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ABSTRACT
We develop a fault simulator for input stuck-at faults in Speed-
Independent circuits by extending Eichelberger’s method. In or-
der to achieve higher accuracy, a 13-valued algebra is adopted, the
relative order of causal signal transitions is maintained, and time
frames are unfolded in a careful manner. Based on this simulator,
we propose a random test generation algorithm which reduces the
probability that the circuit finds itself in non-deterministic states
and helps it recover when this happens. Experimental results show
that the combination of the two techniques achieves an average im-
provement of 18% in fault coverage.

Categories and Subject Descriptors
B.7.3 [Integrated Circuits]: Reliability and Testing

General Terms
Algorithms, Reliability, Verification

Keywords
Asynchronous Circuits, Speed-Independent Circuits, Fault Simula-
tion, Random Test Pattern Generation

1. INTRODUCTION
Interest in asynchronous circuits has recently been revived, not

only because of their potential for high performance, low power
and design reusability, but also because of the difficulties associ-
ated with traditional synchronous design such as clock skew. As
an alterative to synchronous circuits, asynchronous circuits have
already started to demonstrate their potential, even in many com-
mercial products.

However, one of the main obstacles in the widespread devel-
opment of asynchronous circuits is the difficulty in testing them.
Without a global clock for synchronization, asynchronous circuits
operate in a rather independent manner, which is sensitive to race
conditions and hazards. In addition, it is much harder to control
and observe internal nodes in asynchronous circuits. Moreover,
there are several classes of asynchronous circuits such as Delay-
Insensitive, Speed-Independent, Timed circuits, and so on. Fault
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simulation and test generation methods for one class of circuits
might not work for other classes, which makes the problem even
more complicated.

In recent years, numerous efforts have been devoted to fault mod-
elling, fault simulation and test generation for asynchronous cir-
cuits. Several researchers [1, 2, 11] studied the problem of testing
asynchronous circuits using available commercial testers for syn-
chronous circuits. In order to avoid uncertainty, fault effects have to
be observed when the circuit is in a stable state. Since many asyn-
chronous circuits operate in fundamental mode, test vectors can
only be applied after the circuit has stabilized. Hazard/race anal-
ysis is critical in simulation and test generation of asynchronous
circuits. Eichelberger [7] first used ternary logic simulation for
detecting hazards in both combinational and sequential logic. He
also proposed a method for simulation of sequential circuits. Sub-
sequently, multi-valued logic has been used in different contexts.
For instance, Chakraborty, Bushnell and Agrawal [4] used the 13-
valued algebra for delay fault test generation. Fsimac, a gate-level
fault simulator for stuck-at and gate-delay faults in extended burst
mode machines was developed in [12], using min-max timing anal-
ysis [3] and 13-valued logic. Fsimac assumes fundamental mode of
operation and simulates both the good circuit and the bad circuit in
a time-unfolding manner until the primary outputs and state signals
stabilize.

The Fsimac assumption of fundamental operation mode is valid
only for Huffman circuits. Speed-Independent circuits, however,
do not impose any restrictions on the order that inputs, outputs,
and state signals change, except that they must behave according to
the protocol [10]. Hence, simple time-frame unfolding simulation
methods for Huffman circuits might be invalid for these circuits,
since they ignore the additional race conditions and hazards im-
posed by changes of state signals before the circuit has stabilized.
Eichelberger’s method [7] for simulation of sequential circuits can
be adapted for simulation of Speed-Independent circuits as in [11],
but it is unacceptably conservative to be used for a fault simula-
tor. In many cases, it fails to determine the actual circuit state and
simply reports an unknown state.

In this paper we propose a fault simulation algorithm for Speed-
Independent circuits by extending Eichelberger’s method. We first
describe our algorithm in section 2. Then, a random test generation
method based on the proposed fault-simulator is given in section 3.
Experimental results are provided in section 4.

