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Abstract—The deployment of alternative, low-cost RF test
methods in industry has been, to date, rather limited. This is
due to the potentially impaired ability to identify device pass/fail
labels when departing from traditional specification test. By
relying on alternative tests, pass/fail labels must be derived
indirectly through new test limits defined for the alternative tests,
which may incur error in the form of test escapes or yield loss.
Clearly, estimating these test metrics as early as possible in the
test development process is key to the success of an alternative
test approach. In this work, we employ a test metrics estimation
technique based on non-parametric kernel density estimation to
obtain such early estimates, and, for the first time, demonstrate
a real-world case study of test metric estimation efficiency at
parts-per-million levels. To achieve this, we employ a set of more
than 1 million RF devices fabricated by Texas Instruments, which
have been tested with both traditional specification tests as well
as alternative, low-cost On-chip RF Built-in Tests, or “ORBiTs”.

I. INTRODUCTION

In the post-silicon production flow, every integrated circuit
is thoroughly tested before it is shipped to the user, in order
to guarantee that it meets the original design specifications.
Testing targets the detection of defects that are due to the
various sources of imperfection in the fabrication technology.
Defects can range from catastrophic to parametric. The former
lead to a complete malfunction of the IC and, typically,
can be detected by simple tests. The latter are caused by
excessive process variations that may bring some or all of
the specifications outside the allowable limits. Parametric
defects are considerably harder to detect. For the case of RF
circuits, the current practice is to measure directly the specified
performances that are promised in the data sheet. Although
this approach is highly accurate, it comes at the expense of a
very high cost, which can amount up to 50% of the overall
production cost according to anecdotal evidence. Given that
RF circuits typically occupy less than 5% of the die area, it
is unsurprising that the reduction of RF test cost is an area of
focus and innovation for the semiconductor industry [1], [2].

The high cost of RF test is due to the expensive and sophis-
ticated automated test equipment that is required, on one hand,
and due to the lengthy test times that result from a sequential
measurement approach, on the other hand. Recently, there has
been an intensified effort to develop alternative test approaches
that relax the requirements on test equipment and/or reduce the
associated test times. Among others, the built-in test solution
is perhaps the most promising and advantageous [3]-[6]. It
relies on extracting on-chip digital, DC or low-frequency test
signatures that carry RF information. Thereafter, these test
signatures can be transported off-chip and processed by an
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inexpensive tester with minimum requirements.

Despite the number of alternative RF test approaches which
have been proposed to date, the industry seems reluctant to
replace the current test approach. The primary reason is the
lack of automated tools for evaluating a new test approach fast
and early at the design and test development phases, before
moving to production test. It may be easy to estimate the
area overhead incurred by a built-in test solution and to study
to what degree it degrades the device performances, yet it
is extremely difficult to estimate the incurred indirect costs,
that is, the resulting test errors. A new test approach should
reduce test cost without sacrificing test accuracy, that is, it
should result in minimum test escape 1 (e.g. faulty devices
that pass the test) and yield loss Y7, (e.g. functional devices
that fail the test).

This paper presents a case study of test metrics estimation.
Specifically, the aim is to prove the equivalence of low-cost
On-chip RF Built-in Tests (ORBiTs) to the traditional RF
specification tests, based solely on a small data set obtained
at the onset of production. Our initial judgement is confirmed
on a much larger data set containing more than 1 million
Bluetooth/Wireless LAN devices fabricated by Texas Instru-
ments. In Section II, we explain the challenges of providing
early and accurate test metric estimates and we provide an
overview of the case study. In Section III, we discuss the
problem of setting limits on ORBIiTs. In Section IV, we detail
the test metrics estimation method which we leverage to obtain
accurate early estimates at low cost. In Section V, we define
a feature selection method which we use to focus our analysis
on subsets of ORBITs. Finally, in Section VI, we provide
experimental validation of the test metric estimation method.

