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Abstract—Statistical intra-die correlation has been extensively
studied as a means for reducing test cost in analog/RF ICs.
Generally known as alternate test, this approach seeks to predict
the performances of an analog/RF chip based on low-cost
measurements on the same chip and statistical models learned
from a training set of chips. Recently, an orthogonal direction
for leveraging statistical correlation towards reducing test cost
of analog/RF ICs has also gained traction. Specifically, inter-die
spatial correlation models learned from specification tests on a
sparse subset of die on a wafer are used to predict performances
on the unobserved die. In this work, we investigate the potential
of combining these two statistical approaches, anticipating that
the performance prediction accuracy of the joint correlation
model will surpass the accuracy of its constituents. Experimental
results on industrial semiconductor manufacturing data validate
this conjecture and corroborate the utility of the combined
performance prediction models.

I. INTRODUCTION

Towards reducing the excessive cost of specification testing
in analog/RF circuits, which requires complex test equipment
and elaborate measurement procedures, various statistical ap-
proaches have been developed in the past decade. Generally
known as “alternate test”, numerous methods have been pro-
posed for accurately testing analog/RF devices without explic-
itly measuring costly performances. The underlying principle
is to approximate these performances through correlation
models based solely on low-cost measurements [1]–[3] or on
a subset of performance measurements [4]1. Such alternate
test methods, the basic principle of which is illustrated in
Figure 1, leverage die-level correlations in order to reduce test
cost. Specifically, if malt denotes the low-cost measurement
vector and mper denotes the performances to be predicted,
alternate test uses a set of training samples to learn the
correlation function between malt and mper, denoted by f1,
and thereby to predict performances on new devices with m′alt,
as m̂per = f1(m′alt). While this approach achieves dramatic
test cost reduction, it comes at the cost of increased test
escapes and yield loss. Furthermore, the train-predict cycle
makes an assumption of stationarity of process statistics, i.e.,
the trained regression model is assumed to be valid across all
new devices, otherwise it needs to be periodically retrained.

Recently, an orthogonal direction for leveraging wafer-
level statistical correlation towards reducing test cost has also

1Alternatively, as described in [5]–[7], a machine learning-based approach
can be employed in order to learn classification boundaries which separate
passing and failing populations of analog/RF devices in a multi-dimensional
space of inexpensive measurements.
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Fig. 1. Leveraging die-level measurement correlations for test cost reduction

attracted interest. An overview of this spatial correlation-
based approach is shown in Figure 2. In this case, costly
specification tests are not completely eliminated. Instead, they
are only performed on a sparse subset of die on each wafer
and, subsequently, used to build a spatial model f2, which
is then used to predict performances at unobserved die loca-
tions: m̂per = f2(x), where x denotes the wafer’s Cartesian
coordinate x = [x, y]. It should be noted that by building
spatial correlation models on a per-wafer basis, this approach
avoids making assumptions about process stationarity as in
the case of alternate test. Along these lines, the expectation-
maximization (EM) algorithm was used in [8] to estimate spa-
tial wafer measurements, assuming that the data is generated
by a multivariate normal distribution, or using the Box-Cox
transformation in case it is not. The “Virtual Probe” (VP)
approach [9], [10] modeled spatial variation via a Discrete
Cosine Transform (DCT), which projects spatial statistics into
the frequency domain. Similarly, the author of [11] laid the
ground for applying Gaussian Process (GP) models to spatial
interpolation of semiconductor data based on Generalized
Least Square fitting and a structured correlation function. As
recently shown in [12], using such GP models can dramatically
improve both prediction accuracy and computational time, as
compared to the VP model.

Each of these two statistical approaches has been shown to
have high prediction accuracy and to effectively reduce the
cost of specification testing. Herein, we investigate, for the
first time, the potential of combining these two statistical ap-
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Fig. 2. Leveraging wafer-level spatial correlations for test cost reduction

proaches, expecting that the performance prediction accuracy
of a joint correlation model will surpass the accuracy of its
constituents. The proposed methodology, which is introduced
in Section II, relies on a combined model for predicting perfor-
mances, which incorporates the predictive power of both intra-
die and inter-die correlations. In addition, we also introduce a
screening step in order to verify that each of the constituent
correlations truly exists. Indeed, not all performances are
adequately predictable by both approaches. In fact, using a
poor prediction model in the mix may not only fail to improve
the accuracy of the combined model, but it might actually hurt
it. Therefore, assessing effectiveness of the constituent models
prior to combining them not only saves computation time but
also safeguards the quality of the combined prediction model.

