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Abstract

Hierarchical test approaches address the complexity
of test generation through symbolic reachability paths
that provide access to the 1/Os of each module in a
hierarchical design. While transparency behavior
suitable for symbolic design traversal can be utilized for
datapath modules, control modules do not exhibit
transparency, and therefore require exhaustive search
algorithms or expensive DFT hardware. In this paper we
introduce a fast hierarchical test path identification
methodology for circuits with no DFT at the controller-
datapath interface. We introduce the concept of Influence
Tables, modeling the impact of control states on the
datapath, based on which appropriate state sequences for
accessing each module are identified. Imposition of such
sequences on a hierarchical test path identification
algorithm, in the form of constraints, results in significant
speedup over alternative non-DFT based approaches.

1. Introduction

Hierarchical test methodologies[1, 11, 13, 16] address
large designs in a divide-&-conquer fashion, wherein test
is generated for each module and subsequently translated
and applied from the primary design 1/0s. Within such
approaches, the complexity of vector-by-vector test
trandation is alleviated through symbolic vector
justification and response propagation over reachability
paths for each module, as depicted in Figure (1).
Composition of symbolic test trandation paths is
facilitated by the notion of modular transparency [5, 10,
14, 15], commonly exhibited by datapath components. In
controller-datapath pairs, however, the exact datapath
functionality is determined through precise sequences of
controller-provided signals. Controllers do not exhibit
bulk transparency behavior, thus limiting the
effectiveness of hierarchical test path composition and the
applicability of hierarchical test approaches. Since exact
reasoning on control signal values requires expensive
FSM search agorithms, the controllability and
observability of the controller-datapath interface is
typically enhanced through DFT hardware [6, 9].
Alternatively, controller redesign/resynthesis is used to
provide additional control behavior, in support of
hierarchical test path composition [2, 4, 8]. Due to area
and performance considerations, however, such DFT
modifications may not always be feasible.

In order to devise a viable hierarchical test path
identification methodology for controller-datapath pairs
without DFT, a trade-off concept similar to datapath
transparency is required for the controller. Transparency
behavior alows symbolic design traversal, reducing the
complexity of datapath test trandation, at the cost of
sacrificing some of the inherent test trandation
capabilities of the design. Similarly, a simplification of
the controller, preserving most of the behavior required
for establishing reachability paths for each module, is
required. An analogous approach is employed in the area
of verification, where simplified control machines [3, 12]
are used to represent the functionality of a design in a
symbolic fashion. The reduced functionaity is
subsequently verified against a golden model, avoiding
the exponential path explosion problem of verifying the
complete design functionality.

In this paper, we introduce the concept of Influence
Tables, a mechanism that captures the impact of each
control state on the datapath portion of the design.
Influence Tables are subsequently combined in order to
derive valid control state sequences that are appropriate
for testing each module in the design. These control state
sequences substitute the controller and are used as
constraints during the hierarchical test path search
algorithm, in order to reduce backtracking and speed up
convergence. The intricacies of the controller and the
implications on hierarchical test path identification are
discussed in section 2, along with a number of alternative
approaches for combined controller-datapath search. The
concept of Influence Tablesis introduced in section 3 and
its application for identifying appropriate control state
sequences for each module is analyzed in section 4. The
combined controller-datapath search scheme is presented
in section 5 and experimental results are provided and
compared to alternative search approachesin section 6.
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Figure (1): Handling Controller-Datapath Pairs
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2. Motivation

Reachability paths from the primary 1/Os of a design
to the boundary of each module are required in order to
apply test in a hierarchical fashion. While the
transparency behavior typically exhibited by datapath
modules can be easily composed into symbolic
reachability paths, symbolic traversal of control modules
is not feasible. Controllers produce precise sequences of
signals, determining datapath functionality. In order to
utilize control modules on hierarchical test paths, an exact
value-based control signal analysis is required. However,
exhaustive FSM analysis is expensive even for simple
controllers. Loops in the controller, along with feedback
signals from the datapath, complicate the process of
reasoning on exact control state seguences and the
corresponding control signal values. The problem is
equivalent to the exponentially growing path enumeration
problem on the controller FSM. In addition, exact value-
based analysis on the feedback variables from the
datapath requires exhaustive reasoning on the
functionality of the datapath as well, further complicating
combined controller-datapath search algorithms.

