
Functional Obfuscation of Hardware Accelerators through
Selective Partial Design Extraction onto an Embedded FPGA

Bo Hu, Jingxiang Tian, Mustafa Shihab, Gaurav Rajavendra Reddy, William Swartz,
Yiorgos Makris, Benjamin Carrion Schaefer, Carl Sechen

{bo.hu,jxt122130,mustafa.shihab,gaurav.reddy,bill-swartz,yiorgos.makris,schaferb,carl.sechen}@utdallas.edu
Department of Electrical Computer Engineering, The University of Texas at Dallas,Richardson, TX, U.S.A, 75080-3021

ABSTRACT
The protection of Intellectual Property (IP) has emerged as one
of the most serious areas of concern in the semiconductor indus-
try. To address this issue, we present a method and architecture to
map selective portions of a design, given as a behavioral descrip-
tion for High-Level Synthesis (HLS) to a high-security embedded
Field-Programmable Gate Array (eFPGA). In this manner, only the
end-user has access to the full functionality of the chip. Using six
benchmark circuits, we show that our approach is effective. In all
cases, the Time-To-Break (TTB) is so long (at least 8 million hours)
that for all practical purposes the designs are secure, while incurring
area overheads of around 5%. Further, latencies were only slightly
increased, while the computation times are under one minute.

CCS CONCEPTS
• Security and privacy → Security in hardware; Hardware-
based security protocols;

KEYWORDS
hardware security; obfuscation; high level synthesis; embedded
FPGA
ACM Reference format:
Bo Hu, Jingxiang Tian, Mustafa Shihab, Gaurav Rajavendra Reddy, William
Swartz, and Yiorgos Makris, Benjamin Carrion Schaefer, Carl Sechen. 2019.
Functional Obfuscation of Hardware Accelerators through Selective Partial
Design Extraction onto an Embedded FPGA. In Proceedings of Great Lakes
Symposium on VLSI 2019, Tysons Corner, VA, USA, May 9–11, 2019 (GLSVLSI
’19), 6 pages. ACM, New York, NY, USA.
https://doi.org/10.1145/3299874.3317992

1 INTRODUCTION
Contemporary semiconductor manufacturing largely follows a fa-
bless business model wherein third-party foundries are provided
with the source files (i.e., in GDSII format) of an integrated circuit
(IC) design and are contracted to fabricate it. Considering the geopo-
litical position of the majority of the semiconductor manufacturing
industry, this fabless model incurs an inherent security and trust-
worthiness risk. More specifically, the entire intellectual property
(IP) of an IC design is exposed to the-potentially untrusted-foundry

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6252-8/19/05.
https://doi.org/10.1145/3299874.3317992

or any rogue element therein and is, therefore, subject to malicious
manipulation and/or theft. As a result, protecting sensitive parts of
the design (e.g., trade secrets, classified data/algorithms, competi-
tive advantage circuits, etc.) and ensuring functional integrity of the
received ICs becomes very challenging. Furthermore, such security
and trust concerns continue to exist after an IC is deployed in the
field of operation. Indeed, reverse engineering may still reveal the
secret IP contained in an IC, while dormant malicious logic can be
activated post-deployment in order to compromise its functional
integrity. Accordingly, design obfuscation and hardware Trojan
solutions are urgently required.

These fundamental development and supply chain changes have
led to serious security and trustworthy concerns, as these com-
panies now do not have control over the manufacturing process
and hence do not control how many ICs the foundry has actually
manufactured. To address this issue we propose to extract selec-
tively parts of an ASIC design and map it into an embedded FPGA
(eFPGA) with the objective of obfuscating the functionality of the
design.

Intelligent attacks, such as the use of a Boolean Satisfiability
(SAT) solver [14], have been developed and compromisedmost early
obfuscation schemes. This, has resulted in an on-going race between
new defenses and new attacks, reinforcing the need for further
research in this area [4, 5, 16]. In this work, we utilize a design
obfuscation approach that omits parts of it from the fabricated
silicon and reinstates it via post-manufacturing programming. We
will show that using FPGA-style lookup tables (LUTs) to implement
the omitted portion of the function provides high security levels.

