
Reducing Hierarchical Test Path Cost via Modular Test Requirement Analysis

Yiorgos Makris
EE Department - Yale University

New Haven, CT 06520
yiorgos.makris@yale.edu

Alex Orailoglu
CSE Department - U.C. San Diego

La Jolla, CA 92093
alex@cs.ucsd.edu

Abstract
We propose a methodology that examines design modules and identifies appropriate vector justification and response

propagation requirements for hierarchical test. Based on a cell-level analysis and transparency composition methodology,
test requirements for a module are defined as a set of fine-grained input and output bit clusters and pertinent justification and
propagation values. The identified test requirements are independent of the actual test set and are adjusted to the cell-level
connectivity and inherent regularity of the module. As a result, they combine the generality required for fast hierarchical
test path construction with the accuracy necessary for minimizing the incurred DFT hardware overhead, thus fostering
cost-effective hierarchical test. Experimental results verify the ability of the proposed methodology to moderate the cost of
hierarchical test path construction through accurate, compact, and highly parametrizable test requirement definition.

1. Summary

Hierarchical methods leverage on the ability to individually target each module in a design and generate highly efficient lo-
cal test. This benefit, however, comes at the cost of necessitating hierarchical test paths through the upstream and downstream
logic, which establish transparent access to the module under test (MUT), as depicted in Figure 1(a). During hierarchical test
path construction, however, the module under test is treated as a black box and no information pertaining to its inherent test
requirements is utilized. Consequently, excessive DFT hardware is employed in order to construct hierarchical test paths. In
an effort to reduce the DFT cost of hierarchical test path construction, two directions have been examined. Along the first
direction, several research efforts have been invested in efficiently defining, extracting, and utilizing inherent design trans-
parency. Along the second direction, inherent functionality of the upstream and downstream logic is utilized to constrain local
test generation in an effort to render highly translatable test. Not much attention has been paid, however, to a third alternative,
namely the possibility of moderating the cost of hierarchical test paths through an examination and informed definition of
test requirements for each module. This idea is depicted in Figure 1(b), where the internal cell-level connectivity of the MUT
is examined and its test requirements are defined in terms of several input and output bit clusters. This, in turn, necessitates
several narrow hierarchical test paths instead of a single coarse path, thus increasing the probability of their inherent existence
in the design and reducing the expected DFT cost for their construction. In this work, we examine the impact of test require-
ment granularity on the severity of hierarchical test path construction and we propose a methodology for reducing the cost of
hierarchical test path construction by adjusting the generality of test requirements. A cell-level analysis and a symbolic path
composition result in the definition of fine-grained test requirements on sets of input and output bit clusters.

Module

Under

Test

Primary

Inputs

Primary

Outputs

Justify All

Vectors

Propagate All

Responses

Test Requirements

(MUT=Black Box)

DFT Cost for

Hierarchical Test

Path Construction

Hierarchical

Test Path

Through

Upstream

Logic

Hierarchical

Test Path

Through

Downstream

Logic

(a)

Module Under Test

Primary

Inputs

Primary

Outputs

Fine-Grained

Bit Clusters

to be

Justified

Fine-Grained

Bit Clusters

to be

Propagated

Test Requirements

(Analyze MUT)

Reduced DFT Cost

for Construction of

Fine-Grained

Hierarchical Test

Paths

(b)

CELL
 CELL

Figure 1. Granularity of Test Requirements

Test Requirement Analysis
for Low Cost Hierarchical

Test Path Construction

Alex Orailoglu
COMPUTER SCIENCE & ENGINEERING DEPARTMENT

Yiorgos Makris
ELECTRICAL ENGINEERING DEPARTMENT

YALE
University

Motivation

Hierarchical Test Generation & Application

Upstream Modules

Vector
Justification Paths

Module
Under
Test

Primary
Inputs

Primary
Outputs

Downstream Modules

Response
Propagation Paths

Hierarchical Design

Hierarchical Test Paths

Local
Test

Local To
Global Test
Translation

Global
Test

Local
Test

Generation

• Divide: Complexity Reduction – Customization
• Conquer: Need Access to the Boundary of Each Module