Unlike the datapath where transparency serves as a
trade-off mechanism between complexity and accuracy,
no similar concept has been devised for the controller.
Due to the difficulty of the problem, solutions rely on
DFT in order to either isolate the datapath from the
controller, or to provide additional control behavior
suitable for composing hierarchical test paths. However,
DFT is not always an available option due to the incurred
area and performance impact. In this case, reachability
path construction for a module in a controller-datapath
design requires that one of the following alternative
search strategies be employed:

(i) The search is performed only on the datapath,
considering control signals as primary inputs. If a
solution isfound, it is checked for compliance against
the controller. If no appropriate control state sequence
existsthe datapath search isrepeated for an aternative
solution. The scheme is repeated until a combined
solution is found or no more datapath solutions exist.

(if) All possible state sequences of the controller are
enumerated. A control state sequence is selected and
the associated control signal values are imposed as
constraints to the datapath search. If no solution is
found, another control state sequence is selected and
the scheme is repeated until a combined solution is
found or no more control state sequences exist.

(iii) An intertwined search is performed, wherein each
decision of the search algorithm on the datapath is
checked immediately for compliance against the
restrictions imposed by the controller.

In the first two cases, the search is performed on one
portion of the design and is only checked at the end for
compliance against the other part. Such blind trial &
error approaches are easy to implement; however, they

are rather inefficient and result in long search times. The
third approach is much harder to implement, since alist of
appropriate control state sequences needs to be kept and
updated each time a decision is made by the datapath
search algorithm. However, each invalid path is only
examined once, so this scheme is expected to converge
much faster than the first two, since backtracking is
significantly reduced. Nevertheless, it still requires an
exhaustive FSM analysis that is overly expensive, making
it hardly aviable alternativeto DFT.

In contrast to these approaches, we introduce a fast
methodology for identifying control state sequences
appropriate for reaching each datapath module, based on
the notion of influence tables. The proposed method
avoids exhaustive examination of the controller
functionality and therefore the resulting control state
sequences are only potential but not guaranteed solutions.
The identified control sequences are provided as
constraints to the datapath hierarchical test path
identification algorithm, effectively reducing the search
space and speeding up convergence. In essence, influence
tables provide an informed mechanism for substituting the
controller with state sequences that are meaningful for
establishing reachability paths for each module, while
discarding the rest of the controller behavior.

3. Influencetables

The objective of the proposed scheme is to examine
the controller and identify control state sequences that are
appropriate for testing each module in the design. In order
to model the datapath behavior under the impact of the
controller, we introduce the concept of influence tables
that capture the structural interaction between datapath
state variables, for each state of the controller. Influence
tables are consequently combined in order to identify
control state sequences establishing reachability paths
from the primary inputs to the inputs of the module under
test and from the outputs of the module under test to the
primary outputs. In support of the complexity vs.
completeness trade-off discussed in section 2, influence
tables capture only topological and not functional
interaction between the primary inputs, the primary
outputs and the state registers of the design. Therefore,
the resulting control state seguences guarantee the
existence of a reachability path but cannot reason on its
test trandation capabilities. The latter will still need to be
evaluated through a datapath hierarchical test path
identification algorithm, under the guidance of the
identified control state sequence, asexplained in section 5.

Influence Tables for Control States: The concept of
influence tables is demonstrated through the controller-
datapath pair example of Figure (2). The datapath portion
of the circuit is given in Figure (2)(a) and the controller is
described in Figure (2)(b). The influence tables for states
D and S3 are given in Figure (2)(c). The top row of the
influence table contains the primary inputs, state registers
and constant values that during this particular state may
influence the primary outputs or state registers noted on
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(c) Influence Tables for States SO and S3
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(d) Data-Dependent Alternative Influence: Splitting State S1 into Sla and S1b
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(e) Influence Tables for Sequences of Control States S0-Sl1a and S6-S3
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ouT 1 ouT 1

(f) Influence Tables for Controller Loop between States S5 and S6

Figure (2): Influence Tables Example
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the leftmost column. A ‘1’ in a table location indicates
that the signal entity of the corresponding row is
influenced during this particular state by the signal entity
of the corresponding column. For example, in the
influence table of stat80, registerA is influenced by the
primary inputINA, since LD="1". Similarly, register&
and F are influenced by the constant value ‘0’, since
CLR='1" and both registeiG and the outpuOUT are
influenced by registe®, since LD='0".

Conditional Influence: The influence table for state
S3 demonstrates how conditional influence is captured by
the proposed scheme. In sta$8, register F of the
example circuit is influenced through the ADDER #2 by
registerC, under a condition on registé. In this case,
registerD does not directly influence registé, but it
does control the potential impact of registeon register
F. Therefore, the entry in the corresponding table
location is not a ‘1’ but rather a ‘D’, indicating the
conditional influence of regist&® on registe~, based on
a condition on registd.