The proposed approach is experimentally assessed in Sec-
tion III, using industrial semiconductor manufacturing data
from an RF device. The reported results corroborate our expec-
tation that when an RF measurement is deemed predictable by
both models, a combined prediction model will significantly
improve the prediction accuracy over the constituent models.

II. PROPOSED APPROACH

A. Overview

In this section, we describe in detail the proposed method-
ology for combining die-level (i.e. alternate test) and wafer-
level (i.e. spatial correlation) models for analog/RF test cost
reduction. Figure 3 illustrates an overview of the methodology,
which consists of two stages, namely training and testing. Let
m̂per1 and m̂per2 denote the estimated performance by die-
level model f1 and wafer-level model f2, respectively. During
the training stage, we first learn f1 and f2 as explained in
the previous section and as depicted in Figures 1 and 2,
respectively. Then we assign a weight wi to the i-th model,
i ∈ {1, 2}, by solving the following optimization problem:

minimize
w

||m− w · fT|| (1)

where || · || denotes the L2 norm, w denotes the weight
vector of correlation functions, w = [w1, w2], m denotes the
measurement vector of n samples used to assign the weights,
and f denotes the vector of considered correlation models,
f = [f1, f2]. In this work, we propose to solve the optimization
problem in (1) using the ordinary least squares (OLS) method
to learn the optimal weight vector ŵ. Once ŵ is learned, we
can readily predict values of performances for untested die
locations, as shown in the lower part of Figure 3:

Low-cost alternate 
  test vector: m’alt

Performance prediction

mper1  =  f1(m’alt)

Training stage

sampling

Spatial correlation
model

Performance prediction

mper2  =  f2([x, y])

Training samples

Learn weight w = [w1, w2]

Untested die

mcom  =  w1*f1 + w2*f2

Testing stage

Model screening

Fig. 3. Proposed approach: combined die- and wafer-level correlation models

m̂com = ŵ · fT (2)

where m̂com denotes the predicted performances by the com-
bined model. Thus, in order to obtain the combined estimation
on a particular die using (2), we need to perform (a) low-
cost measurements on the same die, and (b) specification
tests on a sparse set of other die on the same wafer. The
approach shown in equations (1) and (2) is, in essence, a
regression combination approach, which assigns a weight to
each considered model according to its performance, and
predicts the final outcome using the estimated weights. Various
methods to address this issue have been proposed, including
Bayesian model averaging, which considers the weight as
the posterior probability of the model [13], and weighting
based on bootstrap or perturbation [14]. However, combining
models may not always provide improvement in the prediction
accuracy, especially when a subset of models have rather poor
performances. To avoid this problem, we adopt the method
proposed in [15], which introduces a model screening step.
Such screening narrows down the list of candidate models,
not only for saving computation time but also for removing
poor models that would hurt the combined estimator.

B. Model screening

As described previously, introducing models with poor
performance in the combined estimator could degrade the
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quality of the final prediction. Thus, it is important to evaluate
the performance of each model before the combined estimator
is constructed and applied. Authors in [15] proposed a model
screening step, which narrows down the list of candidate
models in the combined estimator. In this section, we present
the details of model screening for each considered model.

1) Screening of alternate test model: The alternate test
model consists of predicting a high-cost specification test mper

using low-cost alternate measurements malt. To assess the
effectiveness of the considered model, we propose to use a
hold-out set S1 of n1 samples containing the specification test
and the alternate measurement vector: S1 = {m(i)

alt,m
(i)
per},

i = 1, · · · , n1. Then we split S1 into two equal sets S1t and
S1v uniformly at random. The regression model for alternate
test f1(malt) is trained using S1t and validated using S1v .
Finally, we compute the normalized root-mean-square (RMS)
error in the validation set S1v:

εv =

√∑n1/2
i=1 (m̂

(i)
per −m(i)

per)2

n1/2
/rper (3)

where rper denotes the variation range of mper in S1, defined
as rper = max(mper)−min(mper), and m̂(i)

per is the estimated
performance value for the i-th device in S1v . We set a threshold
value θ1 for the considered performance mper, such that the
alternate test model is considered to be poor if εv > θ1. Poor
models are then screened out in the combined estimator.