II. PROVING THE EFFICIENCY OF ALTERNATIVE TESTS

Consider, for example, an arbitrary candidate alternative
test system f(-) shown in Figure 1, which operates on the
device under test D; and maps a collected set of alternative
measurements X; to device labels y;, identifying each device
as passing or failing. Such a system will realize a classification
efficiency in terms of T and Y}, which are simply measures
on the incorrectly labeled devices.

Device
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The most readily obvious way to characterize the alternative
test system under consideration and obtain accurate, parts-per-
million (ppm) test metric estimates is to take a very large set of
fabricated devices, say 1 million, and apply the alternative test
system to each device, recording test metrics on each, as shown
in Figure 2. However, this is not a sustainable practice for
evaluating candidate alternative test systems. Indeed, through
this analysis we may ultimately conclude that the alternative
test system ends up having unacceptably large test metrics, in
which case we have inadvertently wasted a great deal of test
resources and test time.
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Fig. 2. Obtaining parts-per-million test metric estimates

Furthermore, the estimation of test escapes and yield loss in
a simulation environment is difficult because these events are
“rare” and cannot quickly be reproduced with high fidelity.
Typically, a robust design will result in a very small defect
level (e.g. percentage of devices that are faulty), on the order
of a few thousands of faulty ppm. Thus, the test escape
rate is typically in the order of a few hundreds ppm, which
corresponds to a probability of around 107°. Similarly, a
decent test will fail a small fraction of the functional devices,
which corresponds to a yield loss probability of a similar order.
This implies that millions of Monte Carlo simulations are
needed to estimate such low probabilities with the required
accuracy, which is clearly computationally infeasible. Most
often, practitioners examine the behavior of tests for a few
corner cases, but this approach does not reveal the full truth
since a process design kit has dozens of parameters which
implies a intractable number of corner cases.

In this work, we employ a general technique for obtaining
ppm test metric estimates, originally developed in [7], and
we examine for the first time its potential on a real-world
case study. This technique is able to elegantly achieve the
objective of providing such accurate estimates, as in Figure
2, while reducing the required investment, that is, without the
extreme cost associated with having to consider millions of
fabricated devices. It is based on the statistical methodology of
non-parametric kernel density estimation (NKDE), as shown
in Figure 3. The underlying idea is to rely on a small set
of representative devices to estimate the joint non-parametric
probability density function of specified performances and
alternative tests. Thereafter, the estimated density is sampled
to generate a large synthetic set of device instances from
which one can readily compute test metrics using relative
frequencies.

Moreover, we are able to provide a case study demonstrating
equivalence of our proposed system of Figure 3 and the true
ppm metrics obtained via explicitly testing 1 million devices in
Figure 2. The case study concerns a Bluetooth/Wireless LAN

device from Texas Instruments for which a set of ORBiTs [6]
are developed to replace the costly standard specification tests.
We have at hand measured data from more than one million
device instances. These measured data include the specified
performances and the ORBiTs. Thus, we have sufficient in-
formation to compute the true test metrics resulting from the
replacement of specification tests with the lower-cost ORBiTs
alternatives.

Small Set of
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Synthetic Devices  Ajternative
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Fig. 3. Low-cost method for obtaining parts-per-million test metric estimates

The ORBIiTs have been proven to be generally very efficient
in such replacements, but this knowledge was acquired only
after measuring millions of RF device instances with the
dedicated built-in test circuitry. In this paper, we try to answer
the following question: Is it possible to estimate values of
the test metrics close to true ones while employing in the
analysis a small set of RF devices that we obtain at the onset
of production? In this case, we will be able to decide on
the efficiency of the ORBiTs early in the process without
having to wait for a large volume of silicon data to reach
a safe conclusion. This type of proactive analysis is very
important in cases where the alternative tests are found later
on to be inefficient. It allows to convince test engineers about
the efficiency of an approach, to identify shortcomings and
come up with remedies for refining an approach, or abandon
an approach altogether if it is deemed not to be equivalent to
the standard specification test approach.