The main contribution of this work is an algorithm to extract a
portion of a design to be mapped onto the eFPGA, such that there
is a limited area and delay overhead while providing a very high
security benefit.

2 RELATEDWORK
The obfuscation based approach transforms a given circuit into a
functionally equivalent circuit that is significantly more difficult
(ideally impossible) to reverse engineer. Some examples include
the dedicated obfuscation of DSP circuits by performing high-level
transformations during the design stage and inserting multiplexers
in the datapath controlled by a FSM [4].

Due to the significance of the targeted problem, the last decade
has seen a flurry of research activity in a number of different direc-
tions. Concepts such as Active Metering [2, 11], Logic Encryption
[10, 17], State Obfuscation [3], Design Camouflaging [9], Split Man-
ufacturing [8], and many others have been introduced. Each such
solution comes with each own strengths and limitations and, to date,
no single solution has been successful in addressing the security

Tech Session 7: Physical Design and Obfuscation GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA.

171

https://doi.org/10.1145/3299874.3317992
https://doi.org/10.1145/3299874.3317992

On-chip Bus

Memory

Hwacc1

(C/C++)

Heterogeneous System on Chip (SoC)

HWaccN

(C/C++)

Master1

(µP)

I/F1I/F1I/F1

…
HWacc2

Embedded
FPGA

0010101010011

Cobfus

High-Level
Synthesis

Logic
Synthesis

Map, Place
& Route

Bitstream
Generation

obfus

Figure 1: Design obfuscation via post-fabrication program-
ming of an embedded FPGA (eFPGA) of a portion of a dedi-
cated hardware accelerator.

and trust challenges in a cost-effective manner. Split manufacturing,
for example, divides the design into front end of line (FEOL) and
back end of line (BEOL) and uses different foundries for each part,
so that the entire design is never exposed. Yet two foundries are
required, along with additional logistics for completing the design.
Design time and performance overhead is also potentially incurred.
Similarly, design camouflaging through the use of library cells that
contain decoy elements can make reverse engineering far more
difficult (yet still not impossible) but it also incurs significant over-
head and does not protect the GDSII file from an attacker at the
foundry. Logic encryption and state obfuscation embed a design
within a larger space, wherein only a correct key will yield the
correct functionality. These solutions are very well studied and
understood, yet when applied at scale they do incur significant
overhead. Furthermore, an unlocked IC is still subject to reverse
engineering, unless additional costly provisions are taken in order
to hide the key or individualize it per fabricated IC.

Closer to our work, the authors in [14] proposed to implement
dedicated functions using reconfigurable logic to obfuscate the
design and show an example of obfuscating the instruction decode
unit of a LEON2 open source SPARC V8 architecture processor.
Their approach is nevertheless ad-hoc. In [16] the authors present
a method to extract at the gate-netlist level different paths and
map their gates to non-volatile spin transfer torque (STT) based
reconfigurable LUTs. Although a promising approach, it is currently
not feasible to fabricate these types of hybrid circuits. The authors
in [13] also extract at the gate-netlist level and map the obfuscation
part to the transistors in a fine-grained embedded FPGA.

Ourwork is different from the previouswork in that we propose a
design flow for mapping different design portions at the behavioral
level and hence can understand the security vs. overhead trade-offs
early on in the design flow.

3 EMBEDDED FPGA
The obfuscated portions of a system design, determined by the
algorithms presented in this work, can be mapped to any embed-
ded FPGA (eFPGA). There are multiple commercial eFPGAs on the
market. The most notable vendors include Achronix [1] and Quick-
logic [7]. These eFPGAs are based on traditional 4-input, 1-output

LUTs and can contain multiple hard macros such as embedded DSP
modules and memories.

The key issue is then how to find an ideal portion of a design,
given as behavioral decription for high-level synthesis (HLS), to
map onto an eFPGA [15] to enable effective design obfuscation.

