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Abstract—Contemporary coarse-grained runtime reconfig-
urable architectures (CGRRAs) are increasingly sensitive to aging
effects such as Negative Bias Temperature Instability (NBTI).
To address this, we propose a reliability-aware floorplanner
for CGRRAs based on a mixed Linear Programming (LP)
and Integer Linear Programming (ILP) method that extends
the Mean Time to Failure (MTTF) of CGRRAs by balancing
processing element (PE) usage. We use this as the basis of a design
space explorer that generates a variety of configurations, trading
off PE displacement vs. MTTF. On average, a 2.4× improvement
in MTTF was obtained for an average critical path delay increase
of under 2 percent (although most benchmarks had no delay
increase) compared to the default lifetime unaware floorplan.

Index Terms—NBTI; MILP; lifetime; floorplan; CGRRA;

I. INTRODUCTION

Heterogeneous Systems-on-Chips (SoCs) typically include

processors, memories, peripherals and a diverse number of

dedicated hardware accelerators. These accelerators execute

dedicated functions one to two orders of magnitude faster than

general purpose processors. In order to reduce the development

time and cost of these SoCs, companies started relying on

embedded FPGAs (eFPGAs) onto which to map these accel-

erators, called Reconfigurable SoCs (RSoCs). Coarse-grained

FPGAs are often runtime reconfigurable and thus, are often

called Coarse-Grained Runtime Reconfigurable Architectures

(CGRRAs). Fig. 1 shows a block diagram of an RSoC which

includes a CGRRA. A state of the art CGRRAs, the Stream

Transpose Processor (STP) [1], is used in this paper. The

runtime reconfiguration is achieved by dividing an applica-

tion into multiple contexts, where each context is mapped

onto the CGRRA in a separate clock cycle at runtime. The

CGRRA is reconfigured every clock cycle for each context

and this significantly increases the stress on the fabric and

hence accelerates aging mechanisms such as NBTI (Negative

Biased Temperature Instability) which dominates the reliability

degradation factors and are usually measured by the increase

in the magnitude of the threshold voltage [2], [3].

Lifetime-aware CAD flows have been proposed in the past

[2] [4] [5]. These flows have also been extended to FPGAs,

making use of the flexibility of the FPGAs to reconfigure

themselves [?], [6]–[8]. For CGRRAs, [3] proposes periodic

remapping of the design to less-used regions by using two

different configurations and switching between them. The

authors in [9] proposed a method to lower the temperature of

the CGRRA by generating different configurations. Similarly,

Gu, et al. [10] provides a rotation based mapping strategy to

balance the stress on multi-context CGRRAs. However, none

Fig. 1: Reconfigurable SoC with CGRRA eFPGA.

of the above approaches take into consideration performance

variation introduced by the stress time balance strategies.

II. STREAM TRANSPOSE PROCESSOR CGRRA

The Stream Transpose Processor (STP) [1] is used in SoCs

as a reconfigurable IP. Its main component is the tile, each

of which consists of an array of 8×8 PEs surrounded by

embedded memory and multipliers. The STP can hold up to 64

contexts in its State Transition Controller (STC) located in the

middle of the PE array. The STP is composed of tiles which is

in turn built out of PEs. Each PE contains an 8-bit arithmetic

logic unit (ALU), an 8-bit data manipulation unit (DMU) for

1-bit logic operations and 8-bit shifting and masking, and an

8-bit flip-flop unit (FFU).

Fig. 2(a) shows a diagram of an STP configuration flow. The

STP takes ANSI-C as its input and performs HLS to parallelize

it. The result is then mapped onto the STP’s architecture,

placed and routed. On the other hand, the code for the STC is

generated with the configuration file for each of the contexts.

The typical architecture after HLS is a FSM and a data path,

where the FSM generates the control signals for the data path.

In the case of the STP, each FSM state is a context, and

a new context is loaded every clock cycle onto the device.

The latency of the circuit therefore determines the number of

contexts and vice versa. This is highlighted in the left column

of Fig. 2(b), as the original floorplan. In this case 4 contexts

are mapped to the STP, one per clock cycle. The gray area

denotes the PEs being used in that particular context. The

maximum fabric size is therefore determined by the context

which makes use of the maximum number of PEs.

With respect to Fig. 2(b), suppose that the stress time of

each used PE is 1 unit, as indicated by the shaded PEs.

Summed over all contexts, some PEs have an accumulated

stress time of 4 units after the lifetime unaware floorplanning.

As shown in the right column of Fig. 2(b), a new lifetime

aware floorplan results in a decreased accumulated stress time

of 2 and PE usage is distributed across the entire fabric.