III. SETTING TEST LIMITS ON ORBITS

Before explaining the test metric estimation approach of
Figure 3, it is necessary to define the alternative test system
f(-) being employed and the means of mapping ORBiT
measurements to pass/fail labels, e.g. via setting test limits.
The ORBITs are internal tests designed to replace expensive
traditional specification tests by self-testing the device with
hardware available on-die. Specifically, the ORBiTs are tar-
geted at two RF cores: a Bluetooth radio and wireless LAN
radio, which are components in a much larger device con-
taining an ARM core. The ARM core is used in conjunction
with on-die test structures to compute test outcomes; thus, the
ORBITs are entirely internal to the device, and only the test
results are reported externally. Further information about the
ORBITs employed can be found in [6].

Consider a specification performance P which we wish
to replace with the ORBIT set X = {f1, fa,..., fa, }- If a
subset of X were to contain all the information necessary to
correctly label each device as passing or failing with the same
efficiency as P, it would be a trivial task to set test limits
and incur no additional test escapes or yield loss by reliance
on the system f(-). In reality, any ORBIiT replacement for
P is likely to be imperfectly correlated, and therefore realize
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slightly increased error metrics. Ultimately, the resultant test
metrics become a function of the test limits imposed on the
ORBITs. Therefore, before investigating the technique for
estimating error metrics, we must fully specify the test limits
and alternative test system f(-) we are using. However, we
remind the reader that the particular choice of test limit-setting
technique is largely auxiliary to the primary objective of this
work, in that we are interested in estimating test metrics.

An intuitive approach to defining f(-) is to carefully set
a limit on each individual ORBIiT, as one would do with
traditional specification tests. This would result in a hyper-
rectangle acceptance area in the space of ORBITs, as depicted
for the specification test space in Figure 4. However, one has
to take into consideration that ORBITs are alternative tests
that are not specified in the data sheet. To this end, one
has to set the limits on ORBiTs such that the faulty devices
are separated from the functional ones, where the labels are
assigned according to the actual specification test limits. Since
the ORBIiTs space is a complex translation of the specification
test space, the separation boundary becomes highly irregular
and non-linear and, thereby, a hyper-rectangle would be a
crude approximation that inadvertently would give rise to test
errors. Indeed, the passing subspace may even be non-convex
in the ORBIT space or imperfectly defined if the ORBiTs do
not capture all the same information latent in the specification
tests.
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Fig. 4. Specification boundary translation

In this work, we improve on the limit-setting approach
by implicitly learning the complex boundary which defines
passing and failing regions in the ORBIT space [8], instead
of explicitly defining it as a hyper-rectangle. By relying on
machine learning, we are readily able to capture the non-
linear, complex and possibly non-convex nature of the limits
in ORBIT test space and avoid the test escape and yield loss
shown in Figure 4. Specifically, we train a support vector
machine (SVM) [9] to learn the boundary. As will be described
in greater detail in section VI-E, the training phase employs
an information-rich synthetic set of device instances that is
generated through statistical simulation. This set comprises
marginal instances whose footprints in the ORBiIT space
cover the areas around the true separation boundary [10] and,
thereby, they allow a good approximation of this boundary.

IV. TEST METRICS ESTIMATION METHOD

With the machine learning approach to setting test limits
defined in section III, we can readily proceed to evaluating

the test error metrics introduced. As noted in the Introduction,
test metrics can be on the order of hundreds of ppm, which
is likely beyond the capacity of a small device data set to
capture. However, this reliance on small data sets for validation
is understandable given the very costly alternative of validating
on a data set with hundreds of thousands or millions of devices,
which would require both ORBIT and traditional specification
tests to be collected on every device in the validation set.
Clearly this is a non-trivial cost overhead simply to prove the
efficacy of the chosen test limits.

It is in this context that we introduce a novel methodology
originally proposed in [7] to obtain test metric estimates with
ppm accuracy, while side-stepping the cost associated with
exhaustively testing millions of devices. This technique, based
on NKDE, permits dramatically enriching the validation set
with synthetic device instances reflective of the true device
population. With this large synthetic device set in hand, we are
able to produce test metric estimates using relative frequencies.
In particular, if we denote by IV, Ny, and N the size of the
synthetic device set, the number of faulty devices in this set
that pass the ORBiTs, and the number of functional devices in
this set that fail the ORBITSs, respectively, then T ~ Ny, /N
and Y, = Ny¢/N.

