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ABSTRACT
We develop a neural network that learns to separate the
nominal from the faulty instances of a circuit in a measure-
ment space. We demonstrate that the required separation
boundaries are, in general, non-linear. Unlike previous so-
lutions which draw hyperplanes, our network is capable of
drawing the necessary non-linear hypersurfaces. The hy-
persurfaces translate to test criteria that are strongly cor-
related to functional tests. A feature selection algorithm
interacts with the network to identify a discriminative low-
dimensional measurement space.

Categories and Subject Descriptors
B.7.3 [Integrated Circuits]: Reliability and Testing

General Terms
Algorithms, Reliability

Keywords
Analog Circuits, Neural Networks, Implicit Functional Test

1. INTRODUCTION
Functional test of analog circuits is time-consuming since

it requires multiple stimuli and test configurations. Early
attempts to reduce the cost relied on inductive fault analy-
sis, which sets test thresholds based on observations of fault
effects. In the presence of un-modelled faults or strict para-
metric requirements, such thresholds can severely jeopardize
the test decision. Inevitably, they affect either the yield, if
they are too strict, or the fault coverage, if they are too le-
nient. Implicit functional testing [4, 5, 7] is a promising new
direction that alleviates the aforementioned limitations. It
aims to statistically learn test criteria that strongly correlate
to functional tests, yet they are simple to assess. The learn-
ing routine is run off-line and only once for any particular
device type or production run.
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The authors in [7] propose a regression technique to ap-
proximate the functions that map the measurement space
to the performance parameter space. In this paper, we de-
velop a classification system that establishes a mapping of
the form f : �x �→ Y , where �x ∈ Rd is a d-dimensional
measurement space and Y is a boolean output that indi-
cates a pass or fail decision. In essence, f translates into an
adequate number of decision boundaries that separate the
nominal from the faulty class in the measurement space. A
new instance is tested by examining on which side of the
boundaries its measurement pattern lies on. Given a mea-
surement space, the effectiveness of this method depends on
the flexibility of the drawn boundaries. Previously reported
classifiers [4, 5], establishing the above mapping, allocate
hyperplanes. As will be illustrated in detail in section 2,
the boundaries are non-linear in practice, with curvatures
that cannot be approximated by hyperplanes. Our classi-
fier draws the necessary non-linear hypersurfaces, thus it
reciprocates very well even in the presence of complex dis-
tributions. As an ancillary benefit of the non-linearity, the
proposed classifier requires fewer measurements to solve the
separation problem.

2. NON-LINEAR DECISION BOUNDARIES
Fig. 1 illustrates a few real distribution examples in a two-

dimensional measurement space x1 − x2. The solid curves
show the linear decision boundaries b1 drawn by a network
similar to the one described in [5], as well as the non-linear
decision boundaries b2 drawn by the higher-order network
that we will be describing in the subsequent sections.
Figures 1(a) and 1(b) demonstrate the non-linear nature

of the ideal decision boundaries. In addition, there are cases
where a linear boundary will make completely misguided de-
cisions. For example, consider the distribution of Fig. 1(c).
The regions where the population of faulty circuits lie are
non-convex and disjoint. The network is not cognizant of
the disjoint nature of the faulty distribution and tries to fit
a single boundary. In this case, the linear boundary is al-
located onto a space that is free of patterns, as any other
choice would lead to even higher misclassification. In con-
trast, our network draws two disjoint boundaries at the two
sides of the nominal distribution. As will be illustrated in
the next section, it essentially fits a second-order polyno-
mial in the measurement space. Therefore, in the case of
the two-dimensional scatter plot of Fig. 1(c), every value on
the perpendicular axis corresponds to two real solutions on
the horizontal axis.
The method proposed in this work is inherently extendible
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to boundaries of any order. While we considered the op-
tion of polynomials of higher degree, all the decision bound-
aries that we came across in our experiments were accu-
rately expressed by second-order polynomials. A higher or-
der polynomial could potentially provide higher resolution
for the data that is in the close proximity of the second-order
boundary. However, such a fine-grained decision boundary
runs the danger of over-fitting the data and does not neces-
sarily generalize better.
The flexibility of non-linear boundaries facilitates the dis-

crimination of the two populations in a lower-dimensional
measurement space. It is true that, by adding more mea-
surements, we can eventually reach the point where the
two populations are linearly separable. In particular, in
high dimensions, the measurement patterns are sparsely dis-
tributed, leaving a wide empty space between the two pop-
ulations, where a linear boundary can fit. This might cre-
ate the misperception that linear boundaries are adequate,
provided that the input dimensionality is sufficiently large.
The fact is, however, that the system, by construction, cov-
ers the entire space and, thus, the output assignment to an
empty subspace will be random. As a result, patterns that
fall within a subspace, which was empty during the learning
phase, will be randomly labelled during the testing phase.
This undesirable phenomenon has been termed as curse of
dimensionality [1].