2. PROPOSED SIMULATION METHOD
Eichelberger developed an algorithm for determining the next

stable state of an asynchronous circuit in [7], which can be adapted
and used for simulation of Speed-Independent circuits. His method
used 1

2 to denote an unknown state, which we typically denote by
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Figure 1: Gate-Level Schematic of a D-Latch

X . Suppose each feedback line is cut with one end denoted as a
pseudo primary input (PPI) and the other as a pseudo primary out-
put (PPO). The algorithm consists of two procedures. In procedure
A, all changing state signals are determined by setting changing
primary inputs (PIs) to X and all other PIs and PPIs as originally
specified, and then evaluating the PPOs. If there are any PPOs
equal to X , the corresponding PPIs are changed to X and the pro-
cess is repeated until no additional changes occur in PPOs. Then,
Procedure B takes over to determine which value each state signal
stabilizes to. With the changing PIs equal to their new values and
all other PIs and PPIs equal to their values at the end of Procedure
A, PPOs and primary outputs (POs) are evaluated. If one or more
PPOs change from X to 1 or 0, the corresponding PPI is changed
and the process is repeated until no additional changes occur in
PPOs.

As observed in [11], Eichelberger’s method is too conservative
to be used as a fault simulation algorithm for Speed-Independent
circuits. First, ternary logic is not able to discriminate rising/falling
transitions from unknown states or glitches. Second, like most
other multi-valued algebras, it cannot express the order of signal
transitions, which leads to false indication of hazards. Third, Eichel-
berger’s method sets the changing state signals to X in Procedure
A and then assigns deterministic values to some of them in Pro-
cedure B. Therefore, only those state changes forced directly or
indirectly by PIs and/or stable state signals are correctly simulated,
while other state changes are reported as undetermined, although
in many cases they are not. As a result, Eichelberger’s method
fails to determine the next state of a Speed-Independent circuit in a
considerable number of cases, which makes it unsuitable for fault
simulation.

In order to overcome these problems, we extend Eichelberger’s
method in several ways. First, we use the 13-valued algebra, as in
[3, 4, 12], to represent signal transitions more accurately. In addi-
tion, this method is compact since it avoids unnecessary event pro-
liferations by abstracting the details of multi-transition waveforms.
The extension of gate functions from the 3-valued logic to the 13-
valued logic is not difficult and is detailed in the above references.
Another reason for using 13-valued logic is that it facilitates the
expression of functions of some complicated gates, such as Muller
C-elements, latches and complex domino gates, which are widely
used in asynchronous circuits.

Second, the relative order of signal transitions is maintained by
keeping a simple time stamp during gate evaluation. Since in Speed-
Independent circuits we normally assume the unbounded gate de-
lay model [9], (i.e. delay elements are attached only to gate out-
puts and the delay magnitude is positive and finite but unknown,)
and the pure delay type, (i.e. waveforms are shifted in time and
do not change shape,) the relative order of causal signal transi-
tions is necessary for correct simulation in many cases. For ex-
ample, suppose that the initial values of PIs of the D-Latch in fig-
ure 1 are CLK = 1 and D = 1, the values of the internal nodes are
abcde f g = 1100101, and the values of the PPOs are Q = 1 and
QBAR = 0. Now CLK falls to 0 and D doesn’t change, or in 13-
valued logic, CLK =< 1,↓,0 > and D =< 1,1,1 >. Therefore,
b =< 1,↓,0 >, c =< 0,↑,1 > and e =< 1,X ,1 > by gate evalua-

tion, and a glitch on e is reported. But in fact the circuit assumes
that a and b fall simultaneously, and since the gate delay for c is
positive, c rises after a falls, hence after b falls, so there is no glitch
on e. Since d = c =< 0,↑,1 >, it’s easy to find that Q =< 1,1,1 >
and QBAR =< 0,0,0 >. If we simulate the circuit under the above
stimulus using Eichelberger’s method, Q and QBAR are set to X at
the end of Procedure A, and they are not recovered in Procedure
B, so the simulation gives an undetermined result. In the proposed
algorithm, one simple time stamp is maintained for each transition
that has a causal order with other transitions. Therefore, we can
correctly evaluate when input transitions have a relative order, and
we can deal with isochronic forks.

