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Abstract
We propose a methodology that examines design modules and identifies appropriate vector justification and response

propagation requirements for hierarchical test. Based on a cell-level analysis and transparency composition methodology,
test requirements for a module are defined as a set of fine-grained input and output bit clusters and pertinent justification and
propagation values. The identified test requirements are independent of the actual test set and are adjusted to the cell-level
connectivity and inherent regularity of the module. As a result, they combine the generality required for fast hierarchical
test path construction with the accuracy necessary for minimizing the incurred DFT hardware overhead, thus fostering
cost-effective hierarchical test. Experimental results verify the ability of the proposed methodology to moderate the cost of
hierarchical test path construction through accurate, compact, and highly parametrizable test requirement definition.

1. Summary

Hierarchical methods leverage on the ability to individually target each module in a design and generate highly efficient lo-
cal test. This benefit, however, comes at the cost of necessitating hierarchical test paths through the upstream and downstream
logic, which establish transparent access to the module under test (MUT), as depicted in Figure 1(a). During hierarchical test
path construction, however, the module under test is treated as a black box and no information pertaining to its inherent test
requirements is utilized. Consequently, excessive DFT hardware is employed in order to construct hierarchical test paths. In
an effort to reduce the DFT cost of hierarchical test path construction, two directions have been examined. Along the first
direction, several research efforts have been invested in efficiently defining, extracting, and utilizing inherent design trans-
parency. Along the second direction, inherent functionality of the upstream and downstream logic is utilized to constrain local
test generation in an effort to render highly translatable test. Not much attention has been paid, however, to a third alternative,
namely the possibility of moderating the cost of hierarchical test paths through an examination and informed definition of
test requirements for each module. This idea is depicted in Figure 1(b), where the internal cell-level connectivity of the MUT
is examined and its test requirements are defined in terms of several input and output bit clusters. This, in turn, necessitates
several narrow hierarchical test paths instead of a single coarse path, thus increasing the probability of their inherent existence
in the design and reducing the expected DFT cost for their construction. In this work, we examine the impact of test require-
ment granularity on the severity of hierarchical test path construction and we propose a methodology for reducing the cost of
hierarchical test path construction by adjusting the generality of test requirements. A cell-level analysis and a symbolic path
composition result in the definition of fine-grained test requirements on sets of input and output bit clusters.
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Figure 1. Granularity of Test Requirements
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• Divide: Complexity Reduction – Customization
• Conquer: Need Access to the Boundary of Each Module

• Limitation:DFT Cost for Hierarchical Test Path Construction

Research Direction

Problem Definition
• Lack of Identifiable Transparency Incurs DFT Overhead

Current Research Efforts
• Reduce the Cost of Hierarchical Test Paths through:

• Improved Transparency Extraction Methods
• Low-Cost DFT for Establishing Transparency 

Proposed Method
• Reduce the Cost of Hierarchical Test Paths through:

• Accurate Test Requirement Identification
• Low-Cost DFT for Reducing Test Requirements 

Idea
• Identify Sufficient Test Requirements Expressed in Many Narrow 

Paths Instead of One Wide Path

Justification
• Full Transparency Rarely Needed for Testing Each Module
• Narrow Paths Have Higher Probability of Inherent Existence

Hierarchical Test Path Severity

Test Requirements of Modules
• Test Requirement Severity Critical to Path Complexity
• Current Approaches Assume Full Symbolic Path Needed
• Accurate Fine-Grained Paths Important to Reduce DFT

Severity Threshold Condition
• The hierarchical test path construction severity of a set of 

k-bit vectors is equivalent to a k -bit symbolic path if every 
subset of bits obtains more than half of the possible values

MODULE

TS1={00, 11}
TS2={01, 10}
TS3={00, 01}
TS4={10, 11}

TS5={00, 01, 10}

MODULE

TEST SET

(A1, A1) : 1 Free Variable
(A1, A1') :1 Free Variable
(V, A1) : 1 Free Variable
(A1, V) : 1 Free Variable

(A1, A2) : 2 Free Variables

PATH REQUIREMENT

TS6= {001, 010, 101, 110}

TS7= {010, 100, 110, 001}

TEST SET

(A1, A2, A2') : 2 Free Variables

(A1, A2, A3)  : 3 Free Variables

PATH REQUIREMENT

Proposed Methodology

Cell-Based vs. Exhaustive Requirement Analysis
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Cell Granularity

Selection Factors
• Satisfaction of Severity Threshold Condition
• Repetitive Structures – Regularity - Homogeneity
• Number and Size of Cells
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Hierarchical Test
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Just i fy 'AAAA'  at  ABCS
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Hierarchical Test
Path Severity:

Just i fy  'AAA'   at  ABC
Propagate 'AA'  f rom DE

Vectors:

ABCS
1 0 0 0
0 0 0 0
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1 0 1 0
0 0 1 0
0 1 0 0

Responses:

DE
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Path Severity:

Just i fy 'AAAA'  at  ABCS
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Metrics and Experimental Results

Severity Metrics

 Symbolic Paths Compacted Test Non- Compacted Test Proposed Method 
 ? -TPES  ? - TPIS ? - TPES ? -TPIS ? -TPES  ? - TPIS ? -TPES ? -TPIS  

Adder 1024 32  2 2 4 7168 40 256 6 4 16 
Divider 4096 64  1088 69632 832 47888 3 6 272 
ALU  65536 256  5632 1441792 4064 1013856 3 2 320 

 

 Symbolic Paths Compacted Test Non- Compacted Test Proposed Method 
 C- TPES  C-TPIS C-TPES C-TPIS  C- TPES  C-TPIS C-TPES C- TPIS 

Adder 262144 512  4096 20197152 848 38144 2560 656 
Divider 262144 512  9216 4718592 7360 3662468 49152 98304 
ALU 238435456 16384  425984 6979321856 65280 230430714 238435456 16384 
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Metric Calculation Example

TEST PATTERNS - TEST RESPONSES

A3A2A1A0B3B2B1B0Cin CoutZ3Z2Z1Z0

0  0  0  0  1  0  1  1  0         0  1  0  1  1
0  1  0  1  0  1  1  0  1         0  1  1  0  0
1  0  0  1  0  0  1  1  0         0  1  1  0  0
1  1  1  0  0  1  1  0  1         1  0  1  0  1
0  1  0  1  0  0  0  1  0         0  0  1  1  0
1  0  1  0  1  1  1  0  0         1  1  0  0  0
0  0  0  1  1  1  0  0  0         0  1  1  0  1
0  1  1  0  1  0  0  1  0         0  1  1  1  1

4-bit
Carry Ripple
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A[3:0] B[3:0]

CinCout
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Symbolic Paths

1 Justification Path: "AAAAAAAAA"

C-TPES(M)=49=262144
C-TPIS(M)=29 =512

1 Propagation Path: "AAAAA"

O-TPES=45 =1024
O-TPIS=2 5=32

Compacted Test

8 Justification Paths: "VVVVVVVVV"

C-TPES(M)=8*29=4096
C-TPIS(M)=8*4 9=20197152

7 Propagation Paths: "VVVVV"

O-TPES=7*25 =224
O-TPIS=7*45 =7168

8 Distinct Vectors - 7 Distinct Responses

Metric Calculation Example (cont’d)

4 Justification Paths:
"XXVAXXVAA"
"XVAAXVAAX"
"VAAXVAAXX"
"AAXXAAXXX"

C-TPES(M)=22*43 +22 *44+22*44 +44 =2560
C-TPIS(M)=42* 23+42*24+42* 24+42=656

TEST PATTERNS - TEST RESPONSES
( RANDOM FILL TURNED OFF)
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0  1  1  X  0  0  1  X  X         0  1  0  X  X
X  0  1  1  X  0  0  1  X         X  X  1  0  X
0  1  0  X  0  0  0  X  X         0  0  1  X  X
0  0  0  X  0  1  0  X  X         0  0  1  X  X
0  0  1  X  0  0  1  X  X         0  0  1  X  X

X  0  1  0  X  0  0  X  0         X  X  0  1  X
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X  X  0  0  X  X  0  1  0         X  X  X  0  1
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Non-Compacted Test
17 Distinct Justification Paths:

(8 have 3 Xs, 4 have 4 Xs, 5 have 5 Xs)

C-TPES(M)=8*26+4*25+ 5 * 24 =848
C-TPIS(M)=8*46+4*45+5*44* 24+42=38144

7 Distinct Propagation Paths:
(3 have 2 Xs, 4 have 3 Xs)

O-TPES=3*23+4*22=40
O-TPIS=3*43+4*42=256
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4 Propagation Paths:
"XXXAA"
"XXAAX"
"XAAXX"
"AAXXX"

O-TPES=42 +42 +42+42=64
O-TPIS=22+22+22+22=16

Proposed Methodology

DFT for Test Requirement Reduction
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Example
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Conclusions

What ?
• Fine-Grained Test Requirement Identification

Why ?
• Reduce the Cost of Hierarchical Test Path Construction

How ?
• Analysis of Severity Imposed on Test Paths
• Efficient Cell-Level Transparency Extraction
• Test Requirement Granularity Identification & Adjustment
Results ?
• Identified Test Requirements Combine:

• Generality (for Fast Hierarchical Test Path Construction)
• Accuracy (for Low Hierarchical Test Path Severity & Cost)

Future Work ?
• Extension for Sequential Logic
• DFT For Test Requirement Reduction