3. CLASSIFIER STRUCTURE
The proposed system is an artificial neural network that

determines the class of a circuit instance by processing its
measurement pattern �x. The connectivity of the network
is shown in Fig. 2. The network combines the intermedi-
ate decisions yi, i = 1, ..., M , corresponding to the M cir-
cuit performance parameters, to provide a single pass or fail
output decision. The network assigns yi = +1 if the i-th
performance parameter lies within the tolerance limits and
yi = −1 otherwise. The output neuron computes the logic
AND of the intermediate decisions. It indicates Y = +1 if∑M

i=1 yi − M = 0 and Y = −1 otherwise.
The intermediate decisions are made by a hidden layer

of perceptrons. A perceptron transforms the measurement
pattern �x through a fixed set of k + 1 processing elements
φj and indicates yi = +1 if

∑k
j=0 wjφj(�x) > 0 and yi = −1

otherwise, where w̃ = [w0, w1, ..., wk]
T is the weight vector

and φ0 is permanently set to +1. The perceptron has a sim-
ple geometrical interpretation. It divides the measurement
space by allocating a hypersurface composed of the set of
solutions to the equation

∑k
j=0 wjφj(�x) = 0. In the two

sides of the hypersurface, the perceptron activates a pass
(yi = +1) and an a fail (yi = −1) decision. The learning
process aims to adjust �w such that the allocated boundary
results in the lowest possible decision error rate among the
patterns in a training set.
The shape of the hypersurface depends on the selection of

the fixed processing units. If we set φj(�x) = xj and k = d,
the hypersurface is a conventional hyperplane. For a second-
order decision boundary, the fixed processing units φj are

chosen such that �wT �φ =
∑d

i1=0

∑d
i2=0 w∗

i1i2xi1xi2 , where
x0 = +1. The summations can be constrained to allow
for the permutation symmetry of the terms. Based on this

remark, each perceptron comprises

(
d + 2
2

)
= (d+1)(d+2)

2

fixed processing units.
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Figure 1: Distributions of nominal and faulty cir-
cuits. Instances are labelled with respect to a single-
ended specification.
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Figure 2: The structure of the proposed neural net-
work. Each p unit corresponds to a perceptron.

4. TRAINING ALGORITHM
The training instances are labelled after they undergo full

functional testing. Thus, the training set encodes the sta-
tistical impact of process drifts on the circuit performance.
Training is performed for each perceptron separately. We

implemented a modification of the classic perceptron learn-
ing rule [1], called pocket algorithm [2]. The algorithm cycles
through the patterns in the training set and modifies the
boundary when a visited pattern is misclassified. The new
boundary settles closer to the pattern reducing the error and
is now likely to classify it correctly. Once a weight vector
that has a longer run of consecutive correct classifications is
found, it replaces the current weight vector and is kept “in
the pocket”. The algorithm evolves until a set of iterations
is ran with no weight replacement.
As an example, Fig. 3 illustrates the movement of the

decision boundary in a two-dimensional space as training
progresses. Here, the classifier learns the separation bound-
ary of the two populations shown in Fig. 1(a). In Fig. 3,

boundary b
(i)
2 corresponds to the i-th pocket vector. Table

1 shows the iterations in which the pocket vector changes,
as well as the classification rate that each particular pocket
vector achieves. It can be seen that the pocket vector is
replaced seven times and remains unchanged after 168 iter-
ations.