III. NBTI MODELING AND MTTF COMPUTATION

The threshold voltage Vth model of NBTI mechanisms used

in this work follows the standard formulation used in most
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Fig. 2: (a) STP configuration flow diagram and (b) mapping
and re-mapping of contexts, one context per clock cycle.

previous work [2], [3], [7], [10]. The threshold voltage Vth

will increase as indicated in equation 1, where ANBTI is

a technology dependent factor, n is a fabrication dependent

constant, k is Boltzmann’s constant, Ea is the activation

energy, T is the temperature, Vth0 is the starting Vth, t0 is the

corresponding starting time when Vth = Vth0 and STt0→t is

the stress time from t0 till time t which equals SR ×(t0 → t).
SR is the stress rate and equals the duty cycle, which is the

ratio of time that a transistor is on.

Vth = ANBTI × (STt0→t)
n × e(−Ea/kT ) × Vth0 (1)

The MTTF model used in this work assumes failure due

to a threshold voltage (Vth) increase by Vth shift. Vth shift

is defined as Vth MTTF - Vth0, in which Vth MTTF is the

MTTF threshold voltage related to the MTTF as shown

in Fig. 3. Thus, computing Vth allows us to compute the

MTTF of the CGRRA for the default PE floorplan. The blue

curve represents the original case without any lifetime aware

remapping, while the orange curve represents the case with

the lifetime aware remapped floorplan. We assume that the

fabric will fail when the Vth shift reaches a certain boundary

(e.g. 10% [3]) and the corresponding operation time will be the

MTTF. The orange curve has lower slope compared to the blue

curve, which means higher MTTF. The critical factors which

determine Vth shift are the highest stress time and temperature

(T ) among all PEs. For a given PE, the accumulated stress time

is the total stress time of the PE after execution of all contexts.

In order to obtain the original MTTF (blue curve in Fig. 3),

we first determine the stress time for each PE in the provided

floorplan. The stress time of each PE in every clock cycle

(every context) may be different because different functional

units may be mapped to a PE in different contexts. For

example, the characterization of the ALU and DMU within

one PE shows their delays as 0.87 ns and 3.14 ns, which

divided by the clock period, are their stress rates, respectively.

Next, the commonly used thermal simulator HotSpot [11] is

used to compute the temperature of each PE. The thermal

simulator takes the stress time maps and floorplans generated

in the lifetime unaware mapping generation phase as input

information to generate a thermal map of each context. The

PE with the maximum accumulated temperature (T ) across

all contexts is then identified and the corresponding stress

Fig. 3: Threshold voltage shift (Vth) vs. MTTF of both the original
and re-mapped floorplans [12].

times can be obtained from the floorplan. Thus, Vth shift is

computed using equation 1 and a plot as in Fig. 3 is used

to obtain the failing point MTTF. Using the lifetime-aware

floorplan, a new larger value of MTTF as in the orange curve

in Fig. 3 is obtained as the maximum accumulated stress times

are reduced.

IV. PROPOSED CAD DESIGN FLOW FOR CGRRAS

The input to our proposed CAD flow for CGRRAs is a

behavioral description for HLS and the output a lifetime-aware

floorplan consisting of N contexts, which are used to configure

the CGRRA fabric every clock cycle.

Phase 1: Lifetime-unaware PE Mapping MTTF Computa-
tion: This first phase of the proposed flow takes as input the

behavioral description to be mapped onto the CGRRA targeted

in this work and executes its complete VLSI design flow from

HLS to bitstream generation. This includes the technology

mapping onto the PEs and the placement and routing. The

commercial CAD flow provided with the CGRRA is used for

this purpose [1]. The result is a lifetime-unaware configuration

that minimizes the bounding box area of the used PEs, while

meeting the specified timing constraint.

This phase continues by taking as input the PEs used in each

context and the operations mapped on each PE and calculates

the stress time of each PE and their temperature. Based on

the NBTI modeling and MTTF computation equation 1, the

MTTF is computed. The result from this phase is the baseline

PE mapping in each of the contexts.

Phase 2 : Lifetime-aware re-mapping Design Space Ex-
ploration: This phase re-binds the operations in each context

to new PEs, e.g., operation j in context i to PE k, in order

to increase the MTTF. In this case PEk is the kth PE in

the array of PEs. In this work we formulate this re-binding

problem as a relaxed mixed LP and ILP (MILP) formulation

as in equation 2. The number of contexts (i) is c, Mi is the

number of operations (j) in context i and the number of PEs

(k) is N . OPijk is the probability that operation j in context

i is mapped to PEk. OPijk = {0, 1} implies the kth PE in

context i is either used or not for operation j, ST (OPij) is the

stress time of the jth operation in context i obtained from the

stress time maps in the lifetime unaware mapping generation

phase. STmax valid is the accumulated stress time constraint

for each PE. k is the location of the kth PE and is the current

PE that operation j in context i is mapped to, while korig
is the original PE that operation j in context i was mapped

to during the lifetime unaware floorplan. |k − korig| is the

Manhattan displacement distance between PEk and PEkorig .

