
What to Lock? Functional and Parametric Locking

Muhammad Yasin, Abhrajit Sengupta
Electrical and Computer Engineering

New York University
{yasin,as9397}@nyu.edu

Benjamin Carrion Schafer,
Yiorgos Makris

Electrical and Computer Engineering
The University of Texas at Dallas

{schaferb,yiorgos.makris}@utdallas.edu
Ozgur Sinanoglu

Electrical and Computer Engineering
New York University Abu Dhabi

ozgursin@nyu.edu

Jeyavijayan (JV) Rajendran
Electrical and Computer Engineering

The University of Texas at Dallas
jv.ee@utdallas.edu

ABSTRACT
Logic locking is an intellectual property (IP) protection tech-
nique that prevents IP piracy, reverse engineering and over-
building attacks by the untrusted foundry or end-users. Ex-
isting logic locking techniques are all based on locking the
functionality; the design/chip is nonfunctional unless the se-
cret key has been loaded. Existing techniques are vulnera-
ble to various attacks, such as sensitization, key-pruning,
and signal skew analysis enabled removal attacks. In this
paper, we propose a tenacious and traceless logic locking
technique, TTlock, that locks functionality and provably
withstands all known attacks, such as SAT-based, sensitiza-
tion, removal, etc. TTLock protects a secret input pattern;
the output of a logic cone is flipped for that pattern, where
this flip is restored only when the correct key is applied.
Experimental results confirm our theoretical expectations
that the computational complexity of attacks launched on
TTLock grows exponentially with increasing key-size, while
the area, power, and delay overhead increases only linearly.
In this paper, we also coin “parametric locking,” where the
design/chip behaves as per its specifications (performance,
power, reliability, etc.) only with the secret key in place, and
an incorrect key downgrades its parametric characteristics.
We discuss objectives and challenges in parametric locking.

1. INTRODUCTION
Today’s integrated circuits (ICs) are designed and fabri-

cated in a globalized, multi-vendor environment due to the
high cost of building and maintaining a foundry [1]. Further,
to meet strict time-to-market constraints, a design company
may purchase intellectual property (IP) cores from third-
party IP vendors. A globalized IC supply chain allows for
the crucial assets to be handled by untrustworthy agents and
creates opportunities for IP/IC piracy, reverse engineering,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author(s). Copyright is held by the owner/author(s).
GLSVLSI ’17, May 10-12, 2017, Banff, AB, Canada
c© 2017 ACM. 978-1-4503-4972-7/17/05 ...$15.00

DOI: http://dx.doi.org/10.1145/3060403.3060492.

G1#

G2#

G3#

G5#

a#
b#

c#

PO#G4#

(a) Example circuit [12].

G1#

G2#

G3#

G5#

a#
b#

c#
PO#

##K3#

##K1#
##K2#

GK1#

GK2#

GK3#
##Tamper2proof#

Memory#

G4#

(b) Circuit locked using
XOR/XNOR key gates. The
correct key {K1,K2,K3} value
is 100.

Figure 1: Functional logic locking using
XOR/XNOR gates [6].

counterfeiting, and malicious modifications to the IC in the
form of hardware Trojans [2, 3].

To thwart such attacks, countermeasures such as IC cam-
ouflaging [4] and split manufacturing [5] have been devel-
oped. IC camouflaging and split manufacturing protect only
against the untrusted user and untrusted foundry, respec-
tively. Logic locking is a technique that thwarts IP piracy,
overbuilding, and reverse engineering attacks by locking a
chip with a secret key [6–11]. To enable chip-locking fea-
tures, additional logic, e.g., XOR/XNORs gates referred to
as key-gates, is added to the original netlist to obtain a
locked netlist. Logic locking protects against both untrusted
foundry and user. The secret key needs to be loaded for the
design/chip to become functional; otherwise, the chip pro-
duces incorrect outputs. Logic locking techniques lock the
functionality of the design/chip.