2) Screening of spatial model: The spatial model predicts
a performance on a die from measurements of the same
performance on other die locations of the same wafer using
a spatial correlation model f2([x, y]). For each performance
under consideration, the underlying question of assessing the
spatial model is whether a systematic spatial correlation exists,
or whether it is dominated by random noise. In the latter
case, the performance can not be predicted by a spatial
correlation model. In order to verify existence of systematic
spatial patterns, we consider the measurement variation model
as the sum of a systematic spatial component and a random
component, as commonly modeled in the literature [16], [17]:

m(x, y) = g(x, y) + ε (4)

where m(x, y) is the considered measurement value, expressed
as a function of a wafer’s Cartesian coordinate (x, y), g(x, y) is
the systematic spatial variation component, and ε is the random
component often modeled as ε ∼ N (0, σ2). Notice that a
constant term C can also be added to (4) to represent wafer-to-
wafer and lot-to-lot shift. In this work, we assess the existence
of systematic spatial variation component by computing the
Pearson’s correlation coefficient between two adjacent wafers
i and j, defined by:

ri,j =

∑nm

k=1

(
mi(xk)−mi

)(
mj(xk)−mj

)√∑nm

k=1

(
mi(xk)−mi

)2√∑nm

k=1

(
mj(xk)−mj

)2
(5)
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Fig. 4. Wafer map of two adjacent wafers for measurement with (a)(b)
systematic spatial variation dominating random variation with r = 0.98, and
(c)(d) systematic spatial variation dominated by random variation with r =
0.1

where xk denotes the k-th Cartesian coordinate [xk, yk],
mi(xk) and mj(xk) denote the performance value of the k-
th Cartesian coordinate on the i-th and j-th wafers, mi and
mj denote the mean value computed over all available die
locations on the i-th and j-th wafers, and nm is the number
of available die on the wafer.

Our experience with production test data shows that the sys-
tematic spatial variation component g(x, y) remains very sim-
ilar across adjacent wafers in manufacturing. Indeed, adjacent
wafers in semiconductor manufacturing are fabricated in a very
similar environment. As a consequence, the impact of wafer-
to-wafer process variations and environmental variations, such
as temperature, on these wafers is minimized. Based on this
observation, it can be shown that in cases where g(x, y)� ε,
the correlation coefficient r between two adjacent wafers is
large (we omit the derivation for brevity). Figure 4(a) and (b)
show wafer maps of two adjacent wafers in manufacturing for
a measurement with r = 0.98, and Figure 4(c) and (d) show
the case of another measurement where r = 0.1. It can be
observed by a simple visual inspection that r value is high for
measurements having strong systematic spatial pattern and is
low otherwise.

Based on the above observation, we set a threshold value θ2
for spatial model screening, such that the model is considered
to be poor if ri,j < θ2, where ri,j is the correlation coefficient
between two adjacent wafers i and j.

We note that the choice of θ1 and θ2 is empirical, based
on the acceptable levels of Test Escapes and Yield Loss,
as we further discuss in Section III. We also note that the
combined estimator, as well as the model screening approach,
are independent of the underlying models; in other words, the
proposed approach can be applied to combine any alternate
test and spatial correlation models.
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Fig. 5. Prediction error εv in the hold-out set for alternate test model
screening

C. Prediction outcome evaluation

To evaluate effectiveness of the proposed method, we com-
pute the mean RMS error across all predictions using (3):

εjh =

√∑ntest

i=1 (m̂
(i)
per −m(i)

per)2

ntest
/rper (6)

where m̂
(i)
per denotes the predicted value on the i-th die

location, εjh represents the mean RMS error of predicting
the h-th measurement for all unmeasured die locations on
the j-th wafer, rper denotes the range of variation for h-th
measurement as defined in Section II-B1, and ntest denotes
the number of predicted die locations on the j-th wafer. Then,
we summarize the mean prediction error over all wafers as:

