
Fault Tolerant Design of Random Logic based on a Parity Check Code∗

Sobeeh Almukhaizim and Yiorgos Makris
Electrical Engineering Department

Yale University
{sobeeh.almukhaizim, yiorgos.makris}@yale.edu

Abstract
We describe a method for designing fault tolerant cir-

cuits based on an extension of a Concurrent Error Detection
(CED) technique. The proposed extension combines parity
check codes and duplication in order to not only perform
error detection but also provide diagnosis and correction
capabilities. Informed selection among the outputs of the
original circuit and the outputs of the duplicate with parity
check codes renders a low-cost fault tolerant design. Exper-
imental results confirm the efficacy of the proposed method
as a general solution for designing fault tolerant circuits.

1. Introduction
Complex electronic circuits are currently utilized in

safety critical applications, where reliability is of paramount
importance. While manufacturing test typically identifies
a large number of circuit defects, exhaustive testing is im-
practical and attaining complete fault coverage may not be
feasible. Design-For-Testability (DFT) techniques are used
to remedy low fault coverage [1, 2], albeit at the cost of ad-
ditional hardware area. Yet undetected manufacturing de-
fects, wear-and-tear faults, as well as transient errors still
pose a threat to the reliable operation of the circuit. To
shield against such faults, CED techniques [3, 4, 5, 6, 7, 8]
are used to detect malfunctions during the lifetime of the
circuit. While the cost of CED techniques is often twice the
cost of the original design, such techniques can only report
the occurrence of a fault and may not take any remedial ac-
tion. Should the circuit need to remain operational in the
presence of a fault, a fault tolerant design is required. Fault
tolerant designs concurrentlydetect, diagnoseandcorrecta
fault effect, at the cost of either performance degradation
or considerable hardware overhead. For example, Triple
Modular Redundancy (TMR) [9], a standard fault tolerance
method, comes at three times the cost of the original circuit.

The distinct objectives of CED and fault tolerance have
resulted in quite different solutions to the two problems. In
an effort to reduce this gap, we examine in this paper the
extension of a standard CED technique into a method for
designing fault tolerant circuits. The choice of the starting-

∗This work is partially supported through a fellowship from Kuwait
University.

point CED technique is based on its effectiveness in terms
of fault model assumed, feasibility of implementation, per-
formance overhead and diagnostic capabilities. The CED
technique must be able to detect any single fault and, still,
be efficiently implemented for large circuits. Moreover, the
chosen CED technique must inherently provide some level
of fault identification in order to assist the diagnosis and
correction operation. Finally, the fault tolerance extension
to the CED technique needs to derive adequate information
for both detecting and correcting the fault on the fly, in order
to attain the same performance as the original circuit.

Among the several CED techniques that have been pro-
posed in the literature, we select one that meets most of
the aforementioned requirements and we extend it with the
minimum number of components necessary to perform fault
diagnosis and correction. Section 2 describes the selected
CED technique that fits our requirements and explains the
underlying features that assist the construction of a fault tol-
erant circuit. The added components and the proposed ex-
tension for fault tolerance are outlined in section 3. Experi-
mental results evaluating the proposed design are presented
in section 4 and conclusions are drawn in section 5.

2. CED using Parity Check Codes

The idea of multiple parity bits was first introduced in
[10]. A parity check code is a code in which the parity of
multiple circuit outputs, forming a parity group, is checked
against a predicted parity bit for that group. The objective
is to classify the outputs in a minimal number of groups,
such that any single fault in the circuit will affect the parity
of at most one output bit in every parity group. To ensure
that the fault effect will be detected, no sharing is allowed
between the cones of logic of output bits belonging to the
same parity group. The two extreme cases for the number
of parity groups aresingle-bit parity andduplication. In
single-bit parity, all output bits of the circuit form a single
group and, consequently, no sharing between their cones of
logic is allowed. In duplication, on the other hand, every
output bit is considered a group by itself and, thus, there are
no constraints on logic sharing. Nevertheless, both of these
extremes may incur significant hardware overhead and may
not lead to an acceptable solution.