NKDE relies on a small Monte Carlo run (e.g. on the order
of a few thousands devices) to generate a synthetic device
sample with population statistics nearly identical to the 10°-
order population we are unable to simulate. The underlying
idea is to estimate the joint probability density function of
ORBITs and specification tests based on the small Monte Carlo
run. Instead of assuming a specific parametric form for the
probability density function (e.g. Gaussian), NKDE makes no
a priori assumptions and allows the available simulation data
to speak for themselves.

Formally, let x denote the vector comprising the ORBiTs
and specification tests and let x;, ¢ = 1,...,n, denote n
available observations of x. We first position an Epanechnikov
kernel centered on each observation defined by

(1

1.1 o -
K1) = 4 26 (@20 -7 T Tt <1
0 Otherwise

where ¢y = 2742 /(d-T'(d/2)) is the volume of the the unit d-
dimensional sphere, and d is the dimensionality of x. Then, we
introduce a non-parametric estimate f (z) of the true density
f(x) as the normalized sum of all observation-centered kernel
functions

)= g o e (60 =) @

where h is a smoothing parameter known as bandwidth. It can
be shown that f (x) converges to f(x) as n — oo for a proper
choice of h. The interested reader is referred to [7], [11] for
an in-depth discussion. ~
Thereafter, we can repeatedly sample (e.g. simulate) f(x)
to obtain new observations of x, thus generating a synthetic
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population of devices of arbitrary size. Millions of samples
can be generated in a few minutes using a standard desktop
PC. This is similar to generating random samples from a
Gaussian distribution in MATLAB, yet herein we derive
the original probability density function without assuming a
specific parametric form.

V. FEATURE SELECTION

Often when dealing with early characterization data sets,
a large number of measurements are available which are
later pruned for the final test set. This provides a wealth
of data, but also presents a case of the well-known “curse
of dimensionality”, the law that by adding dimensions, one
exponentially increases data sparsity. This data sparsity can
cause learning algorithms to have high-variance classification
boundaries and poor generalization capability. Consider, for
example, an arbitrary ORBiT subspace as illustrated in Figure
5, containing only a single passing device A and failing device
B. Considering that only these two devices are available for
learning the boundary, our classifier might simply allocate
a straight line boundary separating these two points (shown
in the figure as the dotted line), where the true boundary is
far more complex. Thus, classification learning algorithms are
often trained on some subset of the available features rather
than all of the available features, in order to concentrate the
data in a subspace and reduce the variance of the classification
boundary. A variety of methods exist to perform this pruning,
typically conditioned on the empirical classification error in
a hold-out set or some similar error measure in order to
determine an appropriate subset of features to retain.

1

Fig. 5. Allocation of boundaries in sparsely populated spaces

A key component of our analysis was to perform feature
selection on the very high dimensional space of available
ORBITs, projecting device test signatures into a more reason-
able low dimensional subspace. Generally, feature selection
is a difficult problem, since the number of possible subsets
of features is 2% — 1, where dy is the cardinality of the
complete feature set. With even a moderate number of features,
exhaustive search of the feature space is completely untenable.
An excellent review of various approaches to feature selection
is given in [12], and within the analog/RF test community
several heuristic methods have already been employed, such
as genetic algorithms [13].

In this work we make use of a supervised feature selection
method known as Laplacian score feature selection (LSFS)
[14] to rank ORBiTs and subsequently reduce dimensionality.
LSES is a supervised feature selection technique which ranks

features according to their locality preserving power. It consid-
ers the passing and failing classes to define two neighborhoods
of locality in feature space. Formally, let

Xo= A 150, ) (3)

denote the pattern of device instance ¢, ¢ = 1,...,n, where n
is the total number of devices and dj is the total number of
ORBITs measured on these n devices. We will create a graph
where the ¢-th node corresponds to the i-th device instance.
Within the graph, we connect nodes ¢ and j if device instances
7 and j have the same class (passing or failing). We then
consider the similarity measure