• Limitation:DFT Cost for Hierarchical Test Path Construction

Research Direction

Problem Definition
• Lack of Identifiable Transparency Incurs DFT Overhead

Current Research Efforts
• Reduce the Cost of Hierarchical Test Paths through:

• Improved Transparency Extraction Methods
• Low-Cost DFT for Establishing Transparency

Proposed Method
• Reduce the Cost of Hierarchical Test Paths through:

• Accurate Test Requirement Identification
• Low-Cost DFT for Reducing Test Requirements

Idea
• Identify Sufficient Test Requirements Expressed in Many Narrow

Paths Instead of One Wide Path

Justification
• Full Transparency Rarely Needed for Testing Each Module
• Narrow Paths Have Higher Probability of Inherent Existence

Hierarchical Test Path Severity

Test Requirements of Modules
• Test Requirement Severity Critical to Path Complexity
• Current Approaches Assume Full Symbolic Path Needed
• Accurate Fine-Grained Paths Important to Reduce DFT

Severity Threshold Condition
• The hierarchical test path construction severity of a set of

k-bit vectors is equivalent to a k -bit symbolic path if every
subset of bits obtains more than half of the possible values

MODULE

TS1={00, 11}
TS2={01, 10}
TS3={00, 01}
TS4={10, 11}

TS5={00, 01, 10}

MODULE

TEST SET

(A1, A1) : 1 Free Variable
(A1, A1') :1 Free Variable
(V, A1) : 1 Free Variable
(A1, V) : 1 Free Variable

(A1, A2) : 2 Free Variables

PATH REQUIREMENT

TS6= {001, 010, 101, 110}

TS7= {010, 100, 110, 001}

TEST SET

(A1, A2, A2') : 2 Free Variables

(A1, A2, A3) : 3 Free Variables

PATH REQUIREMENT

Proposed Methodology

Cell-Based vs. Exhaustive Requirement Analysis

CELL
. . .

m n
. . .

k l

'A'

'A'

'X'

'X'

'X'

'X'

'A' 'A''A' 'A'

MODULE

Surjective Path Injective Path

Surjection Activation
Constants

Injection Activation
Constants

CELL . . .m n. . .k l

P={Test Pattern Values} 'X'

'X'

'X'

'X'

V
j

V
p

V
t

V
r

MODULE

k ≥ l n ≥ m
R={Test Response Values}

k ≥ l n ≥ m

Cell Granularity

Selection Factors
• Satisfaction of Severity Threshold Condition
• Repetitive Structures – Regularity - Homogeneity
• Number and Size of Cells

Basic Cells Satisfying Severity Condition
A
B
C

D

E

FULL ADDER CELL

B

C

D

E

NON-RESTORING DIVIDER CELL

A

S

S

C D

E

A

B

MULTIPLY-ADD CELLRESTORING DIVIDER CELL

B

C

A

E

S

D

Vectors:

ABC
1 0 0
0 1 0
0 0 1
1 0 1
1 1 0
0 0 0

Responses:

DE
1 0
0 1
0 0

Vectors:

ABCS
0X01
0 1 0 0
1 0 0 0

0X10
1 1 0 1

0X11
1 1 0 0

Responses:

DE
0 1
0 0
1 0

Hierarchical Test
Path Severity:

Just i fy 'AAAA' at ABCS
Propagate 'AA' f rom DE

Hierarchical Test
Path Severity:

Just i fy 'AAA' at ABC
Propagate 'AA' f rom DE

Vectors:

ABCS
1 0 0 0
0 0 0 0
0 1 0 1
1 1 0 0
1 0 1 0
0 0 1 0
0 1 0 0

Responses:

DE
0 1
0 0
1 0

Hierarchical Test
Path Severity:

Just i fy 'AAAA' at ABCS
Propagate 'AA' f rom DE

Vectors:

ABCS
010X
111X
110X
0 1 1 0
0 1 1 1

Responses:

DE
0 1
0 0
1 0
1 1

Hierarchical Test
Path Severity:

Just i fy 'AAAA' at ABCS
Propagate 'AA' f rom DE

ABCS
0 0 0 1
1 0 0 0
0 0 1 1
1 0 1 1
1 0 0 1

Test Requirements Example #1

CinA0B0A1B1A2B2A3B3
 A A A V V X X X X
 X A A A A V V X X
 X X X A A A A V V
 X X X X X A A A A

FA#1

A0 B0

Z0

C1Cin FA#2

A1 B1

Z1

C2 FA#3

A2 B2

Z2

C3 FA#4

A3 B3

Z 3

Cout

Test Justification Requirements: Test Propagation Requirements:

FA#1:
FA#2:
FA#3:
FA#4:

 Z0Z1Z2Z3Cout
 A A X X X
 X A A X X
 X X A A X
 X X X A A

FA#1:
FA#2:
FA#3:
FA#4:

CARRY-RIPPLE ADDER

Test Requirements Example #2

74181 ALU

 M'CnA0A1A2A3B0B1B2B3S0S1S2S3
 V V A X X X A X X X A A A A
 V V V A X X V A X X A A A A
 V V V V A X V V A X A A A A
 V V V V V A V V V A A A A A
 A A A X X X A X X X A V V V
 A A A A X X A A X X A A V V
 A A A A A X A A A X A A A V
 A A A A A A A A A A A A A A
 A A A A A A A A A A A A A A

Test Justification Requirements:

Test Propagation Requirements:

Cell#1:
Cell#2:
Cell#3:
Cell#4:
Cell#5:
Cell#6:
Cell#7:
Cell#8:
Cell#9:

 G'CoP'F3'F2'EqF1'F0'
X X X X X X A A
X X X X A X A X
X X X A A X X X
X A X A X X X X
X X X X X X X A
X X X X X X A X
X X X X X A X X
X X X X A X X X
A A A X X A X X

Cell#1:
Cell#2:
Cell#3:
Cell#4:
Cell#5:
Cell#6:
Cell#7:
Cell#8:
Cell#9:

Cell
#5

Cell
#6

Cell
8

Cell
#7

Cell
#9

F 0 ' F 1 ' F2' F3' Eq P'Co G'

Cell
1

Cell
#2

Cell
3

Cell
4

M ' Cn S0S1S2S3A0B0 A1B1 A2B2 A3B3

Test Requirements Example #3

 Z1Z2Z3Z4Z5Z6D1D2D3
 A V V A V V V V A
 A V A A V V V A A
 A A A V V V A A V
 V A V V A V V V A
 V A V A A V V A A
 V A A A V V A A V
 V V A V V A V V A
 V V A V A A V A A
 V V A A A V A A V
 A A X X X X A X X
 A A A V X X A V X
 X A A A V X A V X

Cell
3

Z2

Cell
2

Z3

Cell
#1

Z4

Test Justification Requirements: Test Propagation Requirements:

Cell#1:
Cell#2:
Cell#3:
Cell#4:
Cell#5:
Cell#6:
Cell#7:
Cell#8:
Cell#9:

Cell#10:
Cell#11:
Cell#12:

Q1Q2Q3S4S5S6
A A X A X X
A A A X X X
A A X X X X
X A A X A X
X A A A X X
X A A X X X
X X A X X A
X X A X A X
X X A A X X
A X X X X X
X A X X X X
X X A X X X

RESTORING ARRAY DIVIDER

' 0'

D1 D2 D3
Cell
#10

Z1

Cell
6

Cell
#5

Cell
4

Z5

' 0 '

D1 D2 D3
Cell
#11

Cell
#9

S4

Cell
8

S5

Cell
#7

Z6

S6

' 0'

