SPIN-TEST: Automatic Test Pattern Generation for Speed-Independent Circuits

Feng Sht
Electrical Engineering Dept.
Yale University
New Haven, CT 06520, USA

Abstract

SPIN-TEST is a simulation-based gate-tevel ATPG system for
Speed-Independent circuits. lis core engine is an A* search algo-
rithm which employs an accurate fault simulator and an efficient
cost function to guide a deterministic test pattern generation phase.
A random test pattern generation phase is also available in order to
improve run time. The key ATPG challenge in Speed-Independent
circuils is the generation of patterns that are valid independently
af the relative timing and the order of arrival of signals. SPIN-
TEST addresses this challenge by guaraniceing fault sensitization
with hazard/race-free patterns and response observation that is not
affected by oscillations or non-deterministic circuit states. Experi-
mental results on benchmark circuits demonstrate the efficiency of
SPIN-TEST in terms of both high fault coverage and low test gener-
ation time.

1. Introduction

The recent resuscitation of asynchronicity as a solution to several
limitations encountered in submicron technology [1] has sparked
new research interest in many aspects of asynchronous design au-
tomation, including test [2, 3, 4]. Advantages such as reduced power
dissipation, elimination of clock distribution issues, modularity, and
improved performance have enabled asynchronous circuits to carve
a widening niche in many systems previously dominated by their
synchronous counterparts. Asynchronous circuits do have draw-
backs however. Without a global clock for synchronization, they op-
erate in a rather independent manner, which is sensitive to race con-
ditions and hazards, making them cumbersome to design and test.
Uncontrolled feedbacks amplify this situation and make validation
and simulation of asynchronous circuits even harder. Compounding
this difficulty, EDA tools available for asynchronous design and test
are neither as abundant nor as refined as those for synchronous.

With regards to test, controlling and observing internal nodes
in asynchronous circuits is much harder than in synchronous cir-
cuits. Even worse, DFT remedies for synchronous sequential cir-
cuits, such as scan-based design, may be impractical and unaccept-
ably expensive for asynchronous circuits, since they introduce more
feedback and state holding elements. Moreover, several classes of
asynchronous circuits exist and test methods for one class might not
work for other classes due to different timing assumptions.

In this paper, we focus on automatic test pattern generation
(ATPG) for Speed-Independent designs, one of the main classes of
asynchronous circuits. First, in section 2, we discuss the challenges
of ATPG for Speed-Independent circuits. Then, in section 3, we de-
scribe SPIN-TEST, the simulation-based, gate-level ATPG system
that we developed for this class of circuits. Next, in section 4, we
provide an example and finally, in section 5, we report experimental
results.

0-7803-8702-3/04/$20.00 ©2004 1EEE. 903

Yiorgos Makns
Electrical Engineering Dept.

. Yale University
New Haven, CT 06520, USA

2. ATPG in Speed-Independent Circuits

In this section, we introduce the class of Speed-Independent cir-
cuits, we discuss the challenges in designing an efficient ATPG al-
gorithm for this class, and we review related research efforts.

2.1, Speed-Independent Circuits

Asynchronous circuits are classified into two main categories
according to their design style, namely Huffman and Muller cir-
cuits, Huffman circuits [5] are designed using a traditional asyn-
chronous state machine approach. The state is stored in combina-
tional fecdback loops. Huffman circuits are typically designed un-
der the bounded gate and wire delay model. In this mode), circuits
are guaranteed to work regardless of gate and wire delays, as long as
a bound on these delays is known. In order to design correct Huff-
man ¢ir¢uits, 1t is alsd necessary to set constraints on the behavior of
the environment, namely when inputs are allowed to change. More-
over, correctness of Huffiman circuits relies on the assumption of
“fundamental operation mode”, which means that outputs and state
variables stabilize before cither new inputs or feedback state vari-
ables arrive at the inputs. Violation of this assumption may result in
a sequential hazard, Such hazards are often avoided in Huffiman cir-
cuits by inserting enough delays in the feedback lines to ensure that
logic signals stabilize after the input transitions and before further
transitions occur through the internal state variables.