X =x5112 Nodes 4. 7 f |

t

Si = e odes z 7 from same class @)
0 Otherwise

where ¢ is a suitable constant!. For each feature f,,r =

1,...,do, we calculate the Laplacian score
DU = £
Lyi= sy )
fr

(1), r(2), o Y where UJ% denotes the

using the samples fr o fr 3
variance of f,.. We rank order the features according to their

Laplacian score L,

L < 1® < < ©
such that
LW =min{L,,...,Lq,} @
L® = min ({le -y Lay} = L(l)) ®

L) — min ({Ll, o Lay —{LM, .. ,L(T_l)}) )

Finally, we define a threshold 7, on the Laplacian scores and
retain features that have L(®) < 7r,. Let d;, be the number of
retained features which are denoted by f,..., f E

0

VI. EXPERIMENTAL RESULTS
A. Data set

To confirm the efficiency of our approach in providing early
estimates of test metrics, we employed a Texas Instruments
data set from a total of more than 1.1 million devices.
The devices are collected from 176 wafers and each wafer
has between 6,000 and 7,000 devices. For each device, the
data set contains the ORBiT measurements and the specified
performances in the data sheet. Specifically, there are 739
ORBIT measurements {f1,..., frsg} and 367 performances
{P1,..., Psr}.

Some ORBIT measurements and performances are discrete-
valued. The test metrics estimation method discussed in Sec-
tion IV is defined only for continuous variables. Therefore,

!Generally, we have found ¢ = do to be an appropriate choice.
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in our analysis we considered only the continuous ORBiT
measurements and performances, which number 249 and 264,
respectively. Formally, let unique(X;), unique(P;) denote
the number of unique values observed across all devices in
hand for the ¢-th ORBiT measurement and j-th performance,
respectively. We consider only ORBiT measurements and
performances with more than 100 unique values, that is, we
define a threshold 7p = 100 and we retain the ORBIT
measurements and performances that satisfy

unique(X;) < 7p (10)

unique(P;) < 7p (11)

B. Objective of the experiment

Recall that our objective is to predict the expected test
escape Tr and yield loss Y7 test metrics if we replace the
specification tests under consideration by an ORBiT subset.
Consider Tg ) the predicted test escape in the case where the
specification test targeting performance P; is replaced by an
ORBIT subset. Then, the global test escape rate satisfies the
following inequalities, measured in ppm

Ty <TV + TP 4. 4 77
maX{Tg)} <Tg

12)
13)

Thus, if we can afford Ty < A, using Equation (13) we can
conclude that the ORBITs are inappropriate if max,-{T](; )} >
A. Conversely, if 21 T(g ) < ), then we can certainly use the
ORBITs. In fact, ), Ty ) represents a pessimistic upper bound
for the Tk.

In our analysis, we focused on replacing the single most
sensitive specification test, that is, the test that corresponds
to most commonly failing performance across all wafers. We
denote this performance by P. To predict the test metrics,
we only use devices from the first wafer and we employ the
KNDE technique to generate 1 million additional synthetic de-
vices, in order to achieve ppm levels of accuracy, as illustrated
in Figure 3. We emphasize that our use of a single wafer is
purely to demonstrate the efficacy of the method in extremely
challenging circumstances; in reality this sample may include
an arbitrarily large training sample.

C. Removing Outliers

From the first training wafer, we remove outliers via a
“defect filter”, for two reasons. First, we do not wish outliers
with non-statistical signatures to have leverage over the feature
selection process; the retained features should excel at discern-
ing the more difficult parametric fails rather than the relatively
easy-to-detect catastrophic fails. Second, the test metrics esti-
mation method itself relies on estimating a probability density
function, thus we should avoid using outliers for this purpose
since they are non-statistical in nature and are not generated by
the same probability distribution which assumes only process
variations. To remove such outliers from the first training
wafer, let s;, s, be the lower and upper specifications for P.