Data-Dependent Alternative Influence: In Figure
(2)(d) we demonstrate how the influence tables handle
situations where alternative sets of signal entities may
influence the signal entity under examination, based upon
conditions on adjacent signal entities. In st&le for
example, registee and — depending on register- either
registerC or register will influence register through
MUX #2. In order to model this “exclusive OR” type of
behavior, the influence table for st&e is split intoSla
and Slb, each capturing one of the possible influence
behaviors, as depicted in Figure (2)(d). This is required
only when datapath registers suchDaare used to decide
between alternative influence behavidrs.the case of
MUX #1, which is controlled by &ontroller signalthe
resolution is automatically performed, since distinct
values on signaC7 indicate distinct control states.

Influence Tables for Sequences of Control States:

The effect of a control state sequence on the datapath is
obtained by combining the influence tables. The entry
(M,N) is filled in the combined table if M at the
beginning of the control sequence influences N at the end
of the control state sequence. As an example, the

combined influence tables for state sequences S0-Sla and

S6-S3 are demonstrated in Figure (2){a)the influence
table of stat& the primary inputNA influences register
A which in turn influences regist& in the influence table
of stateSla. Therefore, in the combined influence table
D-Sla, the primary inputNA influencesregisterE. In a
similar fashion, in the influence table of sté#@ the
primary inputINC influences registeC, which in turn
influences itself and upon a condition on regifdealso
influences registef in stateSla. Taking into account that
register D is influenced byIND in state Sla, in the
combined influence table for the state sequed&&la
the primary inputiNC influences registe€ and upon a
condition on the primary inputND, it also influences
register F. The influence table for the control state
sequenceés-S3 is derived in a similar manner. However,
in this case the transition from sta® to stateS3 is

dependent on datapath feedback, which more specifically
is a condition on registéd.

Controller Loops. In this scheme, loops do not
impose the same complexity burden as in the combined
controller-datapath search approaches described in section
2. Since the influence tables perform a structural progress
analysis and not a value progress analysis of the search
algorithm, loops are only allowed when the corresponding
influence table provides a distinct impact pattern. For
example, as shown in Figure (2)(f), the influence table for
the state sequen&-S6 is identical to the influence table
of the sequenceSh-H6-H-FH. Since no  additional
structural influence is obtained when loop iterations are
allowed, no additional influence tables are devised.
However, since additional loop iterations may enhance
the functional capabilities on the datapath, controller loop
information is provided to the datapath search algorithm
hat will have the option to follow the loop if required.

4. Control state sequenceidentification

The introduced concept of influence tables captures
the impact of the controller states and sequences of states
on the datapath portion of the design. This information is
subsequently utilized in order to identify control state
sequences that are appropriate for establishing
reachability paths for testing each datapath module.
Initially, the structural requirements for testing a module
need to be defined. These requirements represent the
primary inputs, registers and primary outputs that need to
be controlled or observed in order to test a particular
module. For example, testing ADDER #2 of Figure (2)(a)
requires observing regist&r and controlling registeE,
registerD and one of registels andC. The next step is
to identify a statesk at which test may be applied to the
module. A statéX is a valid candidate for this purpose, if
the following two conditions hold:

(i) There is a sequence of states with an influence table
on which the registers that need to be controlled are
only influenced by primary inputs and the sequence
ends in a predecessor stateSkf This denotes the
justification control state sequence for the module.

There is a sequence of states with an influence table
on which the registers that need to be observed
influence at least one primary output and the
sequence starts from a successor stat&kofThis
denotes thegoropagation control state sequence for

the module.

(ii)

In the previous example, staf2 qualifies fortesting
the ADDER #2, with S0-Sla being the justification and
B3-S being the propagation control state sequence. As
shown in Figure (3), durin§0-Sla, registersC, E andD
are only affected by primary inputs and duriSg4,
registerF influences the primary output. Sin&a is a
predecessor state 82 andS3 is a successor state 82,
the control state sequence-Sla-2-S3-$4 is appropriate
for testing the ADDER #2 module. Additional checking is
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Figure (4): Combined Controller-Datapath Search

performed in order to make sure that no conflict exists
between the conditions and requirements on the path. For
example, state transition Sla-S2 requires a specific
datapath feedback value on register D that is checked for
possible conflicts against conditions required in the
corresponding influence tables. Appropriate control state
sequences for testing each module in the design can be
similarly obtained. These control state sequences
guarantee the existence of a reachability path for the
module under test and are further combined with the
datapath search scheme that will evaluate the justification
and propagation capabilities of the corresponding path, as
explained in the following section.