In contrast, Muller circuits {5] are designed mainly based on sig-
nal transition graphs {STG, or Petri nets) as the specification form
and operate under the unbounded gate delay model. In this model,
circuits are guaranteed to work regardless of gate delays, yet assum-
ing that wire delays are negligible. Muller circuit design requires
explicit knowledge of the behavior protocol allowed by the envi-
ronment. However, no restrictions are imposed on the order or the
speed that inputs, outputs, and state signals change, except that they
must behave according to the protocol. Mulier circuits correspond
to Speed-Independent circuits [5], and although the two terms are
used interchangeably in the literature, we will only use the latter in
the rest of the paper. A Speed-Independent circuit example is given
in Figures 1-2. Figure 1 illustrates the circuit specification, which in
this case is an STG. The underlined signals in the figure are primary
inputs, while the remaining signals are primary outputs. A “+” indi-
cates a rising transition while a “-” indicates a falling transition of a
signal. The STG indicates the causal relationship between the sig-
nals, where a transition occurs when a// the predecessor transitions
have occurred. The two solid circles, called initial marking, repre-
sent the initial state ofithe circuit, which in this case is ackl = 0,
ack2 = 0, regl = 0, 7eg2 = 0, and CSCO = 0. Notice that the
initial state is part of the circuit specification, resembling the exis-
tence of a global reset line in a state machine representation. The
gate level implementation, including C-Elements', is shown in Fig-
ure 2.

'A C-Element is a state holding element that assumes the state of its
inputs afier both inputs make the same transition.

ack2+
Q g2 + TQL CsCo+
1 /
ackl - — Tke-
mq‘- rogql+
ackl +
CSCo-

Figure 1. Signal Transition Graph Example

ack1
C Y ackz
rea2_ 4
CSCo
Thyeal .
o
)

Figure 2. Corresponding Speed-Independent Circuit

2.2. ATPG Challenges

The unbounded delay model of Speed-Independent circuits im-
plies more lax timing assumptions than those of Huffman circuits,
which assume a bounded gate delay model and a fundamental mode
of operation. Consequently, test generation solutions for Huffman
circuits are not directly applicable to Speed-Independent circuits,
which present their own set of challenges:

Hazard/race-free pattern generation: A key challenge in ATPG
for Speed-Independent Circuits is the generation of hazard/race-
free test patterns under the unbounded gate and negligible wire de-
lay model. Test generation algorithms for synchronous circuits do
not need to worry about combinational timing; thus, when these
methods are used in asynchronous circuits they do not guarantee
hazard/race-free patterns. Patterns with hazards or races, however,
are invalid for testing asynchroneus circuits. Moreover, a test gen-
eration algorithm for one class of asynchronous circuits is not nec-
essarily appropriate for other classes of asynchronous circuits. For
example, an algerithm generating test sequences that are hazard-free
under the bounded gate and wire delay model, is adequate for Huff-
man circuits; yet it may result in test sequences that are hazardous
under the unbounded gate delay and negligible wire delay maodel.
ATPG for Speed-Independent circuits should, thus, detect and/or
avoid hazards/races under the appropriate timing assumptions.

Stable-state response observation; As an additional challenge,
an ATPG algorithm for Speed-Independent circuits has to guaran-
tee that faults are detected in a stable state, such that they can
be observed by existing Automatic Test Equipment (ATE) for syn-
chronous circuits. Unlike synchronous circuits where all states are
stable, asynchronous circuits operate in a rather independent manner
and have several unstable states, While stopping the clock preserves
the state of a synchronous circuit independent of what state it is in,
stopping an asynchronous circuit it an unstable state is not feasible.
Therefore, a test sequence which detects the fault in an unstable state

904

is invalid for testing asynchronous circuits, simply because the fault
effect cannot be observed by synchronous circuit ATE.

Efficiency: An ATPG algorithm for Speed-Independent circuits
should be efficient not only in identifying patterns to activate the
fault and propagate the fault effect, but also in guaranieeing that the
generated test patterns are hazard free and the fault effect is observed
in a stable state. The simplest approach would be to first generate the
test patterns without considering these restrictions, then identify and
discard the invalid ones through simulation and repeat the process.
However, such an approach may be overly time-consuming and in-
efficient. Ideally, an algorithm should be able to generate patterns
that inkerently observe these restrictions. Additionally, methods for
generating and efficiently fault-simulating pseudo-random patterns,
identifying redundant faults, and collapsing equivalent faults should
be employed to prune the fault-list and improve run-time. We note,
however, that these tasks are relatively much more difficult in Speed-
Independent circuits than in synchronous circuits.