Problem Formulation: Given a behavioral description C to
be synthesized as an ASIC, selectively extract different portions
of C to be mapped onto the eFPGA, such that C = CASIC ∪

CeF PGA, and such that by extracting different CeF PGA, a unique
list of obfuscated designs (Dobf usi) are obtained, Dobf usList =
{Dobf us1,Dobf us2, . . . ,Dobf usn }, with unique area, latency and
security trade-offs, with Dobf usi = {Ai ,Li , Si }, where Ai is the
area, Li the latency and Si the security metric. Out of allDobf usList ,
we are only interested in the pareto-optimal (Dobf us (opt)), where
a Pareto-optimal design can be defined as a design in which it is
impossible to improve one metric without making at least one of
the other metrics worse.

The fundamental concept behind using an eFPGA for design
obfuscation is shown in Fig. 1. Specifically, we propose to replace
the sensitive parts of a design, which we wish to withhold from an
untrusted foundry, with the eFPGA. After the chips are fabricated
and received from the foundry, the withheld design portions are
programmed into the eFPGA fabric to complete the IC functionality.
This idea holds great potential in addressing both IP protection and
design integrity concerns.

Without the programming bits in place, the functionality of the
eFPGA cannot be determined. For example, when the layout of a de-
sign is in the untrusted foundry or when a chip is not programmed,
the eFPGA block has no meaningful functionality and the required
program cannot be extracted, as it does not exist. This work as-
sumes that the bitstream is encrypted, similar to commercial FPGAs
and hence cannot be reverse engineered nor copied.

4 SECURITY METRIC
In order to successfully map different portions of a circuit to the
eFPGA, we need a security metric that quickly and effectively re-
veals how secure the resultant circuit is, in addition to the area
and performance overheads associated with it. Approximate area
and performance overheads can be obtained from the HLS tool
onceCASIC andCeF PGA are synthesized into RTL. Thus, a security
metric (S) is required such that after HLS our proposed method can
determine the security level of each configuration.

For example, if only a single-line of C code is mapped to an eF-
PGA block, such as a large multiplier, an attacker might reasonably
try to guess that a single operator was being obfuscated. Therefore,
in the context of HLS, a key aspect of obfuscation is the number of
operators being assigned to an eFPGA block. Another important
factor is the number of cells to be implemented in the eFPGA, as
larger numbers of cells greatly impairs any possible SAT-based (or
brute-force) attack. A SAT-based attack must enumerate all possible
cells (each “cell” being implemented by one LUT) in the eFPGA.
Thus, we use the product of the number of cells (celli) and the
number of operators (opi) as the security cost function (Si) for each
obfuscated design (Dobf usi):

Si = celli × opi (1)

Tech Session 7: Physical Design and Obfuscation GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA.

172

High-Level Synthesis

Techlib
eFPGA

High-Level Synthesis

application.c obfus.c

application.c

application(){

// pragma

func=operator

obfu1(arg1,… ,argN);

: :

}

FSM Datapath

obfus

application

obfus.vapplication.v QoR HLS (Area, delay)Techlib
ASIC

Select different
partition to be
obfuscated

Partition

Logic Synthesis Logic Synthesis

QoR LS (Area, delay)application_gate.v obfus_gate.v

Embedded
FPGA

Figure 2: Design obfuscation design methodology starting
from a behavioral description for HLS.

After we obtain the pareto-optimal designs (Dobf us (opt)) using the
security metric in Eq. 1, we will select one of those designs with
an acceptable area overhead and compute the time-to-break (TTB)
for both a SAT-based and brute-force based attack. The TTB for a
SAT-based attack is given by:

TT BSBA = 100cel li ×max (bitstr eamloadi , executetimei) (2)

Here we conservatively assume that each LUT can only implement
100 different logic functions. We further conservatively ignore the
substantial obfuscation due to the unknown (to the attacker) switch-
box routing. Bistreamloadi is the time it takes to load the new bit-
stream to the eFPGA, and executetimei , the execution time of a
single test vector. Here, bitstreamloadi = Bitstreami ×clockperiod
and executetimei = latencyi × clockperiod , where the latency is in
clock cycles and the clock period is the inverse of the operating
frequency.