Third, our method carefully unfolds time frames. Unlike in Pro-
cedure A of Eichelberger’s algorithm, which treats transitions and
hazards in the same way, if there is any hazard but no transition
detected on any PPO after evaluation, the corresponding PPI is set
to the undefined value and the process is repeated until no more
hazards are detected. Then, if there is any transition detected on
any PPO, the corresponding PPI is set to the transition, the circuit
is reevaluated and any hazards are handled as previously. This pro-
cess is repeated until no more hazards or transitions occur on PPOs
or until the number of iterations exceeds the pre-specified maxi-
mum limit. It’s necessary to set a maximum number of iterations to
break the loop if the circuit oscillates, in which case the first termi-
nating condition will never be satisfied. After this step, a procedure
similar to Procedure B of Eichelberger’s algorithm takes place to
determine the stabilizing values on some POs and state signals.

Moreover, the proposed method collapses faults before simu-
lation. We adopt the definitions and notation in [5], and refer to
the concepts of fault equivalence/dominance in a single gate as g-
equivalence/dominace, in a combinational circuit as c-equivalence/
dominace. It is obvious that the equivalence relationship in a sin-
gle gate remains valid in a Speed-Independent circuit. Unfortu-
nately, a c-equivalent pair of faults might not be equivalent in a
Speed-Independent circuit, since the circuit under each fault might
have different hazard conditions that lead to different nondetermin-
istic states. Therefore, a test for one fault in a c-equivalent pair
might be invalid for the other. For the same reason, as well as due
to self-hiding and delayed reconvergence [5], a c-dominant and c-
dominated pair of faults might not be a dominant and dominated
pair in a Speed-Independent circuit. In this work we only collapse
conservatively, i.e. only g-equivalent faults.

3. RANDOM TPG METHOD
In Speed-Independent circuits, random test pattern generation

remains an efficient and important method. However, the special
properties of Speed-Independent circuits may degrade its efficiency.
A Speed-Independent circuit is guaranteed to work only on input
stimuli allowed by the specification. Since random test generation
does not consider the specification of the circuit under test, invalid
test patterns are very likely to be generated. Moreover, once it is
trapped into an unknown state, the circuit normally will have dif-
ficulty in getting out. Therefore, long yet meaningless sequences
of test patterns are typically generated by random test generation
algorithms.

We overcome this problem by resetting the circuit with a proba-
bility that is dynamically adjusted. The proposed random test gen-
eration algorithm can be aware of invalid circuit states by checking
the values on the feedback lines. Moreover, the algorithm decides
whether or not to reset the circuit based on a probability that is in
proportion to the number of unstable feedback lines. A larger num-
ber of unstable feedback lines normally means a greater need for
initializing the circuit, although it might not be necessary to reset
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Figure 2: Probabilities of MIC and SIC Vectors

the circuit since the fault may still be detected through another sta-
ble output. An unstable value on any feedback line always means
the circuit needs to be initialized. By monitoring the circuit states
and by probabilistically initializing, the circuit can recover from
undetermined states.

Although a Speed-Independent circuit responds correctly only
to the specified interface behavior, it doesn’t put any restrictions
on the speed or order of the input changes. Therefore, if an in-
put vector with multiple-input changes (MIC) is valid for a Speed-
Independent circuit and the circuit goes to a certain state after ap-
plying the vector, it must go to the same state after applying a se-
quence of vectors which is obtained by arbitrarily breaking down
the MIC vector into several vectors, each of which only allows
single-input change (SIC). For example, if a circuit transfers to state
B from state A under the input stimulus 0110 after 0000, and it’s
obvious that the MIC sequence 0000 → 0110 can be broken down
into SIC sequences 0000→ 0100 → 0110 or 0000→ 0010 → 0110,
the circuit must also go to state B from A after applying any of the
above SIC sequences. From a test generation perspective, if a fault
in a Speed-Independent circuit is detected under a test sequence
which includes MIC vectors, the fault must also be detected un-
der the SIC test sequence which is obtained by arbitrarily break-
ing down each of the MIC vectors into a sequence of SIC vectors.
So our random test generation algorithm only allows SIC test se-
quences. One reason for this restriction is that a MIC vector, par-
ticularly with a large number of input changes, is more hazardous
and more likely to lead the circuit into an undetermined state. By
applying only relatively safer SIC test vectors the circuit has fewer
opportunities to encounter hazard conditions. A disadvantage of
this technique is that it may lead to longer test sequences because
it allows only one-bit change at a time. However, these longer test
sequences can be compacted in a later phase.