2.3. Related Work

Several deterministic test pattern generation algorithms have
been proposed for asynchronous circuits. Banerjee et al. [6] pro-
posed a method for modelling an asynchronous circuit as a syn-
chronous circuit for test purposes by inserting a virtual flip-flop into
each feedback path. Thus, test patterns can be automatically gen-
crated by state-of-the-art synchronous ATPG technigues. The syn-
chronous test generation mode! for asynchronous circuits ensures
that faults are detected in stable states. However, some of these
vectors may cause hazard/race conditions and are invalid for test.
Therefore, fault simulation is needed to discard these vectors, re-
ducing fault coverage. While this is not a significant problem in
Huffman circuits, it becomes critical in Speed-Independent circuits.
In the former, most sequential hazards are avoided by assuming fun-
damental mode of operation and by inserting delay elements in the
feedback paths. In the latter, however, no such assumptions are made
and therefore more hazards/races may take place, leading to inval-
idation of many test vectors generated through the above method.
Moreover, as pointed in [7], the test validation method in [6] leads
to optimistic results.

Roig et al. [7] also proposed a deterministic method for gener-
ating synchronous test patterns for asynchronous circuits. In their
method, the fault free circuit is first analyzed to find all input se-
quences without hazards and oscillations and to generate a Conflu-
ent Stable State Graph (CSSG). Then, a symbolic ATPG strategy is
employed on the CSSG to identify test sequences for each fault. This
method assures that the generated test vectors are valid. However,
since it generates the CSSG by analyzing the non-faulty circuit to
find all hazard-free and race-free input sequences, it is computation-
ally expensive, especially as the size of the circuit becomes larger.
Moreaver, a large percentage of faults is typically detected by a ran-
dom ATPG phase and the deterministic methed is only employed
for the few remaining faults. Thus, building and maintaining the
complete CSSG is often unnecessary.

Cheng et al. [8] introduced a simulation-based directed search
approach for generating test vectors for synchronous and asyn-
chronous sequential circuits. In this method, a rhreshold-value
model was developed to incorporate signal controllability informa-
tion, based on which a cost function is computed by the simulator to
guide the selection of test vectors. This method has two advantages
over conventional approaches. First, it avoids the high complexity
caused by back-tracking in space and time in conventional meth-
ads. In addition, fault simulation deals with circuit delays in a very
natural manner and is able to detect hazards/races and oscillations;
thus, it generates tests that are guaranteed to be valid, However,
the guided search algorithm in [8] is not complete since the search

may be terminated at a local cost minimum. Hence the algorithm
may fail to identify test vectors for some testable faults. Further-
more, this method is unable to determine redundant faults and stop
the search in an early stage; thus it often engages in vain computa-
tion, fraversing the search space until it aborts.

3. Proposed ATPG Method

Similar to th¢ method proposed in [8], SPIN-TEST is a
simulation-based test pattern generation algorithm. The main ad-
vantage of sunulation-based ATTG is that it can naturally detect
and avoid hazards and races and, thus, generate hazard/race-free
test patterns. This is very important in Speed-Independent circuits,
wherein hazards and races often lead to non-deterministic behavior,
which will typically invalidate the corresponding test patterns and
reduce fault coverage. Therefore, efficient logic and fault simulation
is instromental for successful test pattern generation. The simula-
tion engine of SPIN-TEST is based on SPIN-SIM [9], a novel logic
and fault simulation method that was recently developed for Speed-
Independent circuits.

3.1. Overview

As illustrated in Figure 3, SPIN-TEST is essentially an A* search
algorithm [10]). Given a fault, SPIN-TEST first examines whether
the fauit is redundant in the corresponding combinational circuit, in
which case it proceeds to the next fault. Otherwise, SPIN-TEST con-
structs the necessary search objectives for activating and propagat-
ing the fault. It then starts by fault-simulating the initia} state of the
circuit, If the fault is detected, SPIN-TEST reports the cortespond-
ing test patterns and continues with the next fault in the faultlist.
Otherwise, SPIN-TEST fault-simulates one of the possible Single-
Input-Change (81C) vectors (i.e. vectors at Hamming distance one
from the current test vector). If the fault is detected, SPIN-TEST
reports the corresponding test patterns. Otherwise, it estimates the
cost of detecting the fault by continuing with this vector, and stores it
into a queue in ascending cost order. After all SIC vectors are tried,
SPIN-TEST removes the cheapest vector from the queue and uses it
as the current iest vector. This procedure is tepeated until a sequence
of test vectors that detects the fault is found, or until the quene size
limit is reached, in which case it aborts on the fault. A test sequence
with hazards/races is naturally avoided because SPIN-SIM detects
them by reporting X on state/output signals, whick, hence, greatly
increases its cost value,