Then a device instance ¢ will be removed if its performance
P satisfies

PO > k. - s (14)

PO < -5 (15)

where k, and k; are appropriate user-defined constants.
Herein, we employ x, = x; = 3. This results in the removal
of approximately 3% of the device instances from the first
wafer training set. Note that this step is necessary only for
the training set, and subsequent outlier fails are not removed
in this fashion. Moreover, the proposed methodology is not
particularly sensitive to the choice of x,, and x; as these limits
only serve to remove extreme outliers.

D. Reducing the dimensionality of ORBiTs

As discussed in section V, fitting a classifier boundary
in a sparse, high dimensional space can be error-prone due
to the consequent variance of the fitted class boundary. For
this purpose, we employ LSFS to reduce the dimensionality
of the problem. In particular, for each of the 249 ORBIiTs,
we compute and rank the Laplacian scores as shown in
Figure 6. In this experiment, a threshold of 7;, = 0.01 was
chosen, which corresponds to retention of 7 ORBiTs. It should
be stressed that a lower dimensionality also maximizes the
efficacy of NKDE technique which is also vulnerable to the
“curse of dimensionality”.
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E. Information-rich training set

It turns out that even in relatively densely-populated spaces,
classifier performance can benefit by further increases in data
density. Specifically, it is not advisable to attempt to directly fit
a classification boundary to a severely unbalanced population,
as the classifier tends to always label subsequent instances as
the dominant class after training.

To combat this effect and improve classifier performance by
increasing data density in the training set, we employed non-
parametric density estimation to generate synthetic training
instances. To do this, we fit the joint probability density
function of vector = = [fy,..., f;l,,P} using the instances
from the first wafer. We sample the empirical probability
density function to generate an information-rich training set
that has a more balanced population of good, faulty, and
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critical devices across the decision boundary in a similar
fashion to the approach taken in [10].

F. Summary and Results

Assembling the preceding steps, we arrive at the complete
analysis approach shown in Figure 7. The training set is
employed to train the SVM classifier to assign limits on the 7
ORBITs in the form of a hyper-surface boundary, as shown in
Figure 4. The limits are used to obtain the ground truth test
escape and yield loss values for each wafer, denoted by T
and Y7, respectively. These values are averaged to obtain the
ground truth ppm test escape and yield loss measured over the
complete device population in hand, denoted by Tz and Y1,
respectively. The same limits are used on the synthetic device
set generated from the first wafer, in order to obtain early ppm
estimates of the test escape yield loss, denoted by Ty and Y7,
respectively.

Training Phase

Rgmove Remove Feature Training Trained
First Wafer Discrete Outliers Selection Set Classifier
739 ORBIT 249 ORBIT -3% 7 ORBIT Synthetic Balanced

Population

R —

Test Metrics Estimation Phase

Synthetic Actual
Population Population
1 Million ) 1 Million 1)
Devices - Devices -
— . —
¢ |l @l
Estimates Error Metrics
Fig. 7. Summary of experimental approach

The results are shown in Figure 8. As can be observed,
test escape is slightly underestimated, and yield loss is very
slightly overestimated. Specifically, the true values are Ty =
0.7286% and Y ; = 4.387%, whereas the early estimates are
Tp = 0.4302% and Y7, = 4.401%, that is, a difference of
ATg = 0.2984% and AY;, = —0.014%. We remind that
the objective of the paper is not to propose an alternative test
technique, but to evaluate a proposed alternative test technique
at an early phase. Moreover, we evaluated the scenario where a
subset of ORBITs replaces the most sensitive specification test,
and not the general case where the complete suite of ORBiTs
is used to replace irrespectively all specification tests.

VII. CONCLUSION

In this work we presented a method for providing accurate,
parts-per-million estimates of test metrics without incurring
the cost associated with simulating or testing millions of
devices. A comparatively small set of RF devices from a
single wafer tested at the onset of production coupled with
the proposed NKDE-based sampling are used to generate
one million synthetic device samples, on which we are able
to evaluate test escape and yield loss test metric estimates.
Furthermore, we have demonstrated our test metric estimates
to be very close to the true values measured on more than one
million devices from Texas Instruments.
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