Besides a SAT-based attack, a brute-force attack is also possible.
We assume that the attacker has knowledge of the eFPGA, and
knows how to generate a bitstream but does not know which bit-
stream configurations lead to a valid circuit (a set of configured
logic gates and their interconnections). In this type of attack, the
following steps are iteratively applied: 1) a bitstream is generated,
2) the bitstream is loaded into the eFPGA block and 3) at least one
test vector is executed to determine if the configuration is valid or
not. This test is indispensable but not sufficient. In the case that a
valid output is generated, then other test vectors would need to be
applied to fully guarantee the correctness of the complete circuit.
Assuming one circuit portion mapped to an eFPGA obtained from
CeFPGA, requiring a bitstream to be configured:

TT BBFA = 2bitstr eami ×max (bitstr eamloadi , executetimei) (3)

ALGORITHM 1: Function encapsulation
Cobf us_sinдle : New generated Behavioral description
sub_module: obfuscated module to be mapped to eFPGA
top_module: top module to be mapped to ASIC

input: Cor iд Behavioral description

1 /* Code Annotation : annotate by pragma */
2 while (line ∈ Cor iд) do
3 annotate by /* pragma forloop */ or
4 /* pragma if-else */ or
5 /* pragma operation line */ ;
6 end
7 /* FuncEncp: Function encapsulation */
8 for (each praдma ∈Cor iд) do
9 generate sub_module;

10 generate top_module;
11 end

output : set of pairs {Cobf us_sinдle } = { sub_module ,
top_module}

whereTTBBFA is a function of the bitstream size (bitstream), which
is in turn a function of CeF PGA, since the larger the portion of the
application mapped to the eFPGA, the larger the bitstream becomes.

5 OBFUSCATION DESIGN METHODOLOGY
This section describes the methodology used to find which portion
or portions of a behavioral description for HLS should be mapped
to an eFPGA block, trading off a limited amount of area/power
overhead for a high level of security. The proposed obfuscation
method starts with a library pre-characterization step for the ASIC
and eFPGA, based on the technology that the design team is target-
ing. This is important to get accurate area and delay information
right after HLS. The results of this pre-characterization step is a
technology library, which is in turn used by our selective extraction
method. It then proceeds, following a divide and conquer strategy,
by selecting individual sections of the behavioral descriptions and
mapping them onto the eFPGA block. Finally, it merges all the
results to obtain the best solutions. The next subsections describe
these main steps in detail, as explained in Algorithm 2.

5.1 Pre-characterization and Library Generate
HLS can be defined as the process of converting an untimed behav-
ioral description into a Register Transfer Level (RTL) description
that can efficiently execute it. HLS executes three main steps: Re-
source allocation, scheduling and binding. In the scheduling step,
the synthesizer schedules the different operations in the code based
on the data dependencies and delay information of each operator.

Thus, in order for the synthesizer to successfully schedule oper-
ations in a control step, the synthesizer needs to know the delay of
each functional unit (FU). For this purpose, commercial HLS tools
provide library characterizers which extract the area and delay in-
formation of every basic primitive for the target technology/eFPGA.

Therefore, the technology library of the ASIC and the eFPGA
block are generated in this pre-characterization stage. This allows
our method to use a commercial HLS tool and get accurate prelim-
inary results of how mapping different portions of the code onto

Tech Session 7: Physical Design and Obfuscation GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA.

173

the eFPGA affects the overall area and performance. We call this
QoRHLS (Quality of results).

This step only needs to be executed once, unless the target tech-
nology changes. Once the technology libraries for the ASIC and eF-
PGA are generated (lines 2-3 in Algorithm 2), our proposed method
can continue by selectively extracting different portions of the
behavioral description and quickly quantifying the effect of this
extraction on the area, delay and security of the circuit.

5.2 Selective extraction
Selecting the portion to obfuscate at the behavioral level has the
advantage of allowing the design team to know exactly which por-
tion of the design is obfuscated, whereas this is not straightforward
at the gate-netlist, where the design team might lose intuition on
what exactly is obfuscated. Fig. 2 and lines 4-31 in Algorithm 2
highlights how the selective extraction method works, which is
composed of three main steps.
Step 1: Function encapsulation

The first step, called function encapsulation, starts by select-
ing individual lines of code from the behavioral description and
encapsulates them into a functional operator (lines 8-11 of Algo-
rithm 1). HLS tools have great controllability mainly through the
use of pragmas. This allows the designer to control how to synthe-
size arrays (e.g., RAM or registers), loops (e.g., unrolling, partially
unrolled or pipelined) and functions (e.g., inline, goto or function
operator). This last option is used in the proposed method. Synthe-
sizing functions as operators allows users to encapsulate functions
as functional units. The original idea behind this is to allow the
user to control the amount of parallelism in the resultant circuit,
as inlining generates a hardware block for every function call, and
goto creates a single hardware block for the function. Encapsulat-
ing a function into an operator allows users to control the number
of instantiations for the given function and thus the amount of
parallelism. This is typically done by specifying the instantiation
number in a constraint file.