SPIN-TEST only tries test vectors which are at unit Hamming
distance from the current test vector. However, as observed in [9],
this does not limit fault detectability. This holds because Speed-
Independent circuits operate without any restrictions on the speed or
order of input changes. Therefore, if a favlt in a Speed-Independent
circuit is detectable by a test sequence which includes a Multiple-
Input-Change (MIC} vectot, then the fault is also detectable by the
test sequence obtained by arbitrarily breaking down the MIC vector
into @ sequence of SIC vectors. Also, by allowing only SIC vectors,
the number of trials in each iteration is very small (i.e. equal to the
number of inputs). Moreover, as pointed out in [8], SIC test vectors
are known to produce fewer hazards in asynchronous circuits, hence
they are less likely to result in invalid test patterns.

SPIN-TEST is a complete search algorithm, unlike the test gen-
eration algorithm in [8]. The latier accepts only input changes that
reduce the employed cost function, hence it may abandon the search
due to a local minimum. In contrast, SPIN-TEST stores suboptimal
trials and revisits them if the estimated optimal trial fails. Thus, if
a solution exists, jt is able to recover from a local minimum and de-
tect the fault. As a result, SPIN-TEST aborts on a fault only if it is
undeiectable within the preset limit of allowed trials.

905

¥
Inject a tault from the tault list
into the CUT

| J

Generate lests in the
corresponding combinational
circuit (using FAN}

LConstruct search ubjec!ives_l

\

I initialize the CUT and faukt I

l Génerats a SIC test vecturil

[|

Fault simulate

Queue the test vector in
ascending cost order

.

" Al SIC test
vectors tried?

DequeLte tha first test vectar
and make it the current test

vector

Figure 3. Flowchart of Proposed Algorithm

l

3.2. Redundant Fault Identification

As mentioned in [8], simulation-based ATPG is inefficient in
handling redundant faults. The search algorithm essentially has no
way of proving redundancy so it keeps trying all possibilities until
a preset limit is exceeded, which often causes serious performance
degradation. In order te overcome this limitation, SPIN-TEST em-
ploys a mechanism to detect redundant faults in an early stage. It
exploits the fact that a fault in a Speed-Independent circuit cannot
be detected if it is c-redundant, (ie. it is redundant in the cor-

responding combinational logic derived by arbitrarily cutting each
feedback path in the original asynchronous circuit into a pseudo-
primary input (PPI) and a pseudo-primary cutput (PPQO)). This hap-
pens because, when the feedback is included, such a fault cannot
lead to deterministically different good machine and faulty machine
responses. While the state of the faulty machine may be affected
by a glitch, the timing specifications of Speed-Independent circuits
place no constraints on the duration of such a glitch. Therefore, it is
not guaranteed that the faulty machine state will differ from the good
machine state, Thus, such a fault can at best be potentially defected
in a Speed-Independent circuit.

Before searching for a test for a given fault, SPIN-TEST checks
whether it is c-redundant, in which case it removes it from the
fault list saving valuable search time. For this purpose, SPIN-TEST
adopts the FAN algorithm [11]. Interestingly, even if the fault is
not c-redundant, the test vectors found during this effort are useful
for the rest of the process. In essence, these vectors indicate a par-
tial solution for exciting and propagating the fault within the Speed-
Independent circuit. Thus, they point to a direction for searching for
a test sequence so they can be used as initial search objectives. In this
way, SPIN-TEST combines redundant fault identification and estab-
lishment of appropriate search objectives for the simulation-based
phase into a single step.

3.3. Cost Computation

SPIN-TEST is an informed search algorithm, thus its perfor-
mance is strongly dependent on the heuristic cost function. [de-
ally, this cost function should reflect the hardness of detecting the
given fault by accepting the current test vector. SPIN-TEST first
tries to find a sequence of test vectors to activate the fault and then
a sequence of test vectors to propagate the fault effect to a primary
output. Since the objective is different in fault activation than in
fault propagation, SPIN-TEST has a different cost function for each
stage.