Figure 1(a) shows an example design netlist of a circuit,
and Figure 1(b) shows its functionally locked version through
two XOR and one XNOR key-gates. One of the inputs of
each key-gate is driven by a wire in the original design, while
the other input, referred to as the key-input, is driven by
a key-bit stored in a tamper-proof memory. Logic locking
aims to deliver the following protection: (i) Without the
knowledge of the secret key, exact design details cannot be
retrieved, and (ii) A locked IC (or a locked netlist) will not
generate correct output unless it is activated, i.e., the secret
key is loaded onto the chip’s memory.

351

1.1 Prior work
Previous logic locking techniques have inserted key-gates

based on strategies, such as random logic locking (RLL) [6]
and fault analysis-based logic locking (FLL) [7]. Sensitiza-
tion attack sensitizes the key-bits to the outputs by apply-
ing judiciously crafted patterns, which, when applied on a
working chip, reveals the key-bit values. This attack breaks
RLL and FLL [9]. Strong logic locking (SLL) inserts key-
gates such that they interfere with each other, making it
difficult to sensitize the individual key-bits to outputs [9].

A key-pruning attack that breaks all existing combina-
tional logic-locking techniques has been proposed in [12].
The attack uses Boolean satisfiability (SAT) based algo-
rithms, and we refer to it as the SAT attack. The SAT
attack uses modern SAT solvers to compute discriminat-
ing input patterns (DIPs) [12] on the locked netlist (e.g.,
obtained by reverse-engineering). A working chip with the
secret key loaded in its memory is then used as an oracle to
obtain the responses to these DIPs. A DIP Xd is an input
value for which at least two different key values, k1 and k2,
produce differing outputs, o1 and o2, respectively. Since o1
and o2 are different, one of the key values or both of them are
incorrect. It is possible for a single DIP to rule out multiple
incorrect key values. In each iteration, a DIP is generated
and applied to the chip. Based on the output observed, a
set of keys is eliminated. The process repeats until no DIP
can be found, and thus, eliminating all the incorrect keys.
Thus, any key in the remaining search space is a valid key.
The worst-case scenario for the SAT attack arises when the
attack can discriminate at most one incorrect key value with
each DIP. In this case, 2k − 1 DIPs are required for k key
bits. The attack complexity can be represented in terms of
the number of DIPs generated by the SAT attack to break
a logic-locked circuit.

To thwart the SAT attack, two logic-locking techniques—
SARLock [13] and Anti-SAT [14] (see Figure 2)—have been
recently proposed. SARLock leaves the logic cone imple-
mentation, the IP-to-be-protected, as is, and corrupts the
output of the logic cone for all keys but the correct one.
The correct key values are hardcoded in logic gates to mask
the output corruption for the correct key [13]. Anti-SAT
inserts key-gates at the inputs of two complementary logic
blocks that converge at an AND gate. The output of the
AND gate is always 0 only for the correct key; otherwise,
it may be 1 for some input values, corrupting an internal
node in the original design to produce occasionally incorrect
outputs.

Logic-locked circuitIN OUT

G(X,Kl1)

G(X,Kl2)

X

Kl2

Kl1

Logic
cone

?= Mask

OUT

Flip

IN

K

Flip

(a) (b)

Tamper-proof
memory

Tamper-proof
memory

Figure 2: (a) SARLock: The flip signal goes low
for all input values only on applying the correct
key [13]. This technique is vulnerable to removal at-
tack: (b) Anti-SAT: The flip signal goes low for all
input values only on applying the correct key [14].
This technique is vulnerable to signal skew analysis
(SSA) attack [15].

Limitations of existing work. All combinational logic-
locking techniques except for SARLock [13] and Anti-SAT [14]
are vulnerable to SAT attacks. Yet SARLock [13] and Anti-
SAT [14] exhibit security vulnerabilities themselves. SAR-
Lock is vulnerable to removal attack: given a protected
netlist, one can identify the comparator/mask blocks and
the XOR gate that directly feeds the output by tracing the
transitive-fanout of key-inputs, and remove these blocks,
leaving only the unprotected logic cone. Thus, the pro-
prietary IP is recovered. Anti-SAT is vulnerable to sig-
nal skew analysis (SSA) attack [15]: given a protected
netlist, an attacker can identify the output gate of the Anti-
SAT block; it is the node whose inputs have the maximal
difference in signal probabilities. The attacker can then re-
synthesize the design with a constant 0 (1) on the output of
Anti-SAT, retrieving the original design.