It is interesting to look at the difference between the probability
of generating a MIC vector in the normal random test generation
algorithm and that of generating the corresponding SIC sequence,
called a MIC vector alternative, in the proposed algorithm. We as-
sume that the number of inputs is n, and each input has a uniform
and independent probability of 1

2 of being flipped in the normal
algorithm, and every input has equal opportunity to be chosen to
change in the algorithm only allowing SIC. Therefore, the prob-
ability of generating a MIC vector with k inputs changed in the
normal algorithm is

P1 = (
1
2
)n (1)

while the probability of generating its SIC sequence alternative in
the proposed algorithm is

P2 = k!× (
1
n
)k (2)

since any possible alternative has k vectors hence the probability of

generating it is ( 1
n )k, and there is a total of k! such possible alterna-

tives. By plotting the difference (lgP2 − lgP1) between P1 and P2
in figure 2, we can find out that P2 is larger than P1 when k is much
smaller than n, but P2 is smaller than P1 when k becomes large and
comparable to n. That is to say, the proposed method prefers to gen-
erate a MIC vector alternative with a small number of input changes
than that with a large number of input changes. Fortunately, this is
in line with the fact that, typically, only a limited number of inputs
change at each time in an asynchronous circuit. Therefore the pro-
posed method has a high probability of generating patterns that are
likely to be valid and a low probability of generating patterns that
are unlikely to be valid.

4. EXPERIMENTAL RESULTS
We developed a fault simulator for Speed-Independent circuits

based on HOPE [8]. The input circuit netlist is in ISCAS89 format,
and the stuck-at fault list can be defined in a input file or generated
automatically by the tool. In the latter case, all stuck-at faults on
gate inputs and outputs are injected and g-equivalent faults are col-
lapsed. The proposed simulation algorithm for Speed-Independent
circuits is applied for each test vector, first on the good circuit, then
on faulty circuits with a single stuck-at fault injected. Output val-
ues are then compared to identify detected faults. The proposed
random test generation algorithm was implemented as described in
section 3. It terminates when there is no new fault detected for 20
consecutive test vectors. The generated patterns are guaranteed to
detect single stuck-at faults assuming any possible combination of
gate delays.

We experimented with the proposed algorithms on a set of Speed-
Independent circuits synthesized by Petrify [6]. Complex gates like
Muller C-elements are replaced by their gate-level implementa-
tions since the simulator cannot yet handle them directly. Note that
a Speed-Independent circuit might not remain Speed-Independent
any longer after such replacements. In each of the benchmark cir-
cuits, a reset input port is assumed to be connected to every memory
element to appropriately initialize the circuit.

In order to demonstrate the efficiency of the proposed fault simu-
lation and random test generation algorithms, we also implemented
Eichelberger’s simulation method and a normal random test gener-
ation algorithm for the purpose of comparison. We implemented
Eichelberger’s method as in [7] except that 13-valued algebra is
adopted during the simulation. The normal random test generation
algorithm assumes that each input has an independent probability
of 1

2 to change. For each setting and each circuit we repeated the
experiment for 100 times and we report the average.