In the fault activation stage, SPIN-TEST tries to activate the fault
by applying test patterns that detect the fault in the corresponding
combinational circuit, Hence, given a target test pattern, the cost
function is proportional to the Hamming distance between the cur-
rent circuit state and the objective test pattern, However, since some
state signals are easier to set than others, SPIN-TEST accounts for
this difference bgr assigning weights to each state signal according
to its input level”. In general, the input level reflects the difficulty
of setting a state signal to a specific value, so SPIN-TEST sets its
control cost to 2%, where 1;,, denotes its input level, The total cost
for setting the state signals to the corresponding values of the objec-
tive pattern is the sum of the control costs of the state signals that
are different in the current state. In addition, since SPIN-TEST only
allows SIC test vectors, the Hamming distance between the current
primary inputs and those of the objective test pattern indicates the
minimal number of vectors needed to reach the objective state. Yet,
since primary inputs are much easier to control than internal states,
the contribution of this Hamming distance to the cost function has
a lower weight. Moreover, the current length of the test sequence
aiso confributes (o the cost activation function. Finaily, since the
objective test patterns may only activate the fault, the cost function
also includes the estimated cost for propagating the fault effect. The
latter is a cost estimate for driving the nearest fault effect in the ob-
jective pattern to a primary output. If the lowest output level of the

Yinput levelization is performed in the standard method: primary inputs
are assigned level 0, state signals connected to primary inputs either directly
or through combinational logic are assigned level 1, state signals connected
to signals in level | but not level 0 are assigned level 2, and se on. Output
levelization is also performed in a similar way.

906

state signal carrying a fault effect in the objective pattem is 5,4, the
estimated fault propagation cost is 2=, The final cost is equal to
the minimal cost for any of the objective test patterns, since any of
them may activate the fault effect. In summary, the fault activation
cost function is:

Ca = min { > I(PL,Obi}+
- PLePI
+ I(PPIy, Obj;) x 2~ PFI0) 4
PPILePPI

+ Cprop_estimated(Obji)} + 2 X curr_len

In this equation, Obj; denotes one of the n possible objective
test patterns returned by FAN, PI; denotes an element of the
set of primary inputs PI, PPI; denotes an element of the set
of pseudo primary inputs in the corresponding combinational cir-
cuit PPI, currlen denotes the length of the current test se-
quence, Cprop_estimated (Obji) Teturns the estimated fault propaga-
tion cost for Oby;, lin(PPI) returns the input level of PP}, and
I8, Obj;) is a binary function which returns 0 if the value of signal
S equals that of the corresponding signal in objective pattern Obj;,
and 1 otherwise.

Ongce a fault effect appears on any state signal, SPIN-TEST en-
ters the fanlt propagation stage, In this stage, the cost function
should reflect the difficuity for fault propagation from the current
state. SPIN-TEST takes into account the proximity of the state sig-
nal where the fault effect appears to 2 primary output and sets the
corresponding fault propagation cost in exponential proportion to
the output level of that state signal. The final cost value is the mini-
mal cost for propagating the fault effect from any of the state signals.
In addition, the final cost also includes the length of the current test
sequence, since it reflects the total cost for detecting the fault. In
summary, the fault propagation cost function is:

Cr 2lowtlPPON) 4 o o crprr len

in
PPOEPPO!

where PPQO; denotes an element in the set of pseudo primary out-
puts carrying fault effects PPO’, Lu:(PPO;) retumns the output
level of PPQ;, and curr_len is the length of the current test se-
guence. Note that, in some cases, the fanlt effect is directly activated
on a primary output instead of a state signal and the fault propagation
stage is skipped.

3.4. Improving ATPG performance

Fault-simulation of randomly generated patterns is often per-
formed before deterministic algorithms to improve ATPG perfor-
mance in synchronous circuits. In the case of Speed-Independent
circuits, random test generation remains a very efficient method, al-
though it may nced to be adapted to the particularities of Speed-
Independent circuits to achieve higher performance [9]. Hence, we
include an optional random test generation phase through which
many fauits are detected and dropped from the fault list before the
deterministic algorithm of SPIN-TEST is invoked.