1.2 Contributions
All existing logic-locking techniques are vulnerable. Thus,

there is no provably-secure logic locking. Hence, in this pa-
per, we first propose a provably-secure logic-locking tech-
nique:

1. We propose a novel logic-locking technique that we refer
to as TTLock, which provably resists all known attacks,
i.e., SAT [12], sensitization [16], and signal skew analysis
attacks [15].

2. TTLock modifies the original logic cone by inverting the
response to one protected input pattern, while an addi-
tional inversion introduced by TTLock restores the cor-
rect functionality only for the correct key.

3. Even though the TTLock logic can be identified via a
signal-tracing attack, its removal will still leave the re-
maining logic different than the original one, thwarting
removal attacks.

Furthermore, we introduce a novel locking approach, which
we coin as parametric locking. As opposed to functional
(logic) locking where keys are associated with design func-
tionality, parametric locking ensures that the design/chip
behaves as per its specifications (performance, power, etc.)
only with the secret key in place; an incorrect key down-
grades its parametric characteristics, leading to a reduced
speed, increased power consumption, or degraded reliability.
We elaborate on the objectives and challenges in parametric
locking.

2. TTLOCK: CONSTRUCTION AND PROOF
OF SECURITY

TTLock modifies the design logic cone to invert its output
for a selected (protected) input pattern. The modification
can be effected via logic gate insertions/replacements. The
desired impact is an inverted output for only one input pat-
tern corresponding to the correct key. The restore unit of
TTLock then inverts the inverted output only for the correct
key, thereby restoring the correct output. For any incorrect
key, TTLock produces an inverted output for the protected
input pattern. Both the key and the protected input pattern
are the designer’s secrets.

TTLock has the following properties:

• The modification applied to the logic cone is minimal to
deliver maximal SAT attack resilience; the discriminating

352

Modified'
Logic'Cone'
'

IN'

?'
IN'='K'

K'

Ymod'

flip'

Y'

Ymod IN k0 k1 k2 k3 k4 k5 k6 k7

✔ 0 ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔

✔ 1 ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔

✔ 2 ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔

✔ 3 ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔

✔ 4 ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔

✔ 5 ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔

✖ 6 ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖

✔ 7 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖

Restore'Logic'

Tamper<proof''
Memory'

Figure 3: Proposed TTLock architecture. The logic
cone is minimally modified by inverting the response
of one input combination w.r.t. original logic cone.
The restore logic fixes this inversion for the correct
key for the intended input combination and intro-
duces a second inversion for all incorrect keys. The
secret key is k6.

IN2$

G2$
G1$

G3$

G4$
G2$

G3$

G4$

G1’$

Y$ Ymod$

IN1$

IN0$

IN2$
IN1$

IN0$

(a)

IN2$

G2$
G1$

G3$

G4$
G2$

G3$

G4$

G1’$

Y$ Ymod$

IN1$

IN0$

IN2$
IN1$

IN0$

(b)

Figure 4: a) Logic cone in the original circuit. b)
Modified logic cone in TTLock. G1 in logic cone is
replaced with G1′ in the modified logic cone that
inverts the output Ymod for IN=6.

ability of each input pattern is limited to a single incorrect
key (See Section 2.2).

• Any reverse-engineering attack on the original logic cone
recovers the modified, and thus, the incorrect functional-
ity. The secret key should be known to understand the
modification in the logic cone, protecting against removal
attacks (See Section 2.2).

2.1 Construction of TTLock
Figure 3 depicts the generic architecture of the proposed

TTLock using a simple example that assumes a three-input
logic cone protected by a three-bit TTLock key. We consider
the logic cone shown in Figure 4(a). Without loss of gener-
ality, we make a simplifying assumption that the logic cone
input size n equals the key-size; in this example, n=3. TT-
Lock includes a restore logic and an XOR gate. The restore
logic consists of a comparator, whose output is 1 iff the input
matches the key. The table in the same figure illustrates the
inverted outputs. Ymod column shows the inversion for the
protected input pattern; this inversion is fixed only for the
correct key k6. Every incorrect key introduces the second
inversion for a distinct input pattern.