D1 D2 D3
Cell
#12

Q1

Q2

Q3

Cell#1:
Cell#2:
Cell#3:
Cell#4:
Cell#5:
Cell#6:
Cell#7:
Cell#8:
Cell#9:

Cell#10:
Cell#11:
Cell#12:

Metrics and Experimental Results

Severity Metrics

 Symbolic Paths Compacted Test Non- Compacted Test Proposed Method
 ? -TPES ? - TPIS ? - TPES ? -TPIS ? -TPES ? - TPIS ? -TPES ? -TPIS

Adder 1024 32 2 2 4 7168 40 256 6 4 16
Divider 4096 64 1088 69632 832 47888 3 6 272
ALU 65536 256 5632 1441792 4064 1013856 3 2 320

 Symbolic Paths Compacted Test Non- Compacted Test Proposed Method
 C- TPES C-TPIS C-TPES C-TPIS C- TPES C-TPIS C-TPES C- TPIS

Adder 262144 512 4096 20197152 848 38144 2560 656
Divider 262144 512 9216 4718592 7360 3662468 49152 98304
ALU 238435456 16384 425984 6979321856 65280 230430714 238435456 16384

Experimental Results

∑
∀

=
P a t h s

PathTPESModuleTPES)()(

∏
∀

=
Bits

BitTPESPathTPES)()(

















=

''4

''2

''1

)(

Aif

Vif

Xif

BitTPES

∑
∀

=
P a t h s

PathTPISModuleTPIS)()(

∏
∀

=
Bits

BitTPISPathTPIS)()(
















=

''4

''2

''1

)(

Vif

Aif

Xif

BitTPIS

Metric Calculation Example

TEST PATTERNS - TEST RESPONSES

A3A2A1A0B3B2B1B0Cin CoutZ3Z2Z1Z0

0 0 0 0 1 0 1 1 0 0 1 0 1 1
0 1 0 1 0 1 1 0 1 0 1 1 0 0
1 0 0 1 0 0 1 1 0 0 1 1 0 0
1 1 1 0 0 1 1 0 1 1 0 1 0 1
0 1 0 1 0 0 0 1 0 0 0 1 1 0
1 0 1 0 1 1 1 0 0 1 1 0 0 0
0 0 0 1 1 1 0 0 0 0 1 1 0 1
0 1 1 0 1 0 0 1 0 0 1 1 1 1

4-bit
Carry Ripple

Adder

M

A[3:0] B[3:0]

CinCout

Z[3:0]

Symbolic Paths

1 Justification Path: "AAAAAAAAA"

C-TPES(M)=49=262144
C-TPIS(M)=29 =512

1 Propagation Path: "AAAAA"

O-TPES=45 =1024
O-TPIS=2 5=32

Compacted Test

8 Justification Paths: "VVVVVVVVV"

C-TPES(M)=8*29=4096
C-TPIS(M)=8*4 9=20197152

7 Propagation Paths: "VVVVV"

O-TPES=7*25 =224
O-TPIS=7*45 =7168

8 Distinct Vectors - 7 Distinct Responses

Metric Calculation Example (cont’d)

4 Justification Paths:
"XXVAXXVAA"
"XVAAXVAAX"
"VAAXVAAXX"
"AAXXAAXXX"

C-TPES(M)=22*43 +22 *44+22*44 +44 =2560
C-TPIS(M)=42* 23+42*24+42* 24+42=656

TEST PATTERNS - TEST RESPONSES
(RANDOM FILL TURNED OFF)

A3A2A1A0B3B2B1B0Cin CoutZ3Z2Z1Z0

0 1 1 X 0 0 1 X X 0 1 0 X X
X 0 1 1 X 0 0 1 X X X 1 0 X
0 1 0 X 0 0 0 X X 0 0 1 X X
0 0 0 X 0 1 0 X X 0 0 1 X X
0 0 1 X 0 0 1 X X 0 0 1 X X