Fault collapsing is another efficient method for reducing the
workload of test generation in synchronous sequential circuits,
which can also be applied in Speed-Independent circuits. SPIN-
TEST employs the fault collapsing method for Speed-Independent
circuits that was proposed in [9]. More specifically, it collapses g-
equivalent [12] faults (i.e. single-gate equivalent faults) before any
test pattern generation is performed. Since the collapsing rate is typ-
ically quite significant, a lot of unneccessary workload is avoided,
hence the overall ATPG performance is improved,

QBAR
CLX

Detected

Figure 5. An Exampie of Test Search

3.5, Discussion

The deterministic test search algorithm of SPIN-TEST exhibits
several advantages. First, since the cost function includes the length
of the current test sequence, SPIN-TEST is guided towards finding
the shortest test sequence. Second, unlike static algorithms which
only focus on one way of fault activation or propagation before they
backtrack and try another alternative, SPIN-TEST is much more dy-
namic. More specifically, it simultaneously considers multiple ob-
Jective patterns for fauit activation and multipie ways of fault propa-
gation during the search process and dynamically selects the test se-
quence which is considered to be optimal at each step. Thus, SPIN-
TEST has a more global view during the search process which al-
lows it to calibrate the discrepancy between the estimated and the ac-
tual cost. Third, SPIN-TEST pursues fault activation and response
propagation concurrently and is allowed to switch between objec-
tives. Since the only essentiai difference between the two phases is
the computation of the cost function, they are both handied by the
same process in SPIN-TEST. This allows exploration of more global
test optimization opportunities.

4. An Example

In order to illustrate how SPIN-TEST works, we present an ex-
ample in which it generates test patterns to detect the fault /0 in
the circuit of the D flip-flop shown in Figure 4. Assume that ini-
tial state of the circuitis g = 0, f = 1, Q = 0, QBAR = 1,
D:. = 0and CLK = (), and that SPIN-TEST generates the corre-
sponding combinational circuit by cutting the feedback paths g — f
and @ — QBAR.

SPIN-TEST first runs FAN on the corresponding
combinational circuit, and finds the two test patterns
(Din,CLK,g’,Q',Q,QBAR) - (X,O, l,O,D, 1) and

{X,0,0,1,13, D), where g’ and Q' are the pseudo primary inputs
obtained by cutting the feedback paths. We also use the standard
D —notation where D (D) denotes that the value is 1 (0) in the
fault-free circuit and 0 (1} in the faulty circuit. SPIN-TEST sets
these two patterns as the objective patterns, and starts searching for
a test sequence to detect the fault, The search process is illustrated

907

in figure 5, wherein the number in each circle indicates the current
cost and the two bits above each arrow indicate the values of D
and CLK, respectively. SPIN-TEST starts at step 1, where both
Din and CLK are zero. It first tries to keep CLK at zero, since
it activates the faul. Howeves, afier selecting vector 10 in step
2, SPIN-TEST finds that the cost of continuing along this path
keeps becoming higher (i.e. it would become 8 or 9) due to the
increasing length of the test sequence, since the fault effect cannot
be propagated to any primary outputs when CLK is zero. Since
this cost exceeds that of the other possible SIC 1est pattern (01) in
step 2, SPIN-TEST switches to it as the current test pattern. Then
SPIN-TEST sets [}, to one in step 3 (11}, which preserves the
cost of 7 because this vector helps in propagating the fault effect,
Finally, SPIN-TEST finds a way to both activate the fault and
propagate the fault effect to @ by lowering CLK in step 4 (10),
hence the fault is detected and the test sequence 00/01/11/10 is
reported.

5. Experimental Results
1

We developed SPIN-TEST in C, based on ATALANTA [13],
which is an implementation of the FAN ATPG algorithm, and SPIN-
SIM [14], which is a recently developed engine for logic and fault
simulation of Speed-Independent circuits. The input netlist is in
ISCAS89 format and the stuck-at fault list can be either provided
through a file ar generated automatically. In the latter case, all sin-
gle stuck-at faults on gate inputs and outputs arc injected and g-
equivalent faults ar¢ collapsed. SPIN-TEST provides an optional
random test generation phase, implementing the algorithm of [9]
with a user-defined termination condition (i.e. the maximal num-
ber of consecutive test veciors that detect no faults). Then, the
simulation-based, deterministic test pattern generation phase de-
scribed in Section 3 is performed for each remaining fault.

