
On the Compaction of Independent Test Sequences for Sequential Circuits

Petros Drineas
Computer Science Department
Rensselaer Polytechnic Institute

Troy, NY 12180
drinep@cs.rpi.edu

Yiorgos Makris
Electrical Engineering Department

Yale University
New Haven, CT 06520

yiorgos.makris@yale.edu

Extended Abstract

Deterministic test generation methods typically target a
primary fault and generate a test sequence for detecting it.
Since the generated test sequence may also detect ancillary
faults, fault simulation is subsequently employed and both
the primary and the ancillary faults are eliminated from the
fault list. The same fault dropping mechanism is also em-
ployed in simulation-based test generation methods, wherein
random, pseudo-random, or algorithmically constructed test
sequences are fault-simulated on the circuit. In either case,
the primary objective is the derivation of a set of test se-
quences that detects all faults and fault dropping is an es-
sential element in order to reduce test generation time. As
a result, test generation methods typically produce a sub-
optimal set of test sequences, i.e. a set wherein some test
sequences (or portions thereof) may be redundant. Elimina-
tion or pruning of redundant test sequences is the objective
of test compaction, which may be performed either during
test generation (dynamic compaction), or after test genera-
tion (static compaction). Efficient test compaction methods
are very important in order to reduce test storage, test appli-
cation time, and by extension, test cost.

In this paper, we study a specific instance of the prob-
lem, namely the compaction of independent test sequences
for sequential circuits. Such test sequences do not rely on
any assumptions regarding the initial state of the circuit and
are, thus, independent of it. It is also assumed that each test
sequence is fault simulated only once, yet without fault drop-
ping so that all detectable faults are obtained. Based on this
information, it is possible that some test sequences may be
eliminated or pruned without any reduction in fault coverage.
Since each test sequence consists of a number of test vectors,
the optimization objective of test compaction in this scenario
is the minimization of the total number of test vectors in the
compacted set of test sequences.

This instance of test compaction was first formulated in
[1], where it is shown to be NP-hard and is approximated
through Genetic Algorithms. An fast and efficientBranch-
&-Bound Algorithm for solving this problem has also been
proposed recently [2]. While significant levels of compaction
within reasonable time are experimentally observed, no in-
dication of proximity to the optimal solution is provided
through these method. This deficiency is addressed through
the work presented herein; more specifically, we contribute a
formulation of the problem as an Integer Program, which is

subsequently approximated through Randomized Rounding
[3] of its Linear Program relaxation. The major advantage of
this approach is that it provides a lower bound for the size of
the optimal set of compacted test vectors, namely the opti-
mal solution of the Linear Program relaxation of the Integer
Program. Such a lower bound not only establishes a mech-
anism for assessing the quality of test compaction, but may
also provide an informed termination criterion for iterative
approaches, such as the solution proposed in [1]. Moreover,
experiments with alternative test sets for the ISCAS89 [4]
benchmark circuits show that the proposed solution yields
almost optimal solutions.

In order to evaluate the proposed methodology we repeat
the experiment described in [1], wherein the authors gener-
ated sets of independent test sequences for the ISCAS89 [4]
benchmark circuits using two different ATPG tools, GATTO
[5] and HITEC [6]. Details and the resulting fault detection
matrices are available at [7]. These matrices are the starting
point for our experiments. Test sequences are extended into
subsequences, the proposed method is applied and results are
reported in Figures (1)-(2)1.

The number of test sequences and total vectors in the orig-
inal test set before compaction are reported in columns 2 and
3. The number of test sequences and total vectors in the com-
pacted test set yielded by the proposed method are reported in
columns 4 and 5. The difference between the number of vec-
tors in the identified solution and the theoretical lower bound
given by the Linear Program solution is reported in column
6. Column 7 indicates the size of the compacted test set as
a percentage of the size of the original test set. Finally, col-
umn 8 indicates the test compaction efficiency of the Genetic
Algorithms method proposed in [1].