The objective is to minimize the displacement, which serves

as an approximation for the delay change, of the utilized PEs

relative to the original lifetime unaware floorplan, subject to
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ALGORITHM 1: Lifetime-aware re-mapping DSE

BList: List of new PE bindings that consider MTTF;
Bl: Unique binding of operations onto PEs: {j → PEk};
BLP : Partial binding of operations onto PEs resulting from LP

formulation;
1 /* Step 1: Feasible stress time Budget Minimization */
2 execute equation 3 to get STmax opt;
3 a set of accumulated stress time bounds: STmax valid =

{STmax opt, STmax l, . . . , STmax i, . . . , STmax orig};
4 /* Step 2: Find unique Binding of operations onto PEs */
5 for each STmax l in STmax valid do
6 BLP = execute equation 2 as LP formulation to get partial floorplan;
7 Bl = execute equation 2 as mixed LP/ILP formulation with BLP ;
8 end
9 /* Step 3: MTTF vs. delay estimation */

10 BList = Pareto-optimal {Bl(MTTF, delay)};
output : BList

two constraints: one constraint is that the accumulated stress

time for each PE must be less than or equal to a given

stress time budget STmax valid. Another constraint is that

in each context i, each operator j is only mapped to one

PE. By setting different accumulated stress time constraints

(STmax valid), the proposed formulation automatically finds

different floorplans, each with a unique PE displacement vs.

MTTF trade off.

minimize displacement =
c∑

i=1

Mi∑

j=1

N∑

k=1

OPijk × |k − korig|

subject to

c∑

i=1

Mi∑

j=1

OPijk × ST (OPij) � STmax opt

N∑

k=1

OPijk = 1 i∈[1,...,c]

if LP then each OPijk ∈ [0, 1] j∈[1,...,Mi]

if mixed LP/ILP, linear OPijk ∈ [0, 1] k∈[1,...,N ]

and binary OPijk ∈ {0, 1}
(2)

The main problem with a pure ILP approach is that it does

not scale well and we observed that for larger benchmarks,

the ILP solver could not find a solution within a reasonable

amount of time (5 days). Thus, we propose to relax the prob-

lem formulation to a two-step MILP formulation to provide the

lifetime aware floorplan efficiently. The first step is to solve

equation 2 as an LP formation. In this case we do not force

OPijk to be an integer, but rather a real number between 0

and 1, that is OPijk = [0.0, 1.0] ∈ IR. We then set those

OPijk values which are very close to 1 to be exactly 1. The

LP solver returns a solution within seconds/minutes. To get the

entire operator mapping solution, we pre-map the operations

to PEs resulting from the previous LP formulation solution

and then run equation 2 as an ILP formulation to map the

rest of the operations to available PEs, where OPijk is set

back to integer type (OPijk = [0, 1]). The scale of this ILP

formulation is then greatly reduced compared to a pure ILP.

Phase 3 : Lifetime-aware re-mapping Design Space Ex-
ploration: This phase is divided into three steps highlighted

in algorithm 1. Step 1 minimizes the highest accumulated

stress time (STmax opt) among all PEs while providing a

valid floorplan. STmax opt is the lowest possible stress time

and the stress time of the original lifetime unaware design

(STmax orig) is taken as the maximum stress time. For each

of a set of stress time limits (STmax valid) between these

extremes (STmax orig and STmax opt), in Step 2 we generate

a design with a particular delay vs. MTTF trade-off. Finally,

Step 3 identifies the Pareto optimal delay vs. MTTF trade-offs.

Step 1: Feasible stress time Budget Minimization: The objec-

tive of this step is to find the minimum accumulated stress

time (STmax opt) among all PEs on the CGRRA fabric. The

solution of the ILP formulation below will lead to a valid PE

mapping as follows:

STmax opt min
k

STk =
c∑

i=1

Mi∑

j=1

OPijk × ST (OPij)

subject to

N∑

k=1

OPijk = 1 i∈[1,...,c],j∈[1,...,Mi],k∈[1,...,N ]

(3)
where STk is the accumulated stress time of PEk. In this step,

no displacement constraint is set in the formulation.

Step 2: Find unique bindings of operations onto PEs: This

step takes as input the STmax valid values obtained in the

previous step (step 1) and uses them as the constraints in the

overall two-step MILP formulation as described in equation 2.

This process is repeated for each STmax valid. Thus, the

result of this phase is a list of PE bindings (BList), where

BList = {Bl = ({Opi → PEk}, STmax opt), . . . , Bl =
({Opi → PEk}, STmax i), etc., } each with a unique min-

imum PE displacement and STmax value.