Pragma annotation : Pragma annotation seeks to discover all
mappable lines that qualify for obfuscation, wheremappable implies
a line that can be isolated and mapped as functional operator. We
annotate the pragma to all mappable lines by analyzing the code
syntax as 4 types:

Type 1 is a single operation line which contains an assignment
instruction. This is often a major part of C code examples and often
is part of the other syntax types (examples are lines 9, 12 and 15
for Cor iд in Fig. 3).

Type 2 applies to f or loop syntax. The start and end of a f or
loop must lie within one module, however, pragmas internal to a
f or loop can be placed in a sub-module. An example is lines 2-13
for Cor iд in Fig. 3).

Type 3 is an i f ori f −else condition. The start and end of an i f or
i f − else condition must lie within one module, however, pragmas
internal to i f or i f − else condition can be placed in a sub-module.
An example is lines 5-10 for Cor iд in Fig. 3).

Type 4 represents all other syntax that is not qualified to be
mapped to the eFPGA, for example, the main function, global or
local variable declarations, and comments.

After each line is classified into one of the above 4 types, the three
pragma types are annotated as shown in lines 3-5 in Algorithm 1.

ALGORITHM 2: Selective behavioral description extrac-
tion for obfuscation in eFPGA
Define Dobf us as a partitioned design (sub-module and top
module) characterized by A, L, S , ftarдet
A: Design area L: Latency S : Security metric
ftarдet : HLS target frequency
input: {Cor iд, LibASIC , LibeF PGA, ftarдet }
Cor iд : Behavioral description to be obfuscated
ASIC_db : ASIC technology library (db)
eF PGA_db : eFPGA technology library (db)
1 /* Pre-Characterization : Initialization*/
2 HLST echLibASIC = дentechlib(ASIC_db);
3 HLST echLibeF PGA = дentechlib(eF PGA_db);

4 /* Selective Extraction: Step1 Function encapsulation */
5 Call Algorithm 1 (Function encapsulation)
6 /*produces a set {Cobf us_sinдle } */
7 /* Selective Extraction: Step2 Individual Extraction*/
8 for each Cobf us_sinдle do
9 DeF PGA =

hls_eF PGA(CeF PGA, ftarдet , HLST echLibeF PGA);
10 DASIC =

hls_asic(CASIC , ftarдet , HLST echLibASIC);
11 Dobf us_sinдle = {DeF PGA, DASIC } ;
12 if Atotal > Amax) then
13 discard Dobf us_sinдle ;
14 end
15 end
16 /* Selective Extraction: Step3 Results Merging*/
17 for each Cobf us_sinдle do
18 Cobf us_merдed = Cobf us_sinдle ;
19 for each subsequent Cobf us_sinдle do
20 /* Merging*/
21 Cobf us_merдed = Cobf us_sinдle∪Cobf us_merдed ;

22 DeF PGA_merдed =

hls_eF PGA(CeF PGA_merдed , ftarдet ,
23 HLSTechLibeF PGA);
24 DASIC_merдed =

hls_asic(CASIC_merдed , ftarдet , HLST echLibASIC);

25 if Atotal <= Amax) then
26 Dobf us_merдed =

{DeF PGA_merдed , DASIC_merдed } ;
27 else
28 Cobf us_merдed − = Cobf us_sinдle ;
29 end
30 end
31 end

output : Dobf usopt =
pareto − optimal {Dobf us_merдed };

These pragma annotated lines can be isolated and mapped as a
functional operator.