1

Predicting the value of the parity bit in the single-bit par-
ity case is relatively inexpensive. However, the prohibition
of sharing between the output cones of logic adds a signifi-
cant overhead to the cost of the original circuit, which needs
to be intrusively re-synthesized under this constraint. Dupli-
cation, on the other hand, leaves the original circuit intact,
yet incurs the cost of an additional copy of the circuit to pre-
dict the parity of each group (which in this case is equal to
the actual output of the circuit). The possibility of finding
a more cost-effective solution in between the two extremes
has motivated several research efforts. The overall goal is
clear; minimize the area required to implement the parity
check code. The area required by the parity check code is
equal to the sum of the cost of the logic function, the par-
ity prediction logic, and a parity checker. As the number
of groups increases, the cost of the parity checker and par-
ity prediction logic increase as well, while the cost of the
original circuit decreases, as more logic sharing is permit-
ted between the outputs. On the other hand, reducing the
number of groups decreases the cost of the parity checker
and the parity prediction logic, while increasing the cost of
the original circuit due to reduced logic sharing.

One of the first efforts in finding an optimal point be-
tween the two extreme cases was developed by Deet al.
[5]. The circuit outputs are partitioned to form logic blocks
where no logic sharing is allowed between blocks but shar-
ing is maximized within the block. A cost function that is
based on logic sharing in the optimized circuit implementa-
tion guides the partitioning process. The number of parity
groups depends on the logic block with the highest num-
ber of outputs. Every group contains no more than a single
output from every logic block. Any single fault will affect
outputs of a single block and, as logic block outputs are in
different parity groups, the fault effect will not be masked.

The synthesis method proposed in [5] depends on the
number of output partitions; a user supplied parameter. The
greedy cost function considers only the area required by the
original function. Toubaet al. [6] enhanced the efficiency
of the solution by employing a cost function that takes into
account the cost necessary for the logic of the original func-
tion, the parity prediction, and the parity checker. The pro-
posed solution automates parity check code selection and
allows sharing between outputs in different logic blocks, as
long as the outputs belong to different parity groups, which
was a restriction in the method proposed in [5].

Zenget al. [7] extended the parity check code method of
[6] to design Finite State Machines (FSMs) with CED capa-
bilities. Since states can be represented symbolically, CED
circuitry can be added to the next state logic during state
assignment, after the assignment but before logic optimiza-
tion, or after logic optimization. A new state encoding tech-
nique that encodes the states with the objective of reducing
the area overhead of the self-checking FSM is introduced.

Original Circuit
 CED Circuit

Group

Parity

Predictor

Comparator

n

m
 k
m

Parity Checker

A
 B

MUX

O
1
 O
2

O
1
 O
2

A

B

Output

Figure 1. Proposed Methodology.

The next state parity check is done one clock cycle later to
also detect faults in the bistable elements. The output logic
and next state logic belong to different parity groups, and
hence, logic sharing between them is allowed.

Parity check codes appear to be the most appropriate
choice for our purpose of extending a CED method to per-
form fault diagnosis and fault correction. In accordance
with the requirements set forth in the introduction, parity
check codes allow the detection of all single faults, which
constitutes a reasonable fault model. Moreover, they in-
cur tolerable area overhead and are feasible to implement
for large circuits [6]. In addition, parity check codes reveal
some fault identification information that, when used prop-
erly, may assist with fault diagnosis and fault correction. In
the next section, we show how this information may be uti-
lized in order to design fault tolerant circuits.

3. Proposed Extension for Fault Tolerance
The result of the comparison between the predicted

group parity and the actual parity indicates the presence of
a fault, yet it provides us with no information regarding the
fault source. While a fault in the circuitry implementing
the desired logic function leads to faulty circuit results, po-
tential faults in the parity prediction logic will not affect
correctness of the output. Yet, the CED method will still
indicate detection of a fault, rendering the circuit results
unusable. Therefore, we need a mechanism to distinguish
between faults in the parity prediction logic and faults in
the original circuit. Furthermore, independent of where the
fault is, this mechanism should generate the correct result.

Figure 1 illustrates the proposed fault tolerant design.
The group-parity CED technique, as described in [6], con-
sists of the CED circuitry, the group parity predictor, and

2

A

 B

 Possible Fault Source

 Action

0

 0

No Error,

 All agree

Output

 O
1

or
O
2

0

 1

Error in Parity Predictor

OR
 Parity Checker

Output

 O
1

or
 O
2

1

 0

Error in Original Circuit

OR
 Comparator

Output

 O
2

1

 1

Error in

 CED Circuit

Output

 O
1

Figure 2. Diagnosis and Correction Actions.

a parity checker. Two components are added to extend the
group-parity CED technique for fault tolerance: the origi-
nal area-optimized circuit and an output comparator. The
two copies of the circuit, along with the CED capability,
provide adequate information for generating correct results,
even in the presence of a fault. The parity checker and the
comparator produce the control signals required to diagnose
and correct a fault.