We experimented with SPIN-TEST on a set of Speed-
Independent benchmark circuits synthesized by Petrify [15]. In each
benchmark, a reset ill"lpul‘. port is assumed to be connected 1o every
memory element, so, that the circuit can be initialized to the ini-
tial state provided in the specification, as explained in section 2.1.
The experiments were performed on a workstation with dual Xeon
1,7GHz processors and 1 gigabyte of RAM. The initial size of the
search queue was set to 1K. After the algorithm terminates, the user
has the option to increase this size and repeat ATPG on the aborted
faults.

We first ran SPIN-TEST with the random test generation phase
disabled. Table | illusirates the results. The name of each example
circuit is listed in the first column, and the number of total faults,
the number of faults after g-equivalent fault collapsing, and the col-
lapsing rate for each circuit are listed in the second, third, and fourth
column respectively. An average fault collapsing rate of 38.3% is
achieved across these example circuits, which reaffirms that fault
collapsing is still an efficient technique to improve ATPG perfor-
mance. The number of total detected faolts for each circuit is listed
in the fifth column. The sixth column presents the number of re-
dundant faults in the corresponding combinational circuit of each
example circuit. These c-redundant faults are identified before the
test vector search algorithm takes place, thus wasted computational
time is avoided. The number of aborted faults during the determinis-
tic ATPG algorithm fot each circuit is listed in the seventh celumn,
These faults were aborted because no test sequence was found for
them before the maximat size of the search queue was reached. The
total fault coverage for each circuit is listed in the eighth column,
An average fault coverage of 97.3% is achieved across all example
circuits. The ninth column presents the CPU time that SPIN-TEST
spent on each circuit for all faults (detected + aborted) using only
the deterministic method. The tenth column presents the CPU time

Deterministic ATPG (Random Phase Disabled) Random Phase Enabled
Circuit Total Faults after | Collapsing | Detected | é-redundant | Aborted Fault CPU PO Randomly CPU
Name Faults | Collapsing Rate (%) Faults Faults Faults Coverage (%) | Timel(s) | Time2(s) j Detected Faults | Time3(s)
alloc-outbound 70 41 414 41 [1]] 100 0.015 0.015 41 0.005
chul33 54 32 40.7 31 0 1 96.9 0.006 0.005 31 0.002
chul50 56 35 37.5 34 1 ¢ 97.1 0.006 0.006 34 0.003
convelta 54 38 29.6 35 4] 3 919 0.010 0.010 33 0.006
daff 44 28 36.4 24 0 4 857 0.013 0.009 7 0.013
cbergen 74 46 37.8 44 0 2 957 0.025 0.021 44 0.010
half 22 15 318 15 4] 0 100 0.003 0.003 15 0.002
hazard 48 33 312 32 0 1 970 0.012 0.011 32 0.004
mp-forward-pkt 60 34 433 34 0 [} 100 0.009 0.009 34 0.003
mrl 152 ex] 38.8 87 4] 6 915 3.008 1.243 65 2.881
nak-pa 82 48 41.5 48 0 4] 10¢ 0.013 0.015 46 0.0035
nowick 56 28 50.0 28 0 0 100 0.003 0.003 27 0.002
ram-read-sbuf 90 535 389 55 0 0 100 0.033 0.033 4] 0.014
rev-setup 40 25 7.5 25 0 1] 100 0.004 0.004 24 0.002
pdft 62 34 452 34 0 0 100 0.008 0.008 34 0.003
shuf-ram-write 110 69 37.3 69 Q ¢ 100 0.174 0.174 58 0.134
sbuf-send-ctl 94 59 372 56 0 3 94.9 0.101 0.068 48 0.070
seqd 9% 63 344 60 1 2 95.2 0.334 0.170 47 0.322
vbeba 88 56 364 56 0 4] 100 0.119 0.119 56 0.007
Average 383 97.3

Table 1. Experimental Results

SPIN-TEST spent ouly on the detected faults for each circuit. As
may be observed, SPIN-TEST is very efficient in finding test pat-
terns for detectable faults, Yet it is more time-consuming in han-
dling the few aborted faults, where the search terminates only after
the queue size limit is reached.

We then ran SPIN-TEST again, with the random test generation
option enabled. The termination limit for the random test generation
algorithm [9] was set to 16 consecutive vectors with no additional
faults detected. The number of faults detected through random test
generation for each circuit is listed in the eleventh column. The total
CPU time of the random and deterministic metheds for each cireuit
on all faults (detected + aborted) is listed in the twelfth coluran. For
mast circuits, the random method detects a large percentage of the
total faults and in some cases such as alloc-outhound and vbeba it
detects ail faults. This results in a considerable performance im-
provement in test generation time. Some circuits, such as dff and
mri, contain a sizeable number of random test resistant faults, there-
fore the performance improvement for them is smaller.