Step 3: MTTF vs. delay estimation: This step takes as input

the new placements found in the previous step and estimates

their MTTF based on equation 1. The result is a set of Pareto-

optimal floorplans with unique MTTF vs. delay trade-offs.

V. EXPERIMENTAL RESULTS

In this work we target the Renesas Electronics STP CGRRA

with variable fabric size (based on the benchmark used)

and use their commercial HLS, Logic Synthesis (LS) and

Placement and Routing (PAR) flow called Musketeer [1]. The

HLS target frequency is fixed in all cases to 200MHz. The

experiments are conducted on an Intel i7-6700 (3.50 GHZ)

CPU and 16 GB memory, running CentOS 7.0. HotSpot 6.0

[11] is used for thermal simulation. The ILP solver used in

this paper is CPLEX [13] and we use Python 2.7-based PuLP

1.6.1 [14] to call CPLEX to manipulate the solution.

27 Synthesizable C benchmarks from different sources were

selected ranging from low, medium to high in aspects of

context number, CGRRA fabric size and PE usage rate. Table

I shows the features and simulation results for benchmarks

(B1-B27) with low, medium and high fabric usage rates,

respectively. Columns 5, 9 and 13 report the highest MTTF

increase (×) of our proposed lifetime aware mapping method

versus the original lifetime unaware mapping tool in Mus-

keteer. The corresponding CPD increase (%) are listed in

columns 5, 9 and 13. The last 2 columns list the average

displacement per PE and running time of the maximum MTTF

case for the benchmarks with high fabric usage rate (B19-27).

Finally, Fig. 4 shows the Pareto-optimal trade off curves of
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TABLE I: MTTF increase for benchmarks with low, medium and high fabric usage rate

low fabric usage rate medium fabric usage rate high fabric usage rate
incr. (x) incr. (x) incr. (x) avg.disp runtime(s)

context # fabric size PE# MTTF CPD PE# MTTF CPD PE# MTTF CPD per PE

4 4*4 B1 24 1.94 0.00 B10 35 1.67 0.00 B19 52 1.52 0.00 0.58 0.57
4 8*8 B2 79 2.17 0.00 B11 148 1.71 1.00 B20 175 1.56 3.00 1.25 18.02
4 16*16 B3 192 2.28 0.00 B12 451 1.77 0.00 B21 554 1.68 6.00 1.01 998.59

8 4*4 B4 44 2.80 0.00 B13 62 2.30 0.00 B22 87 1.81 5.00 0.64 1.14
8 8*8 B5 142 2.89 0.00 B14 280 2.44 5.00 B23 327 1.91 0.00 0.54 78.90
8 16*16 B6 534 3.01 0.00 B15 1101 2.45 0.00 B24 1521 1.98 0.00 0.21 2112.10

16 4*4 B7 88 3.36 7.00 B16 147 2.75 9.00 B25 193 2.05 0.00 0.47 1.74
16 8*8 B8 259 3.63 0.00 B17 531 2.94 0.00 B26 737 2.21 3.00 0.13 33.47
16 16*16 B9 1011 3.68 1.00 B18 2165 3.04 1.00 B27 3089 2.35 2.00 0.08 3701.35

Avg. 2.86 0.89 2.34 1.77 1.89 2.11 771.76

our proposed method for benchmarks with low, medium and

high PE fabric utilization. The x-axis is MTTF representing

the lifetime of CGRRA and the y-axis is the CPD increase

percent. The baseline of our method is the MTTF of the

original floorplan generated by Musketeer. It can be observed

that our proposed method leads to substantial MTTF increase

in all 27 benchmarks, while increasing modestly the CPD in

some cases, and none in most of them. The proposed method

improves the MTTF by an average of 2.4× while incurring

an average CPD increase of only 1.5 percent compared to

the original timing-driven lifetime unaware floorplan. Our

proposed method also provides an average of 2.34× MTTF

increase without any CPD increase which are the cases at the

lower left corner of the curves in Fig. 4.

VI. CONCLUSION

In this work we have presented a reliability-aware floorplan-

ner specifically targeted for CGRRAs that extends the MTTF

of these architectures by balancing PE usage while minimizing

the average PE displacement. Our floorplanner is based on

an efficient mixed linear and integer based programming

formulation that binds operations to PEs in the CGRRA to

mitigate aging-induced lifetime degradation. The floorplanner

is the basis of a design space explorer that generates a

variety of configurations which trade-off between MTTF and

the minimized average PE displacement. Results show that

the MTTF can be improved by an average of 2.4× while

incurring an average CPD increase of under 2% (although most

benchmarks had no delay increase) compared to the original

timing-driven lifetime unaware floorplan.
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