During fault-free operation, the two inputs of the com-
parator will always agree. Similarly, the two inputs of the
parity checker will also agree. In case of a discrepancy in
the parity checker but not the comparator, a fault is detected
in the parity predict logic or in the parity checker, respec-
tively. If the comparator inputs disagree, while the parity
checker confirms the correctness of the group parity, a fault
is present either in the original circuit or in the compara-
tor. When both the comparator and parity checker detect
a discrepancy and under a single fault assumption, a fault
is detected in the CED circuit. The comparison results of
the parity checker and the comparator are used to diagnose
the fault source and select the correct output. All the pre-
vious possible scenarios are restated in the table of figure
2. The correct output can be easily produced using the cir-
cuitry shown at the bottom of figure 1. We should note at
this point that this small circuit is the Achilles heel of the
proposed fault tolerant method, just as a majority voter is
the weak point of TMR. In both cases, faults in this logic
can be neither detected nor corrected.

The proposed technique may be easily extended to se-
quential logic, by extending the method proposed in [7] for
CED in FSMs based on parity check codes. To make the
circuit fault tolerant, the original area-optimized FSM im-
plementation and an output comparator are added to detect
faults in the next state and output logic. In [7], the par-
ity check bits are stored in bistable elements to also detect
faults in the state register; however, this is not possible in
a fault tolerant implementation as the check is performed
a cycle later, while the next state logic is evaluating the
next state using an erroneous present state. Moreover, al-
though the fault is detected it may not be corrected without
performing a re-computation that will slow down the cir-

cuit operation. If the detection is performed before the next
state is stored in the bistable elements, then correction can
be added in the same cycle. Unfortunately, this will not al-
low us to detect any faults in the bistable elements.

In summary, the proposed method requires three addi-
tional hardware components in order to make a combina-
tional or sequential circuit fault tolerant: a replica of the
circuit synthesized with CED based on group parity, a com-
parator, and the small output selection hardware. In com-
parison to TMR, the proposed method provides a substantial
hardware reduction, as indicated through the experimental
results provided below.

4. Experimental Results
The generation of CED circuits using parity check codes

requires modification of the synthesis tool to prevent logic
sharing between outputs belonging to the same parity group.
We are currently implementing the required modifications
in the SIS [11] synthesis tool, in order to implement the
code selection and restructuring algorithms described in [6].
In the meantime, and for the purpose of estimating the hard-
ware overhead of the proposed method, we use the results
presented in [6] for MCNC combinational benchmarks. Fi-
nal results confirming the current estimates will be provided
in the final manuscript.

The literal count of the original circuit, the fault tolerant
circuit with TMR, and the proposed fault tolerant method
are provided in the table of figure 3. The first major head-
ing in the table describes each benchmark circuit consid-
ered: number of primary inputs, number of primary outputs
and literal count. The second major heading summarizes
the TMR implementation: the number of parity bits used,
the literal count for the three copies of the circuit, the literal
count for the checker, and the total literal count. As no out-
put grouping is performed in the TMR version, the number
of parity bits equals the number of primary outputs. The
third heading summarizes the proposed method: the num-
ber of parity bits, the literal count for the circuit (original
circuit, CED version, and group parity predictor), the lit-
eral count for the checker (parity checker and comparator),
and the total literal count. The last major heading in the ta-
ble of figure 3 provides the area overhead reduction of the
proposed scheme as compared to TMR, indicating that the
proposed scheme provides an average saving of14.62%.

5. Conclusion
In conclusion, we presented a method to construct fault

tolerant designs for random logic. The proposed method-
ology extends a parity check code based CED method by
appending the required components to perform fault diag-
nosis and fault correction. CED using parity check codes is
a key component of the proposed method, as it inherently

3

Original Circuit

 TMR FT Circuit

 Proposed FT Circuit

Name

 PI

 PO

Lits.

Count

Parity

bits

Lits.

Count

Check.

Lits.

Total

Count

Parity

bits

Lits.

Count

Check..