The modified logic cone (MLC) implementing the inver-
sion in Figure 3 is shown in Figure 4(b). The MLC pro-
duces an inverted output for input pattern 6. When the
correct key Kcorr=k6 is applied, the restore logic asserts its
output for input pattern 6, thereby canceling the inversion
injected into the logic cone for that pattern and producing
the correct/desired output. When an incorrect key, say k2,
is applied and for the input pattern 6, the restore logic out-
put is 0. Consequently, the inverted output of the MLC is
retained, thereby producing the wrong output. With k2 ap-
plied, and for the input pattern 2, the restore logic output is
1. Consequently, the correct output of the MLC is inverted,
thereby producing the wrong output again.

2.2 Security analysis of TTLock
Threat model: Consistent with all the logic-locking tech-
niques proposed so far, the attacker is assumed to have ac-
cess to (1) reverse-engineered (locked) netlist and (2) a work-
ing chip, i.e., oracle, that has the key loaded in its memory.
SAT attack resilience: TTLock achieves resilience against
SAT attack by always ensuring that the SAT attack encoun-
ters its worst-case scenario: In each iteration, a DIP can
eliminate at most only one incorrect key. For example, as
shown in Figure 3, each input pattern eliminates only one
incorrect key, thus, requiring 7=23-1 iterations. SAT attack
can also perform random restarts. For instance, consider
the circuit in Figure 3. If it randomly chooses IN=6 (the
protected input pattern), it can eliminate all incorrect keys
at once. However, an attacker/SAT attack does not know
the protected input pattern. Thus, it can only choose the
DIP uniformly at random. Thus, the probability of SAT
attack choosing the protected input pattern is 1

2n
. For a

design with a large number of inputs, say 80, this probabil-
ity becomes negligible (i.e., 2−80), ensuring the security of
TTLock.
Removal attack resilience. In removal attack, an at-
tacker identifies and removes the protection logic. Since the
flip signal (the output of the protection circuit) is highly
skewed towards 0, it can be identified by the SSA attack.
However, the input pattern(s) for which the design produces
corrupted outputs are unknown to the attacker as is the se-
cret key. Any removal attack would recover the MLC and
not the original design.
Sensitization attack resilience. In TTLock, all the bits
of the key converge on the flip signal. Therefore, sensitiz-
ing any given key-bit through the flip signal to Y requires
setting all the other key-bits to known values. As all the key-
bits are unknown, all the key-gates in TTLock are pairwise
secure. Thus, the sensitization attack cannot be launched
on TTLock.

2.3 Frequently Asked Questions
Question 1. Would minor modification(s) to the original
SAT-based attack algorithm make the proposed scheme vul-
nerable to other SAT-based attacks? For example, can an
attacker can introduce an additional constraint of IN=KEY
in the SAT attack algorithm in order to eliminate all incor-
rect keys in just one iteration?
Answer. It would be feasible to add the suggested mod-
ifications/constraints only if the locked netlist had struc-
tural/functional traces that an attacker could exploit to iden-
tify the protected pattern. From the analysis of the locked
netlist alone, the attacker cannot extract the protected input
pattern; one has to exercise the oracle to determine whether
a particular pattern is the protected one. The probability of
an attacker determining the protected input pattern is 1

2n
.