Function encapsulation: We group the mappable lines with
pragmas into a new function with the appropriate attributes and
types (e.g., lines 12-21 of Cobf us in Fig. 3). Then, each mappable
line is encapsulated using the functional operator option pragma
(e.g., line 12 in Cobf us in Fig. 3). Also, local variables inside the

Tech Session 7: Physical Design and Obfuscation GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA.

174

1 process application(){

2 /* pragma for loop*/

3 for (x = 0; x < N; x++) {

4 /* pragma if else*/

5 if (x == N-1) {

6 buffer = buffer-1;

7 } else {

8 /* pragma operation line*/

9 buffer = buffer [SIZE-1-x];

10 }

11 /* pragma operation line*/

12 sum=buffer[x]+buffer[x-1];

13 }

14 /* pragma operation line*/

15 sum = sum / N;

16 }

1 process application(){

2 /* pragma for loop*/

3 for (x = 0; x < N; x++) {

4 /* function call */

5 func2_2();

6 /* pragma operation line*/

7 sum=buffer[x]+buffer[x-1];

8 }

9 /* pragma operation line*/

10 sum = sum / N;

11 }

12 /* pragma func = operator*/

13 Void func2_2(){

14 /* pragma if else*/

15 if (x == N-1) {

16 buffer = buffer-1;

17 } else {

18 /* pragma operation line*/

19 buffer = buffer [SIZE-1-x];

20 }

21 }

FuncEncp

Corig Cobfus
top_module

sub_module

Figure 3: Example of function encapsulation.

new C function need to be declared as global variations in order to
maintain the functionality. We call this step function encapsulation
(FuncEncp).
Step 2: Individual Obfuscation
Since the functional operator option is used to encapsulate the

portion of the behavioral description to be mapped to the eFPGA,
as shown in Fig. 2, once the selected portion is automatically en-
capsulated into a function and the functional operator pragma
specified, two separate files are generated when the behavioral
description is parsed. One file with the main functionality of the
application (application.c or top_module) and another with the part
to be obfuscated (obfus.c or sub_module). These files can be in turn
synthesized separately. The HLS proceeds with top_module (ap-
plication.c) using the ASIC technology library (HLSTechLibASIC)
and the encapsulated portion (obfus.c) using the eFPGA technol-
ogy library (HLSTechLibeF PGA), both generated in the library pre-
characterization stage.

The result is two RTL descriptions; one for the top module (ap-
plication.v) and one for the encapsulated module (obfus.v), and a
report file with the quality of results (QoRHLS) indicating the area
of each module and latency. Our method also computes the secu-
rity cost function Si (Eq. 1) of this configuration. This allows our
method to determine the overhead of mapping specific portions of
code to the eFPGA quickly as well as measuring the added security.

Experimental results have shown that theQoRHLS is good enough
to guide our explorer in finding the best mappings, but that the
actual area and delay information reported is often not too accu-
rate (on average, we have observed differences of 20-30%). Thus, as
shown in Fig. 2, the flow is extended to allow a full logic synthesis
for the RTL code generated after HLS. The logic synthesis output
is a gate netlist for the two modules and a new more accurate re-
port (QoRLS). This, allows us to more accurately characterize the
obfuscated architecture.

Our proposed method iteratively considers each line of C code
as the obfuscated portion and re-synthesizes it. If the area overhead

1 1.051.11.151.2

1

2
·105

Area overhead

Se
cu
rit
y
(S
i)

snow3G

1 1.051.11.151.2

200
400
600
800

Area overhead

jpeg

11.051.11.151.20

2,000
4,000
6,000

Area overhead

aes

Security (Si) vs. area overhead

Figure 4: Area overhead vs. security cost function (Eq. 1) for
pareto-optimal designs.