εh =
1

Nwafers

Nwafers∑
i=1

εih (7)

where Nwafers denotes the number of considered wafers.
In order to gain insight about the prediction outcome, it is

also worthwhile to compute the Test Escapes (TE) and Yield
Loss (YL) incurred by applying the predictive model. For a
particular measurement, let the indicator functions I(i)1 /I(i)2 be
equal to ‘1’ if the predicted value of the i-th die location
passes/fails its specification, while the actual value fails/passes
the specification, and let I(i)1 /I(i)2 be equal to ‘0’ otherwise.
Then the overall TE and YL are defined as:

ˆTE =
1

N

N∑
i=1

I
(i)
1 (8)

Ŷ L =
1

N

N∑
i=1

I
(i)
2 (9)

where N denotes the total number of predicted die locations
across all wafers.

III. EXPERIMENTAL RESULTS

The proposed method is evaluated on high-volume man-
ufacturing test data from an RF transceiver built in 65nm
technology. Our dataset has a total of 291 wafers, each of
which has approximately 2000 die characterized by 224 low-
cost On-chip RF Built-in Tests (ORBiTs) obtained via on-
chip sensors, and 101 high-cost RF specification tests. Both

low-cost and RF tests are performed at probe level. Thus,
a statistically significant data-set of approximately 582,000
devices, each with 325 measurements, is used in our case
study.

A. Prediction with alternate test model

In this work, we use least-angle regression (LARS) [18]
to construct alternate test models for each considered spec-
ification: m̂per = f1(malt). The LARS regression model
automatically chooses a subset of variables in vector malt

which are most correlated with mper in order to build the
regression model f1. Thus, this approach allows us to handle
high-dimensional data in building the regression model with-
out needing to perform a feature selection or dimensionality
reduction analysis, which is very appropriate in our case since
the dimension of malt is 224. Details of the LARS regression
model can be found in [18].

To perform screening of the alternate test models, as de-
scribed in section II-B1, we generate the following data set:
we choose the first wafer in our data set as the hold-out
set S1 in order to assess the correlation between malt and
mper: S1 = {m(i)

alt,m
(i)
per}, i = 1, · · · , n1, where n1 ≈ 2000.

Then S1 is split into training set S1t and validation set S1v

for the purpose of model screening. We empirically set the
threshold value θ1 = 12%, by observing that, for the majority
of considered performances, this value results in a combined
Test Escapes and Yield Loss of approximately 1000 ppm
across our dataset. The prediction error εv for each of the
performances in S1 is computed using (3). Figure 5 shows εv
for all considered performances as well as the value of θ1. As
may be observed, 52 RF specification tests have εv smaller
than θ1 in our study. These measurements successfully pass
model screening and are, therefore, forwarded to the combined
model, as shown in Figure 3.

Once an alternate test model passes screening, we can
readily use it to predict performances. As an example, Figure
6 and 7 show the prediction plot of devices from one wafer
for RF measurements 85 and 86, respectively. Evidently, the
predicted values correlate very well with the actual values of
these performances. Nevertheless, further improvement can be
achieved by combining these alternate test models with the
spatial correlation models, as we demonstrate below.

B. Prediction with spatial model

In this work, wafer-level spatial correlation models are built
using the Gaussian Process-based approach described in [12]
with a 10% die sample size. In screening out poor spatial
models (i.e. performances that are not spatially correlated), the
procedure described in section II-B2 is employed. Once again,
we empirically set the threshold θ2 = 0.6 by observing that,
for the majority of considered performances, this value results
in a combined Test Escapes and Yield Loss of approximately
1000 ppm across our dataset. The screening procedure for each
measurement involves the following steps:
• Step 1: Randomly choose two adjacent wafers i and j

produced in the same lot.
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Fig. 6. Prediction plot for measurement 85 by alternate test model
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Fig. 7. Prediction plot for measurement 86 by alternate test model

• Step 2: Compute the correlation coefficient ri,j as de-
scribed in (5).