5. Combined test path identification

The influence table analysis of section 4 provides
valid control state sequences that are meaningful for
establishing reachability paths from the primary inputs to
the module under test and from the module under test to
the primary outputs. A datapath hierarchical test path
composition methodology is till required in order to
identify the exact reachability paths and to evaluate local
to global test translation capabilities. However, knowing
the appropriate control state sequence in advance, helpsin
guiding the datapath reachability analysis in a pruned

Figure (3): Control State Sequence I dentification for ADDER#2

search space. The control signals associated with these
control state sequences are provided as constraints to the
datapath search algorithm, reducing the number of
aternative choices during hierarchica test path
identification and thus speeding up the search process.

The combined scheme for controller-datapath
hierarchical test path identification is depicted in Figure
(4). Initidly, the influence tables are derived from the
controller-datapath description. Subsequently, a datapath
module is selected and an appropriate control state
sequence for testing this module is identified using the
method of section 4. If no such sequence exists, a control
testability bottleneck is reported and no solution exists
unless DFT hardware is incorporated in the design.
Otherwise, the identified sequence is provided in the form
of congtraints to the datapath hierarchical test path
identification agorithm introduced in [10]. These
constraints reduce the backtracking of the search
algorithm, effectively speeding up convergence. If the
testability requirements of the module are not satisfied, a
new control state sequence is requested from the
controller analysis scheme and the process is repeated
until either a hierarchical test path is identified, or no
more appropriate control state sequences can be found. In
an effort to keep the hierarchical test application time low,
control state sequences are examined in order of
increasing length, so that the resulting reachability paths
incur the shortest delay possible.

6. Experimental results

The efficiency of the combined controller-datapath
search scheme is demonstrated on an 8-bit shift-&-add
multiplier described in [7]. For the purpose of the
experiment we employ the MULTIPLIER and ADDER
modules of the controller-datapath implementation of this
circuit, shown in Figure [5].
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Figure (5): Example Circuit
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Multiplier
Control Set A
Approach (i) 0.583 sec 4.25 sec 0.467 sec N/T N/T
Approach (ii) 17.97 sec 2.5min 17.52 sec N/T N/T
Approach (iii) 0.277 sec 0.257 sec 0.271 sec N/T 14.94 sec
Proposed Scheme 0.031 sec 0.052 sec 0.053 sec 2.98 sec 3.88 sec

Table (1): CPU Time Comparison for Hierarchical

The three search approaches introduced in section 2
and the proposed methodology of section 5 have been
implemented and applied on these modules. The search is
expected to be successful on the MULTIPLIER where
reachability paths exist for each of the four sets of values
on the control inputs that are applied during normal
functionality. However, the adder inputs are not
independently controllable and the search should report
that no reachability path exists for the ADDER.

The CPU time spent by each of the four search
approaches on a 266 MHz Pentium™ Il with 64 MB of
RAM is provided in Table (1). The N/T entries in the
table signify that the tool did not terminate within the
time limit of 10 CPU minutes imposed throughout the
experiment. Thetrial-&-error approaches (i) and (ii)
spent the most time before converging. Although they [5]
were able to find solutions for the simple MULTIPLIER
cases, they did not terminate for t@entrol Set D case
which has a complicated solution, or for the ADDER
where no solution exists. As expected, approach (iii), the
intertwined  controller-datapath  exhaustive  search,
performed better than the first two approaches due to [7]
reduced backtracking. Nevertheless, it spent a significant
amount of time in handling the ADDER case and did not [8]
terminate on the complicated MULTIPLIER case.
Finally, the proposed methodology identified the expected
solutions for all the MULTIPLIER cases and reported the [9]
lack of reachability paths for the ADDER. The time spent
is almost an order of magnitude less than the best of the [10]
alternative approaches, verifying the power of the
proposed scheme in identifying hierarchical test paths in
controller-datapath pairs with no DFT.

(1]

(2]
(3]

(4]

(6]

[11]
7. Conclusions

Identification of hierarchical test paths in controller-
datapatftircuitswithoutDFT requiresefficient algorithms,
capable of addressing the large search space of the design.
In order to avoid the excessive backtracking of exhaustive
search approaches, modular transparency is commonly [13]
used for symbolic datapath reasoning. The introduced
influence tables concept complements such approaches by
providing a judicious mechanism for pruning the control
search space, thus facilitating an efficient combined
search scheme. The impact of control states on the
datapath is captured via influence tables, based on which
appropriate control state sequences for testing each
module are derived. Substitution of the controller by a
judiciously selected set of state sequences results in [16]
significant convergence speedup of the controller-
datapath search algorithm over alternative approaches.

(12]

(14]

(15]

Test Path Identification Approaches
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