The most important observation is that our approach al-
most always identifies the optimal solution. As shown in the
tables, the distance from the theoretical lower bound is 0 for
most circuits. The same observation applies for the results
of the Genetic Algorithm described in [1]. One can also ob-
serve that, for some circuits, out method achieves better com-
paction ratio over [1] (i.e. GATTO test set for S3271, HITEC
test sets for S1269 and S3271).

The actual running times of our approach are comparable
to those reported in [1]. We caution the reader, however, that
such a comparison is rather misleading: our algorithm is im-

1A “*” in the table of Figure (2) indicates a minor discrepancy between
the numbers reported in [1] and the size of the tables available from [7].

Original

Test Set

Compacted

Test
Set

Proposed

Method

GA [1]

Method

Circuit

#

Seq

#

Vec

#

Seq

#

Vec

Distance

From

Lower

Bound

%

Red

%

Red

S208

 36

1096

 6

 347

 0

 31.66

 31.66

S298

 24

 302

 11

 141

 0

 46.69

 46.69

S344

 19

 141

 10

 66

 0

 46.81

 46.81

S349

 19

 144

 11

 84

 0

 58.33

 58.33

S382

 17

 840

 7

 485

 0

 57.74

 57.74

S386

 38

 418

 15

 221

 0

 52.87

 52.87

S400

 16

 916

 7

 502

 0

 54.08

 54.08

S420

 33

 797

 8

 333

 1

 41.78

 41.78

S444

 22

1434

 9

 788

 0

 54.95

 54.95

S499

 29

 465

 9

 192

 0

 41.29

 41.29

S510

 37

 989

 7

 237

 0

 23.96

 23.96

S526

 18

1050

 9

 769

 0

 73.24

 73.24

S526n

 16

 862

 6

 523

 0

 60.67

 60.67

S641

 48

 395

 24

 221

 0

 55.95

 55.95

S713

 55

 557

 23

 250

 0

 44.88

 44.88

S820

 38

 669

 14

 347

 0

 51.87

 51.87

S832

 33

 425

 10

 196

 0

 46.12

 46.12

S838

 37

1323

 12

 476

 3

 35.98

 35.75

S938

 37

1323

 11

 473

 0

 35.75

 35.75

S953

 75

1099

 32

 539

 0

 49.04

 49.04

S967

 72

1223

 31

 660

 1

 53.96

 54.70

S991

 20

 448

 9

 365

 0

 81.47

 81.47

S1196

 133

1805

 74

 1124

 0

 62.27

 62.66

S1238

 123

1554

 74

 1004

 0

 64.61

 64.80

S1269

 52

 450

 29

 245

 0

 54.44

 54.44

S1423

 107

2691

 28

 1279

 0

 47.53

 47.71

S1488

 65

1824

 19

 946

 0

 51.86

 51.86

S1494

 62

1244

 19

 652

 0

 52.41

 52.41

S1512

 52

 772

 14

 289

 0

 37.44

 37.44

S3271

 132

2529

 50

 1178

 0

 46.58

 60.58

S3384

 58

 888

 22

 410

 0

 46.17

 46.17

S4863

 112

1533

 42

 790

 8

 50.88

 48.66

S5378

 71

 919

 42

 493

 0

 5
3.65

 53.65

S6669

 64

 592

 36

 301

 0

 50.84

 51.18

S13207

 34

 544

 9

 187

 0

 34.38

 34.38

S15850

 10

 153

 3

 91

 0

 59.48

 59.48

Figure 1. Results for GATTO Test Sets

plemented in MatLab – a slow, interpreted language – while
the Genetic Algorithm of [1] is implemented inC. Moreover,
the two approaches are examined on different platforms. On
the other hand, we should emphasize that the theoretical run-
ning time of our approach is linear; such a statement cannot
be made for the Genetic Algorithm of [1], where the rate of
convergence relies heavily on the quality of the initial pop-
ulation. Additionally, the main contribution of the proposed
method is the problem formulation which, unlike previous
approaches, allows for a lower bound to be obtained.

References

[1] F. Corno, P. Prinetto, M. Rebaudegno, and M. Sonza Reorda,
“New static compacion techniques of test sequences for se-
quential circuits,” inEuropean Design and Test Conference,
1997, pp. 37–43.