• Step 3: Repeat Step 1 and Step 2 n′ times (where n′ is
a small integer greater than 1, in order to avoid making
general decisions based on outlier wafers) and choose the
maximum ri,j value as the wafer correlation value.

Figure 8 shows the wafer correlation value ri,j for all
considered RF specification measurements as well as the value
of θ2. As may be observed, a subset of 46 RF specification
measurements have ri,j value greater than θ2. These measure-
ments successfully pass model screening and are, therefore,
forwarded to the combined model, as shown in Figure 3.

C. Prediction with combined model

The final combined model is used to predict performances
for which both the alternate test and the spatial correlation
models pass the respective screening step. In our experiment,
the intersection of the two sets (of cardinality 52 and 46,
respectively) contains 34 performances. For each of them,
we use, again, the first wafer as the hold out set in order to
assign the weight wl for the l-th prediction model computed
by (1), and equation (2) to predict the performances for the
unobserved die locations on other wafers. For new wafers to be
tested, low-cost alternate tests are taken on each die location,
while specification tests are performed on 10% of the available
die locations randomly sampled across the wafer, in order to
train the spatial correlation model using GP as described in
Section I. Figure 9 shows the mean RMS prediction error
sorted in ascending order using all three methods, obtained
by predicting on the remaining 90% die locations for all
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Fig. 8. Wafer correlation plot for spatial model screening
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Fig. 9. Comparison of RMS prediction error for measurements passing
screening of both models

wafers. As may be observed, the combined model consistently
outperforms, or at least performs equally well as the best of
the individual models. Figures 10 and 11 show the prediction
plots of measurement 85 and 86 for the same devices as in
Figure 6 and 7, using all three models. As may be observed by
simple visual inspection, the combined model indeed provides
the best prediction results.

Table I also shows this comparison in terms of RMS
prediction error, as computed by (7). Once again, it can be
observed that the combined model consistently provides the
best prediction results, which justifies our choice to combine
the two predictive models.

D. Test escapes and yield loss improvement

To further elucidate the benefits of our approach, in the 2nd
to 5th columns of Table II we compare the Test Escapes (TE)
and Yield Loss (YL) of measurement 85 and 86, computed
using (8) and (9) and projected in parts-per-million (ppm)
for each individual model, as well as the combined model.
Evidently, the proposed approach achieves a significant TE
and YL improvement as compared to the individual models,
thereby justifying the use of a combined model in predicting
RF performances.

E. Discussion

One might point out that the proposed approach incurs
additional cost in predicting performances, as compared to
traditional alternate test, since it requires that specification tests
are performed on a subset of die on each wafer. In reality,
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Fig. 10. Prediction plot for measurement 85 by different models
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Fig. 11. Prediction plot for measurement 86 by different models

however, even in a traditional alternate test setting, a certain
level of specification tests are also needed to ensure integrity
of the models in the presence of process shifts, to deal with
die for which performances cannot be predicted with high
confidence (two-tier test [6]), and to monitor the process. With
this in mind, and taking into account the achieved TE and YL
reduction, which might give the extra nudge needed to meet
test quality goals, we believe that the added cost is justifiable
from a test economics point of view.

IV. CONCLUSION

Combining alternate test with spatial correlation modeling
holds great promise in further reducing test cost in analog/RF
integrated circuits without compromising test quality. Such
merging, however, needs to be carefully orchestrated, taking
into account that poorly performing constituents may jeop-
ardize the effectiveness of the joint predictor and should,
therefore, be screened out. Experimental results using test data
from high-volume manufacturing assert that the joint predic-
tion model proposed herein achieves lower RMS prediction
error and, by extension, reduces Test Escapes and Yield Loss.
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TABLE I
RMS PREDICTION ERROR COMPARISON

Prediction model Measurement 85 Measurement 86
Alternate model 2.3% 3.5%
Spatial model 4.3% 4.2%

Combined model 2% 2.9%

TABLE II
TEST ESCAPES (TE) AND YIELD LOSS (YL) (IN ppm) COMPARISON

Measurement 85 Measurement 86
TE YL TE YL

Alternate model 515 115 430 83
Spatial model 589 347 563 334

Combined model 401 68 343 54
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