Question 2. The proposed TTLock scheme requires mod-
ification of the original logic cone. Assuming the logic cone
has n = 64 inputs, such modification requires the construc-
tion of a truth table with 264 inputs. Is it feasible to work
with such large truth tables?
Answer. The original logic can be modified for the pro-
tected input pattern (minterm) by first introducing addi-
tional logic that modifies the output of the function for this
minterm, and then by resynthesizing the entire design. The
resynthesis process blends the added logic with the origi-
nal design, eliminating its traces, due to various optimiza-

353

s9234 s15850 s35932 s38417 s38584
24

28

212

216

220

N
um

be
ro

fD
IP

s

DIPs are
plotted
only if
the attack
succeeds

n = 16 n = 17 n = 18

s9234 s15850 s35932 s38417 s38584
20

24

28

212

216

220

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

10 hours

One hour

Timeout
48 hours 1 6 10 7 7

n = 16 n = 17 n = 18

Figure 5: a) Number of DIPs required for the SAT attack [12], and b) execution time (seconds) for TTLock;
n={16, 17, 18}. The timeout is 48 hours. Timeout occurs only for n=18. The number of timeout instances (out
of 10) for each circuit is shown above the timeout line.

tion and transformation steps. Conventional logic synthesis
tools have traditionally been handling designs with input
size greater than 64, and they are re-purposed for our ob-
jectives.
Question 3. Is the amount of entropy introduced mini-
mal as TTLock only targets one output port of the original
design?
Answer. There exists a trade-off between the SAT at-
tack resilience and the output entropy, which is measured
in terms of Hamming distance between the output for the
correct key and the output for incorrect keys. For maximum
SAT attack resilience, the entropy must be minimized. To
achieve higher entropy while retaining maximal SAT attack
resilience, TTLock may be used in conjunction with high
entropy logic-locking techniques such as RLL or FLL.

3. RESULTS
3.1 Experimental setup

In this section, we present experimental results to con-
firm the security expectations and assess the implementation
overhead for the proposed TTLock technique. We run our
experiments on the largest ISCAS’89 benchmark circuits.
Each experiment is repeated ten times in order to improve
the statistical significance. The area, power, and delay over-
head is obtained using Cadence RTL Compiler. FreePDK
45nm library is used [17].

3.2 Security analysis
The resilience of TTLock is dictated by the key-size n.

The number of DIPs required for the SAT attack to succeed,
and the corresponding execution time values are presented
in Figure 5 for n={16, 17, 18}.

Impact of key-size n. The expected number of DIPs
required to break TTLock is 2n−1. As shown in Figure 5(a),
most of the blue entries (n=17) appear closer to 216, and
most of the green entries (n=16) appear closer to 215. With
the exception of a few cases where the attack may be fortu-
itously successful, TTLock thwarts the SAT attack by forc-
ing the number of DIPs to be exponential in n. The SAT
attack does not terminate for larger values of the key-size
(n ≥ 18); the probability of fortuitous attack success be-
comes exponentially smaller for larger values of n.

Execution time. As shown in Figure 5(b), the execu-
tion time of the SAT attack is proportional to the number of
DIPs, although there is a slight variation of 3× to 4× across
the benchmark circuits; the execution time grows exponen-

Table 1: Comparative security analysis of logic-
locking techniques against existing attacks. Vulner-
ability of a logic-locking technique to an attack is
denoted by X. TTLock is secure against all attacks.

RLL FLL SLL Anti-SAT SARLock TTLock
Attack [6] [7] [9] [14] [13]

Sensitization X X X X X X
SAT X X X X X X

Removal X X X X X X

Table 2: APD overhead for TTLock.
Benchmark s35932 s38417 s38584
n 16 32 64 16 32 64 16 32 64
Area (%) 1.0 1.8 4.0 2.0 2.8 2.9 1.2 1.2 2.1
Power (%) 1.7 3.4 6.0 1.8 2.9 3.1 1.7 1.8 3.2
Delay (%) 1.2 1.2 1.4 0.2 0.2 0.1 0.8 0.6 0.5

tially in n. As noted earlier, most of the experiments with
n=18 were aborted after 48 hours of execution.

3.3 Area, power, and delay (APD) overhead
Impact of key size n. While the security level increases

exponentially in n for TTLock, the APD overhead must be
accounted for in choosing n. As shown in Table 2, the APD
overhead of TTLock is quite small. The average area, power,
and delay overhead for n=64 is 3.0%, 4.1%, and 0.6%, re-
spectively. TTLock comprises a single n-bit comparator,
and the overhead increases linearly with n.