Table 1: Area overhead vs. security metric (TTB) for both
brute-force and SAT-based attack [hours]

Benchmark area overhead [%] TTBbf a [hrs] TTBsba [hrs]
interp 4 265 256
decim 7.8 232 223
jpeg 5.1 21594 2134

kasumi 4.8 21187 2169
snow3G 3.2 2201 2119

aes 4.7 2321 270

exceeds a specified value (lines 13-15 and lines 25-29 in Algorithm 2),
then this line will not be considered for inclusion in the obfuscated
portion.
Step 3: Merging of Results
Our proposed method continues by merging the results obtained

in step 1, whereby each result is due to the obfuscation of a single
line of C code. In this step, multiple lines of C code are considered
for possible concurrent obfuscation. To achieve this, the proposed
method grabs each valid single obfuscated line, in turn, and itera-
tively seeks to merge additional subsequent obfuscated lines of C
code. Once the area constraint would be violated, merging ceases
and the merging process starts over with the next valid single line
of obfuscated C code (lines 19-30 in Algorithm 2). Note that each
single valid line of obfuscated C code is trial merged with sub-
sequent lines of obfuscated C code until the area constraints are
violated. This means that there may be considerable overlap, in
terms of lines of obfuscated C code, between the various mergings.
However, this design space will be significantly pruned, retaining
only the Pareto-optimal points, after considering the area overhead,
delay overhead and security of each merging.

6 EXPERIMENTAL RESULTS
Different computationally intensive applications, amiable to hard-
ware acceleration, were selected in order to test our proposed
method. For this purpose, six SystemC benchmarks from the freely
available Synthesizable SystemC Benchmark suite S2CBench [12]
were used. In particular, they are : 3-stage interpolation filter, 5-
stagedecimation filter, jpeд encoder, snow3G stream cipher, kasumi
block cipher used in mobile communications and aes .

The HLS tool used is CyberWorkBench from NEC [6] and the tar-
get technology is Globalfoundries 65nm. The HLS target frequency
is fixed in all cases to 200MHz and the logic synthesis tool used
is Synopsys’s Design Compiler. The experiments are conducted

Table 2: FSM increase for configurations shown in Table 1
Benchmark obfuscated FSMs original FSMs increased FSMs

interp 5 4 1
decim 9 8 1
jpeg 48 46 2

kasumi 4 3 1
snow3G 4 3 1

aes 10 9 1

on an Intel i7-6700 3.50GHZ CPU and 16 GB memory, running
CentOS 7.0. It should be noted that in order to get accurate results,
the results presented are those reported after logic synthesis.

Fig. 4 shows the Pareto-optimal trade-off curve design space
exploration results for benchmarks snow3G, jpeд and aes as an
example of area overhead versus security cost function. The y-axis
represents the security cost function (Eq. 1) when different portions
of the behavioral description are mapped onto the eFPGA. The area
overhead was restricted to 20 percent more than the original circuit
size. It shows, as expected, a relationship between the size of the
circuit mapped to the eFPGA block and the security. The larger the
portions of the circuit mapped to the eFPGA block, the more secure
the circuit becomes.

Table 1 lists area overhead versus the TTB security metric for
both brute-force and SAT-based attacks for the six benchmarks used.
We select the obfuscated designs (Dobf us) with the area overhead
fixed at around 5% from the Pareto-optimal configurations as an
example to show the TTB in hours. TTB is obtained from Eq. 2
and Eq. 3 in Section 4 where bitstream size (bitstreami), logic cell
number (celli) and latencyi are obtained from QoR of the logic
synthesis step. In each case, for all practical purposes, it would not
be possible for an attacker to reverse engineer the design.

One additional dimension that Fig. 4 does not cover is the per-
formance overhead introduced by mapping a portion of the design
to the eFPGA. In order to simplify the analysis, Table 2 summarizes
the increase in FSMs for configurations shown in Table 1. In all
cases, the target operating frequency of 200MHz could be met, as
we provided the HLS tools with the detailed technology libraries
of the ASIC and eFPGA, and hence the scheduling phase of the
HLS process can insert more or less logic circuits in a single step
so that the 5ns maximum delay (1/200MHz) is not violated. The
performance degradation is thus observed as the number of FSMs
required to produce a new output, as the extra delay introduced
from the eFPGA block can force more scheduling steps. Table 2
shows the FSM increase of the six benchmarks. Only one additional
state is needed after obfuscation for 5 of the 6 benchmarks.

