.

[15] K. Seongwoo and A.K. Somani, “Soft error sensitivity characterization
for microprocessor dependability enhancement strategy,” in Interna-
tional Conference on Dependable Systems and Networks, 2002, pp. 416–
425.

[16] M. Maniatakos and Y. Makris, “Workload-driven selective hardening
of control state elements in modern microprocessors,” in VLSI Test
Symposium, 2010, pp. 159–164.

[17] S.S. Mukherjee, J. Emer, and S.K. Reinhardt, “The soft error problem:
An architectural perspective,” in 11th International Symposium on High-
Performance Computer Architecture, 2005, pp. 243–247.

[18] A. Biswas, P. Racunas, J. Emer, and S. Mukherjee, “Computing accurate
AVFs using ACE analysis on performance models: A rebuttal,” IEEE
Computer Architecture Letters, vol. 7, no. 1, pp. 21–24, 2008.

[19] G.P. Saggese, N.J. Wang, Z.T. Kalbarczyk, S.J. Patel, and R.K. Iyer,
“An experimental study of soft errors in microprocessors,” IEEE Micro,
pp. 30–39, 2005.

[20] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing the
effects of transient faults on a high-performance processor pipeline,” in
International Conference on Dependable Systems and Networks, 2004,
pp. 61–70.

[21] L. Gwennap, “Intels P6 uses decoupled superscalar design,” Micropro-
cessor Report, vol. 9, no. 2, pp. 9–15, 1995.

[22] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B. Calder, “Au-
tomatic logging of operating system effects to guide application-level
architecture simulation,” in International Conference on Measurement
and Modeling of Computer Systems, 2006, pp. 227–238.

92