Original

Test Set

Compacted

Test
Set

Proposed

Method

GA [1]

Method

Circuit

#

Seq

#

Vec

#

Seq

#

Vec

Distance

From

Lower

Bound

%

Red

%

Red

S208

 44

 739

 10

 292

 1

 39.51

 39.27

S298

 20

 188

 7

 116

 0

 61.70

 54.38*

S344

 11

 61

 6

 45

 0

 73.77

 75.41

S349

 16

 84

 9

 63

 0

 75.00

 76.19

S382

 16

 358

 2

 155

 0

 43.30

 43.45

S386

 58

 258

 31

 162

 0

 62.79

 62.79

S400

 16

 354

 2

 155

 0

 43.75

 43.70

S420

 52

 786

 10

 274

 0

 34.86

 34.90

S444

 18

 305

 2

 204

 0

 66.89

 66.56*

S510

 38

 845

 27

 623

 0

 73.73

 73.67*

S526

 18

 260

 2

 172

 0

 66.15

 66.54

S526n

 17

 257

 2

 169

 0

 65.76

 65.23*

S713

 74

 270

 35

 169

 1

 62.59

 63.33

S820

 121

1170

 62

 671

 0

 57.35

 57.44

S832

 112

1058

 60

 617

 0

 58.32

 58.51

S838

 52

 671

 12

 310

 1

 46.20

 45.93

S938

 52

 671

 12

 310

 1

 46.20

 45.93

S953

 111

 825

 38

 404

 0

 48.97

 48.97

S967

 120

 83
1

 38

 407

 0

 48.98

 48.98

S991

 50

 83

 25

 46

 0

 55.42

 55.42

S1196

 189

 509

 110

 339

 2

 66.60

 66.60

S1238

 191

 513

 110

 334

 2

 65.11

 64.72

S1269

 67

 255

 26

 136

 0

 53.33

 61.18

S1423

 50

 282

 16

 187

 0

 66.31

 66.43

S1488

 24

 69

 16

 56

 0

 81.16

 81.16

S1494

 60

 523

 43

 418

 0

 7
9.92

 81.02

S1512

 60

 282

 14

 117

 0

 41.49

 41.70

S3271

 61

1158

 19

 489

 0

 42.23

 49.70

S3384

 18

 212

 8

 164

 0

 77.36

 77.83

S4863

 106

 373

 57

 256

 0

 68.63

 68.35*

S5378

 95

 250

 50

 153

 1

 61.20

 60.80

S6669

 68

 466

 23

 259

 0

 55.58

 55.58

S9234

 7

 19

 2

 9

 0

 47.37

 52.63

S1
3207

 15

 97

 6

 57

 0

 58.76

 59.79

S15850

 15

 39

 4

 14

 0

 35.90

 38.46

S38417

 281

 806

 14

 131

 0

 16.25

 16.38

S38584

 48

 509

 30

 435

 0

 85.46

 85.46

Figure 2. Results for HITEC Test Sets

[2] J. Raik, A. Jutman, and R. Ubar, “Fast static compaction of
tests composed of independent sequences: Basic properties and
comparison of methods,” inInternational Conference on Elec-
tronics, Circuits and System, 2002, pp. 445–448.

[3] P. Raghavan and C. Thompson, “Randomized rounding:
A technique for provably good algorithms and algorithmic
proofs,” Combinatorica, vol. 7, no. 4, pp. 365–374, 1987.

[4] “ISCAS’89 benchmark circuits information,” Available from
http://www.cbl.ncsu.edu .

[5] F. Corno, P. Prinetto, M. Rebaudegno, and M. Sonza-Reorda,
“GATTO: A genetic algorithm for automatic test pattern gen-
eration for large synchronous sequential circuits,”IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 15, no. 8, pp. 991–1000, 1996.

[6] T. Niermann and J. H. Patel, “HITEC: A test generation pack-
age for sequential circuits,” inEuropean Conference on Design
Automation, 1992, pp. 214–218.

[7] “Test sequence tables used in [1],” Available from
http://www.cad.polito.it/tools .