5. SELECTION OF MEASUREMENTS
Increasing the dimensionality of the measurement space

does not necessarily improve the ability of the network to
generalize and may even cause an adverse effect due to the
curse of dimensionality. The problem of selecting the most

effective d
′
measurements from a given set of d measure-

ments, d
′

< d, is called feature selection. We implemented
a method called floating search [6]. The algorithm uses
two basic procedures, the sequential forward selection (SFS)
and the sequential backward selection (SBS). Given a subset
of measurements, SFS selects from the remaining measure-
ments and includes the one that is the most significant with
respect to this subset. Similarly, SBS selects from the cur-
rent subset of measurements and excludes the one that is
the least significant with respect to this subset. Each mea-
surement subset, Xi, is evaluated by training the neural net-
work and computing the classification rate, J (Xi), achieved
on the training set. A subset, Xi, is deemed better than
another subset, Xj , if and only if J (Xi) > J (Xj). The al-
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Figure 3: The movement of the decision boundary
as training progresses.
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iteration 4 7 84 93 118 137 168
rate 83.4 85.3 86.6 87.3 89.7 94.1 96.4

Table 1: Iterations in which the pocket vector
changes and the classification rate that the resulting
boundary achieves.

gorithm is a bottom up search procedure which starts with
an empty feature set and includes new features by means
of applying the basic SFS procedure. The feature inclusion
phase is followed by a series of successive conditional exclu-
sions of the worst feature in the newly updated set through
the SBS procedure, provided that a further improvement
can be made to previous sets of lower cardinality. Upon ter-
mination, the algorithm reports the best identified subsets

of d
′
measurements for d

′ ∈ {1, ..., d − 1}.

6. EXPERIMENTAL RESULTS
In this section, the advantages of the non-linear decision

boundaries are demonstrated on an operational amplifier [3].
Its list of specifications is given in Table 2.
In a production environment, the training set comprises

circuit instances across different lots. For the purpose of our
experiment, we generate this set through a realistic Monte
Carlo analysis. A second independent set is also generated
to validate the generalization capacity of the classifier. We
consider a diverse initial set of ten measurements that in-
cludes Fourier coefficients of the power supply current and
samples of the circuit response to dc, ac, pulse stimuli and
to a ramp voltage applied at the positive terminal. The
feature selection algorithm identifies the best measurement

spaces of cardinalities d
′
= 1, ..., 9. The classifier is trained

in each measurement space and its generalization perfor-
mance is assessed on the independent validation set. For
comparison purposes, we also train a linear neural network
that has perceptrons with fixed processing units φ(�x) = xj ,
j = 1, ..., d.
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Performance parameter Specification limits

Low frequency gain A0 ≥ 82db

Unity-gain frequency f0 ≥ 4.8MHz

Slew-rate Sr ≥ 1.7V/µs

Common-mode rejection ratio CMRR ≥ 113db

Phase margin φM > 80o

Table 2: Specifications of the operational amplifier.
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Figure 4: Distributions in the space of the best pair
of measurements for the operational amplifier.

Fig. 4 displays the nominal and faulty distributions pro-
jected onto the space of the best pair of measurements. Each
decision boundary bi

j , where i ∈ {1, ..., 5}, j = 1 for the lin-
ear network and j = 2 for the proposed network, divides
the measurement space into two regions Ai

n(j) and Ai
f (j).

Circuits that fall into Ai
n(j) are classified as nominal with

respect to the i-th performance parameter, while circuits
that fall into Ai

f (j) are classified as faulty. As can be ob-
served, the acceptance region defined by the five non-linear
boundaries,

⋂5
i=1 Ai

n(2), approximates the area of nominal
circuits better than the acceptance region defined by the
five linear boundaries,

⋂5
i=1 Ai

n(1). This holds for any input
cardinality, as can be seen from Fig. 5.
The maximum generalization performance for the pro-

posed network is appreciably larger than that for the linear
network. Thus, the resulting test criterion is more accurate.
Furthermore, the maximum generalization is obtained in a
low dimensional space, which points to a test criterion that
is simple to assess.
In both networks, the classification rate for the training

set increases monotonically with the number of measure-
ments, but the rate of improvement decreases as the number
of measurements increases. This suggests that the search of
the feature selection algorithm in low dimensional spaces is
crucial in order to find the most relevant measurements. For
the selected best subsets of measurements, monotonicity is
not necessarily satisfied on the validation set. This verifies
the existence of the curse of dimensionality.
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Figure 5: Performance on the training set J and
generalization performance P̂ of the linear and non-
linear boundaries for the operational amplifier.

7. CONCLUSION
We discussed the design of a neural network that tests

analog circuits by processing a few measurements. The test
criteria are independent of fault models and, in essence, en-
code the functional tests. A measurement selection algo-
rithm interacts with the neural network to identify useful
measurements within a given set. Experimental results show
that the proposed system provides a substantially better
generalization performance than previously reported linear
methods. Furthermore, we pointed out the occurrence of
the curse of dimensionality, which suggests that an efficient
combination of measurements is desired, rather than a large
set.
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