Count

Total

Count

Hardware

Reduction

apla

 10

 12

 312

 12

 936

 176

 1112

 3

 628

 140

 768

 32.91

br1

 12

 8

 196

 8

 588

 112

 700

 2

 439

 88

 527

 25.34

bw

 5

 28

 178

 28

 534

 432

 966

 8

 480

 352

 832

 10.11

chkn

 29

 7

 398

 7

 1194

 96

 1290

 3

 1104

 80

 1184

 7.54

dc1

 4

 7

 45

 7

 135

 96

 231

 3

 107

 80

 187

 20.74

dc2

 8

 7

 162

 7

 486

 96

 582

 2

 350

 76

 426

 27.98

exp

 8

 18

 435

 18

 1305

 272

 1577

 5

 961

 220

 1181

 26.36

luc

 8

 27

 211

 27

 633

 416

 1049

 6

 546

 232

 778

 13.74

p82

 5

 14

 127

 14

 371

 208

 579

 3

 289

 164

 453

 22.10

signet

 39

 8

 335

 8

 1005

 112

 1117

 5

 645

 100

 745

 35.82

wim

 4

 7

 60

 7

 180

 96

 276

 2

 121

 76

 197

 32.78

5xpl

 7

 10

 134

 10

 402

 144

 546

 3

 351

 116

 467

 12.69

alu4

 14

 8

 800

 8

 2400

 112

 2512

 8

 1600

 112

 1712

 33.33

b12

 15

 9

 87

 9

 261

 128

 389

 4

 237

 108

 345

 9.20

cmb

 16

 4

 52

 4

 156

 48

 204

 2

 116

 40

 156

 25.64

cu

 14

 11

 53

 11

 159

 160

 319

 1

 136

 120

 256

 14.47

f51ml

 8

 8

 130

 8

 390

 112

 502

 2

 348

 88

 436

 10.77

misex
1

 8

 7

 54

 7

 162

 96

 258

 3

 150

 80

 230

 7.41

misex2

 25

 18

 104

 18

 312

 272

 584

 2

 306

 208

 514

 1.92

pc1e

 19

 9

 69

 9

 207

 128

 335

 3

 225

 104

 329

 -
8.70

term1

 34

 10

 149

 10

 447

 144

 591

 7

 505

 132

 637

 -
12.98

ttt2

 24

 21

 191

 21

 573

 320

 893

 9

 565

 272

 837

 1.40

x2

 10

 7

 51

 7

 153

 96

 249

 2

 130

 76

 206

 15.03

Figure 3. Experimental Results on the MCNC Benchmarks.

discloses information that assist the diagnosis and correc-
tion phases in the proposed technique and reduce the corre-
sponding hardware overhead. The proposed method can be
easily extended to handle fault tolerant design of sequential
logic. Experimental results confirm the overhead reduction
of the proposed technique, as compared to the traditional
TMR fault tolerance approach.

References
[1] M. Geuzebroek, J. van der Linden, and A. van de

Goor, “Test point insertion for compact test sets,”
in Proceedings of the IEEE International Test Confer-
ence, 2000, pp. 292–301.

[2] N. Tamarapalli and J. Rajski, “Constructive multi-
phase test point insertion for scan-based bist,” inPro-
ceedings of the IEEE International Test Conference,
1996, pp. 649–658.

[3] M. Gossel and S. Graf, Error Detection Circuits,
McGraw-Hill, 1993.

[4] S. J. Piestrak, “Self-checking design in eastern eu-
rope,” IEEE Design and Test of Computers, vol. 13,
pp. 16–25, 1996.

[5] K. De, C. Natarajan, and P. Banerjee, “Rsyn: A sys-
tem for automated synthesis of reliable multilevel cir-

cuits,” in Proceedings of the IEEE Transactions on
Very Large Scale Integration Systems, 1994, vol. 2, pp.
186–195.

[6] N. Touba and E. McCluskey, “Logic synthesis of mul-
tilevel circuits with concurrent error detection,”IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 16, pp. 783–789, 1997.

[7] C. Zeng and E. McCluskey, “Finite state machine syn-
thesis with concurrent error detection,” inProceedings
of the IEEE International Test Conference, 1999, pp.
672–679.

[8] S. Mitra and E. McCluskey, “Which concurrent error
detection scheme to choose?,” inProceedings of the
IEEE International Test Conference, 2000, pp. 985–
994.

[9] R. E. Lyions and W. Vanderkulk, “The use of triple
modular redundancy to improve computer reliability,”
Tech. Rep., IBM J. Res. Develop., 1962.

[10] E. Sogomonyan, “Design of built-in self-checking
monitoring circuits for combinational devices,”Au-
tomation and Remote Control, vol. 35, no. 2, pp. 280–
289, 1974.

[11] E. M. Sentovich et al., “SIS: a system for sequen-
tial circuit synthesis,” ERL MEMO. No. UCB/ERL
M92/41, EECS UC Berkeley CA 94720, 1992.

4