X 0 1 0 X 0 0 X 0 X X 0 1 X
X 0 0 0 X 0 1 X 0 X X 0 1 X
X 0 0 1 X 0 0 1 X X X 0 1 X
X X 0 1 X X 0 0 1 X X X 1 0
X X 0 1 X X 0 0 0 X X X 0 1
X X 0 0 X X 0 1 0 X X X 0 1
X X 0 0 X X 0 0 1 X X X 0 1
0 1 X X 0 1 X X X 0 1 X X X
1 0 X X 1 0 X X X 1 0 X X X
1 0 X X 0 0 X X X 0 1 X X X
0 0 X X 1 0 X X X 0 1 X X X
1 1 X X 0 1 X X X 1 0 X X X

Non-Compacted Test
17 Distinct Justification Paths:

(8 have 3 Xs, 4 have 4 Xs, 5 have 5 Xs)

C-TPES(M)=8*26+4*25+ 5 * 24 =848
C-TPIS(M)=8*46+4*45+5*44* 24+42=38144

7 Distinct Propagation Paths:
(3 have 2 Xs, 4 have 3 Xs)

O-TPES=3*23+4*22=40
O-TPIS=3*43+4*42=256

Full
Adder

Full
Adder

Full
Adder

Full
Adder

A0 B0

Z0

A1 B1

Z1

A2 B2

Z2

A3 B3

Z3

C1 C2 C3Cin Cout

4 Propagation Paths:
"XXXAA"
"XXAAX"
"XAAXX"
"AAXXX"

O-TPES=42 +42 +42+42=64
O-TPIS=22+22+22+22=16

Proposed Methodology

DFT for Test Requirement Reduction

Guard and Guide Inputs

CELL
. . .

m n
. . .

k l

'A'

'A'

'X'

'X'

'X'

'X'

'A ' 'A ''A' 'A'

MODULE

Surjective Path Injective Path

Surjection Activation
Constants

Injection Activation
Constants

k ≥ l n ≥ m

CELL m nk l

'A'

'A'

Other Inputs

'A ' 'A ' 'A'

MODULE

Surjective Path Injective Path

Guard Inputs

Test
Inputs

'A'

Other InputsGuide Inputs

D

A = 0

C

B

E
F

Guard
Input

J

G = 1

I
H

K
L

Guide
Input

DFT for Test Requirement Reduction

Example

 Z1Z2Z3Z4Z5Z6D1D2D3
 V A V A A V V A A
 V V A A A V A A V

Cell
#3

Z2

Cell
#2

Z3

Cell
#1

Z4

Original Test Justification Requirements:

Cell#5:
Cell#9:

RESTORING ARRAY DIVIDER

' 0'

D1 D2 D3
Cell
#10

Z1

Cell
#6

Cell
#5

Cell
#4

Z5

' 0'

D1
D2

D3Cell
#11

Cell
#9

S 4

Cell
#8

S 5

Cell
#7

Z6

S 6

' 0'

D1 D2 D3
Cell
#12

Q1

Q2

Q3

 Z1Z2Z3Z4Z5Z6D1D2D3
 V A V A A X V A V
 V X A A A V X X V

Modified Test Justification Requirements:

Cell#5:
Cell#9:

MUXTest

Vdd

MUXTest

Conclusions

What ?
• Fine-Grained Test Requirement Identification

Why ?
• Reduce the Cost of Hierarchical Test Path Construction

How ?
• Analysis of Severity Imposed on Test Paths
• Efficient Cell-Level Transparency Extraction
• Test Requirement Granularity Identification & Adjustment
Results ?
• Identified Test Requirements Combine:

• Generality (for Fast Hierarchical Test Path Construction)
• Accuracy (for Low Hierarchical Test Path Severity & Cost)

Future Work ?
• Extension for Sequential Logic
• DFT For Test Requirement Reduction

