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Extended Abstract

Deterministic test generation methods typically target a
primary fault and generate a test sequence for detecting it.
Since the generated test sequence may also detect ancillary
faults, fault simulation is subsequently employed and both
the primary and the ancillary faults are eliminated from the
fault list. The same fault dropping mechanism is also em-
ployed in simulation-based test generation methods, wherein
random, pseudo-random, or algorithmically constructed test
sequences are fault-simulated on the circuit. In either case,
the primary objective is the derivation of a set of test se-
quences that detects all faults and fault dropping is an es-
sential element in order to reduce test generation time. As
a result, test generation methods typically produce a sub-
optimal set of test sequences, i.e. a set wherein some test
sequences (or portions thereof) may be redundant. Elimina-
tion or pruning of redundant test sequences is the objective
of test compaction, which may be performed either during
test generation (dynamic compaction), or after test genera-
tion (static compaction). Efficient test compaction methods
are very important in order to reduce test storage, test appli-
cation time, and by extension, test cost.

In this paper, we study a specific instance of the prob-
lem, namely the compaction of independent test sequences
for sequential circuits. Such test sequences do not rely on
any assumptions regarding the initial state of the circuit and
are, thus, independent of it. It is also assumed that each test
sequence is fault simulated only once, yet without fault drop-
ping so that all detectable faults are obtained. Based on this
information, it is possible that some test sequences may be
eliminated or pruned without any reduction in fault coverage.
Since each test sequence consists of a number of test vectors,
the optimization objective of test compaction in this scenario
is the minimization of the total number of test vectors in the
compacted set of test sequences.

This instance of test compaction was first formulated in
[1], where it is shown to be NP-hard and is approximated
through Genetic Algorithms. An fast and efficientBranch-
&-Bound Algorithm for solving this problem has also been
proposed recently [2]. While significant levels of compaction
within reasonable time are experimentally observed, no in-
dication of proximity to the optimal solution is provided
through these method. This deficiency is addressed through
the work presented herein; more specifically, we contribute a
formulation of the problem as an Integer Program, which is

subsequently approximated through Randomized Rounding
[3] of its Linear Program relaxation. The major advantage of
this approach is that it provides a lower bound for the size of
the optimal set of compacted test vectors, namely the opti-
mal solution of the Linear Program relaxation of the Integer
Program. Such a lower bound not only establishes a mech-
anism for assessing the quality of test compaction, but may
also provide an informed termination criterion for iterative
approaches, such as the solution proposed in [1]. Moreover,
experiments with alternative test sets for the ISCAS89 [4]
benchmark circuits show that the proposed solution yields
almost optimal solutions.

In order to evaluate the proposed methodology we repeat
the experiment described in [1], wherein the authors gener-
ated sets of independent test sequences for the ISCAS89 [4]
benchmark circuits using two different ATPG tools, GATTO
[5] and HITEC [6]. Details and the resulting fault detection
matrices are available at [7]. These matrices are the starting
point for our experiments. Test sequences are extended into
subsequences, the proposed method is applied and results are
reported in Figures (1)-(2)1.

The number of test sequences and total vectors in the orig-
inal test set before compaction are reported in columns 2 and
3. The number of test sequences and total vectors in the com-
pacted test set yielded by the proposed method are reported in
columns 4 and 5. The difference between the number of vec-
tors in the identified solution and the theoretical lower bound
given by the Linear Program solution is reported in column
6. Column 7 indicates the size of the compacted test set as
a percentage of the size of the original test set. Finally, col-
umn 8 indicates the test compaction efficiency of the Genetic
Algorithms method proposed in [1].

The most important observation is that our approach al-
most always identifies the optimal solution. As shown in the
tables, the distance from the theoretical lower bound is 0 for
most circuits. The same observation applies for the results
of the Genetic Algorithm described in [1]. One can also ob-
serve that, for some circuits, out method achieves better com-
paction ratio over [1] (i.e. GATTO test set for S3271, HITEC
test sets for S1269 and S3271).

The actual running times of our approach are comparable
to those reported in [1]. We caution the reader, however, that
such a comparison is rather misleading: our algorithm is im-

1A “*” in the table of Figure (2) indicates a minor discrepancy between
the numbers reported in [1] and the size of the tables available from [7].
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Figure 1. Results for GATTO Test Sets

plemented in MatLab – a slow, interpreted language – while
the Genetic Algorithm of [1] is implemented inC. Moreover,
the two approaches are examined on different platforms. On
the other hand, we should emphasize that the theoretical run-
ning time of our approach is linear; such a statement cannot
be made for the Genetic Algorithm of [1], where the rate of
convergence relies heavily on the quality of the initial pop-
ulation. Additionally, the main contribution of the proposed
method is the problem formulation which, unlike previous
approaches, allows for a lower bound to be obtained.
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Figure 2. Results for HITEC Test Sets
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