Table 1 illustrates the experimental results of the proposed fault
simulation and random test generation methods for Speed-Indepen-
dent circuits. The total number of stuck-at faults before collapsing,
after collapsing, and the collapsing rate for each circuit are listed in
the second, third, and fourth columns, respectively. Note that the
number of total faults for each circuit is normally larger than that
in [11], because we substituted complex gates with gate-level im-
plementations, hence there are more gates and more possible faults
in each circuit. Unfortunately some of the new faults have been
proven to be redundant. Although we only collapsed g-equivalent
faults, the fault collapsing rate is still considerable, averaging at
42.1%. The fifth and sixth columns present the average number of
detected faults and the average fault coverage for each circuit. An
average fault coverage of 76.5% is achieved across all circuits. In
order to present the detailed behavior of the random test generation
algorithm, we also list the maximum fault coverage and the stan-
dard deviation in the 100 experiments for each circuit in the seventh
and eighth columns, respectively.
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Circuit No. of No. of faults Collapsing Average No. of Average fault Max fault Standard deviation
Name Faults After collapsing Rate Detected faults Coverage Coverage Of fault Coverage

alloc-outbound 138 82 41% 75.7 92% 95% 0.038
chu133 78 44 44% 42.5 97% 98% 0.033
chu150 98 60 39% 48.8 82% 82% 0.010
converta 106 67 37% 30.6 46% 52% 0.074

dff 86 50 42% 39.7 79% 82% 0.099
hazard 86 52 40% 44.6 86% 86% 0.015

master-read 306 174 43% 80.5 46% 56% 0.072
mp-forward-pkt 116 68 41% 64.6 95% 97% 0.029

mr1 316 184 42% 73.8 40% 60% 0.191
nak-pa 166 94 43% 85.5 91% 94% 0.060
nowick 76 40 47% 39.2 98% 100% 0.042

ram-read-sbuf 170 90 47% 87.2 89% 97% 0.077
rcv-setup 62 36 42% 33.3 93% 94% 0.034

rpdft 88 47 47% 43.0 92% 96% 0.039
sbuf-ram-write 214 128 40% 99.9 78% 95% 0.129
sbuf-send-ctl 190 110 42% 53.7 49% 62% 0.131

seq4 214 130 39% 60.9 47% 67% 0.097
Average 147.6 85.6 42.1% 59.0 76.5% 83.1% 0.069

Table 1: Experimental Results
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Figure 3: Fault Coverage Improvement

We compare the proposed fault simulation and random test gen-
eration methods to Eichelberger’s method and a normal random
method. Figure 3 presents the experimental results of three com-
binations of the methods for each circuit. The three combinations
of the methods are Eichelberger’s method and the normal random
method (E-sim, N-ram), the proposed simulation method and the
normal random method (P-sim, N-ram), and the proposed simu-
lation and random methods (P-sim, P-ram) respectively. On av-
erage, the proposed simulation method increases the fault coverage
by 7%, and the proposed random test generation algorithm achieves
additional 11%.

5. CONCLUSION
Speed-Independent circuit simulation requires consideration of

hazard conditions caused by changes of feedback lines before the
circuit stabilizes. Similarly, Speed-Independent circuit testing ne-
cessitates that faults be detected when the circuit is in a stable
state. Towards this end, we proposed a fault simulation algorithm
for input stuck-at faults in Speed-Independent circuits by extend-
ing Eichelberger’s method [7]. In addition to adopting a 13-valued
algebra, we also maintain the relative order of causal signal transi-
tions in the circuit, and we carefully unfold time frames to achieve
better accuracy at a low computational cost. We discussed fault
collapsing in Speed-Independent circuits, and we proposed a ran-
dom test generation method that assists Speed-Independent circuits
in exiting from nondeterministic states by resetting with a dynami-
cally adjustable probability. Moreover, we reduced the probability

that circuits enter nondeterministic states by only allowing test vec-
tors with SIC. Experimental results demonstrate a fault collapsing
rate of 42%. The proposed fault simulation algorithm improves
fault coverage by 7%, while random test generation yields an addi-
tional 11%.
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