These APD results bode well for large-sized industrial cir-
cuits where the percentage overhead results are expected to
be much smaller than those reported herein.

4. PARAMETRIC LOCKING APPLICATION:
PERFORMANCE LOCKING

Till now, we have used logic locking to produce incor-
rect outputs on applying an incorrect key. We now lever-
age the logic locking technique to modify/protect the para-
metric behavior—power, delay, reliability, etc.—of the cir-
cuit. This is called parametric locking. Only on applying
the correct key, the design exhibits a superior parametric
behavior—for instance, high performance, low power, low-
energy, highly reliable operations. On applying the incorrect
key, the design exhibits a relatively poor parametric behav-
ior. In this paper, we introduce an instance of parametric
locking, namely, performance locking at the register-transfer
(RT) level. Unlike functional locking, on applying an incor-

354

+ + + +

+

+

+

FSM
S0

>>

S1

S2

S3

CDFG

sum

data 0

2
1

5

3
4

for(x=0;x<8;x++)
sum += data[x];

sum =sum/8;

(a)

+ + + +

+

+

+

FSM
S0

S1

D
eg

ra
da

tio
n

de
la

y/
cy

cl
es

S2

S4

>>S3

S5

CDFG

sum

data 0

2
1

3

4
5
6
7

(b)

+ + +

+ +

FSM
S0

S1

+ D
eg

ra
da

tio
n

de
la

y/
cy

cl
es

S2

>>S3

0

2
1

3
4
5
6
7

CDFG

sum

data
+

+ +

++

(c)

Figure 6: Performance locking. a) High-performance design with correct key. b) Performance locking using
two wait states. c) Performance locking using two dummy computations.

rect key, parametric locking does not necessarily produce
incorrect outputs but rather degrades the performance.

The section is organized as follows. We introduce the no-
tion of performance locking with a motivating example. We
then explain the business model, where performance lock-
ing will be useful, and the associated threat model. Security
properties of performance locking are detailed next. Finally,
outstanding challenges that need to be addressed to make
performance locking feasible and effective are elaborated.

4.1 Performance locking at the RT-level
With an incorrect key applied, the design computes the

final result by consuming an additional number of clock cy-
cles. The application of the correct key provides a superior
performance, i.e., a shorter execution time. In this work,
we explain how this behavior can be implemented during
high-level synthesis.

Motivational example: Consider the example of a de-
sign computing the average of the last eight numbers. The
control data flow graph (CDFG) for this design with the
correct key is shown in Fig. 6(a). The design requires four
clock cycles. In the first three clock cycles, four, two and
one addition operations are performed, respectively. At the
final clock cycle, a three-bit right shift operation is applied
on the data to get the average of eight numbers. Thus, we
get the output at the start of fifth clock cycle, resulting in a
latency of four clock cycles. We consider this CDFG as the
representation of the high-performance design.

Consider the same design where the performance is de-
graded on applying an incorrect key. This can be performed
in two ways, which are depicted in Fig. 6(b) and Fig. 6(c).
In the first method shown in Fig. 6(b), two additional wait
cycles are introduced to slow down the design. It can be
observed that this has the effect of adding two redundant
or null states (shown as shaded) in the finite state machine
(FSM). Now, the latency of the design is increased from
four to six clock cycles. In the second method depicted in
Fig. 6(c), the same latency of six clock cycles is achieved.
However, the final addition operation is performed during
the fifth clock cycle, as opposed to the third clock cycle in
the first method. During the third and fourth clock cycles,
dummy computations (shown as shaded) are performed with
the objective of adding further obscurity for the attacker;
he/she faces the additional challenge of distinguishing the
real computations from the dummy ones. Only one extra
state is added; the FSM loops through this dummy state in
the third and fourth clock cycles.

4.2 Business and threat models
Consider a company that intends to design and manufac-

ture the same IC but has two sets of users. The first set
of users can pay more than the second set and would nat-
urally expect better IC performance. Currently, this type
of business model is supported by speed binning, which is
necessitated by unintended process variations. Parametric
(performance) locking enables the companies to provide a
similar feature intentionally, with security guarantees.