In Table 3, the second column is the number of lines of C code
in the benchmarks. The third column is the number of pragmas, or
candidate code lines that could be obfuscated. The fourth column
is the number of lines of code implemented in the eFPGA, for the
results in Table 1. The last column shows the running time of our
proposed design space exploration method for the results in Table
1, where in this case the run time of the HLS process accounts for
25% of the total runtime while the logic synthesis accounts for the
remaining 75%. In all cases, the TTB is so long that for all practical

Table 3: Selective extraction algorithm runtime [seconds]
for the results shown in Table 1

Benchmark # of code lines pragma# Obf.# of code lines runtime
interp 155 28 22 18
decim 433 34 13 22
jpeg 482 72 62 51

kasumi 314 28 4 25
snow3G 458 73 6 26

aes 892 59 10 64

purposes the designs are secure and the area overhead is around
5%. In most cases the latency was increased by only one FSM, while
the computation time are modest.

7 CONCLUSIONS
In this work we have addressed the hardware security problem
using an algorithm and architecture to map selective portions of a
behavioral description for HLS to an eFPGA. In this manner, only
the end-user has access to the full functionality of the chip. Using
six benchmark circuits, we showed that the TTB is so long (at
least 8 million hours) that for all practical purposes the designs
are secure, while incurring area overheads of around 5%. Further,
latencies were only slightly increased, while the computation times
are under one minute.

REFERENCES
[1] Achronix. 2018. Speedcore eFPGA. (2018).
[2] Yousra Alkabani et al. 2007. Active Hardware Metering for Intellectual Property

Protection and Security. In Proceedings of 16th USENIX Security Symposium on
USENIX Security Symposium (SS’07). Article 20, 16 pages.

[3] R. S. Chakraborty and S. Bhunia. 2009. HARPOON: An Obfuscation-Based SoC
Design Methodology for Hardware Protection. IEEE TCAD 28, 10 (Oct 2009),
1493–1502.

[4] Y. Lao et al. 2015. Obfuscating DSP Circuits via High-Level Transformations.
IEEE TVLSI 23, 5 (May 2015), 819–830.

[5] Bao Liu et al. 2014. Embedded Reconfigurable Logic for ASIC Design Obfuscation
Against Supply Chain Attacks. In DATE. 243:1–243:6.

[6] NEC. 2015. CyberWorkBench v.5.2. (2015).
[7] Quicklogic. 2018. ArticPro. (2018).
[8] J. Rajendran et al. 2013. Is split manufacturing secure?. In 2013 DATE. 1259–1264.
[9] J. Rajendran et al. 2013. Security Analysis of Integrated Circuit Camouflaging.

In SIGSAC Conference on Computer & Communications Security (CCS ’13).
709–720.

[10] J. Rajendran et al. 2015. Fault Analysis-Based Logic Encryption. IEEE Trans.
Comput. 64, 2 (Feb 2015), 410–424.

[11] Jarrod A. Roy et al. 2008. EPIC: Ending Piracy of Integrated Circuits. In DATE.
1069–1074.

[12] Carrion Benjamin Schafer et al. 2014. S2CBench:Synthesizable SystemC Bench-
mark Suite. IEEE Embedded Systems Letters 6, 3 (2014), 53–56.

[13] Mustafa M. Shihab et al. 2019. Design Obfuscation through Selective Post-
Fabrication Transistor-Level Programming. In Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE.

[14] S.Liu et al. 2013. Achieving Energy Efficiency Through Runtime Partial Recon-
figuration on Reconfigurable Systems. ACM Trans. Embed. Comput. Syst. 12, 3
(2013), 72:1–72:21.

[15] Jingxiang Tian et al. 2017. A field programmable transistor array featuring single-
cycle partial/full dynamic reconfiguration. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017. IEEE, 1336–1341.

[16] T. Winograd et al. 2016. Hybrid STT-CMOS designs for reverse-engineering
prevention. In DAC. 1–6.

[17] M. Yasin et al. 2016. On Improving the Security of Logic Locking. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 35, 9 (Sept
2016), 1411–1424.

Tech Session 7: Physical Design and Obfuscation GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA.

176

	Abstract
	1 Introduction
	2 Related Work
	3 Embedded FPGA
	4 Security Metric
	5 Obfuscation Design Methodology
	5.1 Pre-characterization and Library Generate
	5.2 Selective extraction

	6 Experimental Results
	7 Conclusions
	References