The run-time of our method is several orders of magnitude faster
than the run-time reported in [7], yet the fault coverage of the two
methods is almost identical. Nevertheless, such a comparison would
be misleading for the following two reasons: a) the experimenis
were performed on different platforms so time comparison is infea-
sible, and b) the method in [7] assumes the ability to initialize the
circuit into several states, while SPIN-TEST assumes only the singie
initial state provided in the specification of each circuit [16).

6. Conclusion

Efficient testing of Speed-Independent circuits requires test pat-
terns that are immune to hazards and race conditions and guaran-
tee the observation of faulty responses in stable states, Toward this
end, we developed SPIN-TEST, a simulation-based gate-level ATPG
system for Speed-Independent circuits. SPIN-TEST addresses the
aforementioned challenges by guaranteeing fault sensitization with
hazardfrace-free patterns and response observation that is not af-
fected by oscillations or non-deterministic circuit states. The de-
terministic test generation phase of SPIN-TEST is an A* search al-
gorithm which employs a cost function to select appropriate pat-
terns for fault simulation. A random test generation phase is also
available in order to improve performance. Experimental results on
benchmark circuits demonstrate that SPIN-TEST achieves an aver-
age fault coverage of 97.3% in very low test generation time.

References

[1] C. Tristam, “It’s time for clockless,” Technology Review, pp. 37-41,
2001.

[2] P.J. Hazewindus, “Testing delay insensitive circuits,” Ph.D. Thesis,
Department of Computer Science, California Institute of Technology,
1992,

[3] H. Hulgaard, S. M. Bums, and G. Borriello, “Testing asynchronous
circuits: A survey,” Technical Report CS-TR-94-03-06, Department of
Computer Science and Engineering, University of Washington, 1994.

[4) M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Saldanha, and
A. Taubin, “Partial-scan delay fault testing of asynchronous circuits,”
IEEE Transactions on Computers, vol. 17, pp. 1184-1198, 1998.

[51 C.J. Myers, Asynchronous Circuit Design, John Wiley and Sons, Inc.,
New York, 2001,

[6] S.Banerjee, S. T. Chakradhar, and R. K. Roy, “Synchronous test gen-
eration model for asynchronous circuits,” in Proceedings of the 9th
International Conference on VLSI Design, 1996, pp. 178-85.

[7] O. Roig, J. Cortadella, M. A. Peiia, and E. Pastor, “Automatic gener-
ation of synchronous test pattemns for asynchronous citeuits,” in Pro-
ceedings of the 34th Design Automation Conference, 1997, pp. 620~
625,

[8] K.-T. Cheng, V. D. Agrawal, and E. §. Kuh, “A simulation-based

method for generating tests for sequential circuits,” IEEE Transac-

tions on Computers, vol. 39, no. 12, pp. 1456-1463, 1990.

F. Shi and Y. Makris, “Fault simulation and random test generation for

speed-independent circuits,” in Proceedings of the 2004 Great Lakes

Symposium on VLS, pp. 127-130, 2004,

Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern

Approach, Prentice Hall, New Jersey, 2002

H. Fujiwara and T. Shimone, “On the aceeleration of test generation

algorithms,” JEEE Transactions on Compuiers, vol. C-32, no. 12, pp.

1137-1144, 1983,

{12] J. E. Chen, C. L. Lee, and W. J. Shen, “Single-fault fault-collapsing
analysis in sequential logic circuits,” JEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 10, no. 12, pp.
1559-1568, 1991.

[13] H.K. Lee and D. 8. Ha, On the Generation of Test Patterns for Com-
binational Circuits, Technical Report No. 1293, Dep’t of Electrical
Eng., Virginia Polytechnic Institute, 1993,

[14] F. Shiand Y, Makris, “‘Spin-sim; Logic and fault simulation for speed-
independent circuits,” in Proceedings of Internarional Test Confer-
ence, 2004,

{18] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: a tool for manipulating concurrent specifica-
tions and synthesis of asynchronous controllers,” JEICE Transactions
on Information and Systems, vol, E80-D, no. 3, pp. 315-325, 1997.

[16] Oricl Roig, “Personal communication,” 2004,

[9

(10]

[i1]

908

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