Threat model. The attacker is at the untrusted foundry
or can be the end-user. He/she has black-box physical access
to the IC with the superior performance. The objective of
the attacker is to obtain the key to boost the performance
of the ICs. To this end, he/she can buy an IC with high
performance from the market, reverse engineer it, and ob-
tain its netlist. Further, he/she can apply chosen inputs to
another IC obtained from the market and collect the correct
outputs.

4.3 Properties of performance locking
1. Performance degradation ratio: The effectiveness of

performance locking is dictated by the performance ra-
tio of the high-performance to low-performance design.
Consider the same example, where the moving average
of eight numbers is computed. The latency for the high-
performance design, whose CDFG is shown in Figure 6(a),
is four clock cycles. The latency for the low-performance
designs, depicted in Figure 6(b) and Figure 6(c), is six
clock cycles. Thus, the performance ratio is 1.5. To
achieve higher degradation, one can introduce a larger
number of wait cycles or insert a higher number of dummy
computations, degrading the performance even further.

2. Overhead: The hardware added to perform performance
locking must incur minimal overhead over the baseline
high-performance design. The example presented above
demonstrates that performance locking can be achieved
at a minimal overhead. In the first method, only ex-
tra wait states are inserted, incurring a 31.67%, 35.21%
and 1.1% overhead for the area, power, and timing re-
spectively. In the second method, dummy computations
are performed by reusing parts of the original design,
thereby incurring an overhead of 147%, 150% and 27%
in area, power, and timing, respectively. Here, the ad-
ditional dummy operations lead to a higher power con-
sumption. Here, for comparison the baseline design is the
original design without any extra key logic. Thus, perfor-
mance locking with added key logic leads to an overhead

355

presented above. However, since the considered example
is small, the overhead is high. But, it will amortize for
large-scale designs, as the number of flip-flops added to
store the keys and the performance locking logic almost
remain the same.

3. Resilience against resynthesis attacks: An attacker
can obtain the high-performance CDFG by applying in-
puts and observing outputs of a functional IC. He/she can
also obtain information about the resources used (num-
ber of adders, shift operations, etc.) and their connectiv-
ity using reverse engineering methods. He/she can then
perform a performance-constrained synthesis for the ob-
tained CDFG and the resource information; the perfor-
mance constraint can be chosen as the number of clock
cycles by which the CDFG has to complete its compu-
tation. In the previous example, it is four clock cycles.
To this end, an attacker can use well-known resource-
constrained synthesis algorithms [18]. Even though the
worst-case complexity of those algorithms is NP-Hard,
the algorithms obtain solutions much faster in reality.
On obtaining the solution to the performance-constrained
synthesis problem, an adversary resynthesizes the netlist
to obtain the high-performance design. Currently, no de-
fense techniques exist against such a resynthesis attack.
This is the major impediment to developing provably-
secure performance locking schemes.

5. CONCLUSION
In this paper, we attempt to widen the notion of logic lock-

ing. First, we follow the traditional path and propose a logic
locking technique, TTLock, that is provably secure against
all attacks such as sensitization, SAT, and removal attacks;
all the previous logic locking techniques are susceptible to
one or more of these attacks. TTLock modifies a logic cone
by inverting the output for a protected input pattern and
restores this inversion to recover the correct functionality
for only the correct key. TTLock ensures provably-secure
protection against SAT attacks, while the modification of
the logic cone constitutes a strong defense against removal
attacks.

Then, we introduce the notion of parametric locking, where
the design specifications such as power, performance, and/or
reliability may be locked, as opposed to the functionality. In
parametric locking, an incorrect key still produces correct
results but downgrades the power, performance, and/or re-
liability of the chip. We present the threat model and prop-
erties for parametric locking, and in particular, performance
locking. The challenge for performance locking is to achieve
increased performance degradation for incorrect keys and of-
fer resilience against resynthesis attacks, without incurring
a high overhead.
Acknowledgement. This work was supported by the New
York University/New York University Abu Dhabi (NYU/
NYUAD) Center for Cyber Security (CCS).

6. REFERENCES
[1] “Defense Science Board (DSB) study on High

Performance Microchip Supply,” 2005, [March 16,
2015]. [Online]. Available:
www.acq.osd.mil/dsb/reports/ADA435563.pdf

[2] R. S. Chakraborty and S. Bhunia, “Security against
Hardware Trojan through a Novel Application of

Design Obfuscation,” IEEE/ACM International
Conference on Computer-Aided Design, pp. 113–116,
2009.

[3] M. Rostami, F. Koushanfar, and R. Karri, “A Primer
on Hardware Security: Models, Methods, and
Metrics,” Proceedings of the IEEE, vol. 102, no. 8, pp.
1283–1295, 2014.

[4] SypherMedia, “Syphermedia library,”
http://www.smi.tv/syphermedia library circuit
camouflage technology.html, [April 22, 2016].

[5] R. W. Jarvis and M. G. McIntyre, “Split
Manufacturing Method for Advanced Semiconductor
Circuits,” US Patent 7,195,931, 2007.

[6] J. A. Roy, F. Koushanfar, and I. L. Markov, “Ending
Piracy of Integrated Circuits,” IEEE Computer,
vol. 43, no. 10, pp. 30–38, 2010.

[7] J. Rajendran, H. Zhang, C. Zhang, G. Rose, Y. Pino,
O. Sinanoglu, and R. Karri, “Fault Analysis-Based
Logic Encryption,” IEEE Transactions on Computers,
vol. 64, no. 2, pp. 410–424, 2015.

[8] R. S. Chakraborty and S. Bhunia, “HARPOON: An
Obfuscation-Based SoC Design Methodology for
Hardware Protection,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 10, pp. 1493–1502, 2009.

[9] M. Yasin, J. Rajendran, O. Sinanoglu, and R. Karri,
“On Improving the Security of Logic Locking,” IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 35, no. 9, pp. 1411–1424,
2016.

[10] A. Baumgarten, A. Tyagi, and J. Zambreno,
“Preventing IC Piracy Using Reconfigurable Logic
Barriers,” IEEE Design & Test of Computers, vol. 27,
no. 1, pp. 66–75, 2010.

[11] S. M. Plaza and I. L. Markov, “Solving the Third-Shift
Problem in IC Piracy With Test-Aware Logic
Locking,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 34,
no. 6, pp. 961–971, 2015.

[12] P. Subramanyan, S. Ray, and S. Malik, “Evaluating
the Security of Logic Encryption Algorithms,” IEEE
International Symposium on Hardware Oriented
Security and Trust, pp. 137–143, 2015.

[13] M. Yasin, B. Mazumdar, J. J. Rajendran, and
O. Sinanoglu, “SARlock: SAT Attack Resistant Logic
Locking,” IEEE International Symposium on Hardware
Oriented Security and Trust, pp. 236–241, 2016.

[14] Y. Xie and A. Srivastava, “Mitigating SAT Attack on
Logic Locking,” International Conference on
Cryptographic Hardware and Embedded Systems, pp.
127–146, 2016.

[15] M. Yasin, B. Mazumdar, O. Sinanoglu, and
J. Rajendran, “Security Analysis of Anti-SAT,” IEEE
Asia and South Pacific Design Automation
Conference, pp. 342–347, 2016.

[16] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri,
“Security Analysis of Logic Obfuscation,” IEEE/ACM
Design Automation Conference, pp. 83–89, 2012.

[17] J. E. Stine, I. Castellanos, M. Wood, J. Henson,
F. Love, W. R. Davis, P. D. Franzon, M. Bucher,
S. Basavarajaiah, J. Oh et al., “FreePDK: An
Open-Source Variation-Aware Design Kit,” IEEE
International Conference on Microelectronic Systems
Education, pp. 173–174, 2007.

[18] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L.
Lin, High-level Synthesis: Introduction to Chip and
System Design. Norwell, MA, USA: Kluwer

Academic Publishers, 1992.

356

