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Abstract—Test cost reduction for RF devices has been an
ongoing topic of interest to the semiconductor manufacturing
industry. Automated test equipment designed to collect paramet-
ric measurements, particularly at high frequencies, can be very
costly. Together with lengthy set up and test times for certain
measurements, these cause amortized test cost to comprise a
high percentage of the total cost of manufacturing semiconductor
devices. In this work, we investigate a spatial correlation modeling
approach using Gaussian process models to enable extrapolation
of performances via sparse sampling of probe test data. The
proposed method performs an order of magnitude better than
existing spatial sampling methods, while requiring an order of
magnitude less time to construct the prediction models. The
proposed methodology is validated on manufacturing data using
57 probe test measurements across more than 3,000 wafers. By
explicitly applying probe tests to only 1% of the die on each wafer,
we are able to predict probe test outcomes for the remaining die
within 2% of their true values.

I. INTRODUCTION

As the final step in manufacturing RF devices, every fabri-
cated circuit is tested against its design specifications before it
is shipped to the customer. This testing is designed to capture
devices that do not function properly due to manufacturing
defects. Tests that screen for catastrophic faults, such as opens
and shorts, are relatively inexpensive and straightforward to
apply, but capturing parametric failures is considerably more
difficult and typically requires RF specification testing.

While RF testing permits test engineers to capture the ma-
jority of devices failing due to parametric faults, RF automated
test equipment (ATE) is very expensive, and test times can
be quite long. Consequently, the incurred test cost per device
can be quite high. Various statistical methodologies have been
proposed to address this problem by attempting to reduce the
number of RF tests required (test compaction), introduce new
alternative tests [1], [2], or build machine learning models to
learn classification boundaries separating passing and failing
populations of devices [3], [4].
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In this work, we introduce a novel approach to reducing
probe test cost via sparse spatial sampling and Gaussian
process models [5] (also known as “kriging”). As we show
in Figure 1, instead of completely eliminating all RF tests, we
collect them on a small sample of devices on each wafer. The
probe test outcomes of these die are then used to train spatial
regression models, and subsequently, these models are used to
extrapolate probe test values for the remaining die on a given
wafer. In most cases, this small sample is sufficient for us to
extract wafer variation statistics for each probe test parameter
and accurately model probe test outcomes at untested die
locations. As we demonstrate experimentally herein, via this
test cost reduction approach, we are able to limit the total
explicitly tested chips per wafer to 1%, while very accurately
predicting the probe test outcomes for the remaining die. We
observe prediction errors within an average/mean of 2% for
57 probe test measurements of more than 3,000 wafers.
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Fig. 1. Overview of Proposed Approach

The remainder of this paper is organized as follows. In
Section II, we discuss existing work on statistical modeling
for semiconductor manufacturing test cost reduction, and in
Section III we discuss the spatial modeling approach taken in
this work. Section IV introduces Gaussian process models and
their relevance to semiconductor manufacturing. In Section V,
we provide experimental results, and conclusions are drawn in
Section VI.

II. PRIOR WORK

Test cost reduction methodologies for RF device testing
typically take a die-level view of the available semiconductor
manufacturing data. By employing an exhaustively tested
training set of devices in conjunction with a statistical model,
such approaches realize test cost reduction by testing future



devices with alternative, lower-cost measurements (alternate
test), or with only a subset of the existing test set (test
compaction).

The alternate test approach [1], [2] employs non-linear
multivariate adaptive regression spline (MARS) [6] models
to correlate low-cost alternative test measurements against
expensive probe RF tests during the final test process, thereby
reducing overall test cost. This alternate test approach achieves
dramatic test cost reduction, as the alternate test measurements
are typically done at DC or low-frequency. However, this
methodology comes with the cost of increased test escapes
and yield loss; in the literature, reported errors are typically
between 3% and 5%.

Test compaction-based approaches [3], [4] address the same
problem, but by simply reducing the size of the original
test set, favoring the lower-cost tests. Test compaction can
be achieved either by retaining only non-RF tests [7] or by
retaining a small number of RF tests [4]. In either case, the
reduced test set is coupled with a statistical regression or
classification model to identify failing device populations.

In both alternate test and test compaction, the costliness of
semiconductor device testing is addressed by reliance on die-
level statistical models to estimate the omitted test outcomes
or to predict pass/fail labels. In contrast, in this work, we
model probe variation spatially across entire wafers, thereby
enabling us to leverage die-to-die correlations. This also cod-
ifies our a priori knowledge of semiconductor manufacturing
processes, in that the majority of semiconductor fabrication
steps introduce some type of cross-wafer variation.

For semiconductor manufacturing data, the most well-
known spatial modeling methodology in the literature is an
approach known as “Virtual Probe” [8], [9]. Virtual Probe
models spatial variation via a discrete cosine transform (DCT)
that performs a frequency domain projection from spatially
sampled measurements. An important assumption of Virtual
Probe is that spatial patterns of process variations are smooth,
and consequently that they can be represented by a small
number of dominant DCT coefficients at low frequencies [10].
The Gaussian process models that we employ in this work
perform a more general projection via kernel functions. A
complete empirical comparison of the proposed methodology
and Virtual Probe is provided in the experimental results.

In [9], the authors extend Virtual Probe to address the
same test cost reduction problem targeted by alternate test and
test compaction. However, with Virtual Probe, the problem
is addressed by performing wafer-level spatial sampling of
expensive probe tests instead of completely removing them.
This enables the authors to obtain a different tradeoff between
test cost and the test escape or test error rate. In general,
the spatial modeling problem addressed by Virtual Probe has
similar properties to the problem addressed in this work. How-
ever, it takes a fundamentally different algorithmic approach,
reasoning from the domain of compressed sensing rather than
geostatistics.

A predecessor of this work can be found in [11], where
the author lays the groundwork for applying Gaussian process

24

models to spatial interpolation of semiconductor data based
on Generalized Least Squares fitting and a structured correla-
tion function. The computational method combines empirical
data fitting and unconstrained optimization. In this work, we
extend the key ideas of [11] by introducing modeling of
radial variation and by providing an alternative derivation of
Gaussian process model theory. We also demonstrate the first
application of Gaussian process models to probe test spatial
modeling, i.e. the problem addressed in [9] via the Virtual
Probe methodology.

III. PROPOSED METHODOLOGY

As noted in Section II, existing solutions to the test cost
problem have typically eliminated all expensive probe tests and
leveraged between-test correlations to estimate the unmeasured
outcomes. In this work, we instead take a spatial modeling
approach, leveraging correlations across spatial coordinates to
provide probe test estimates. Instead of completely eliminating
RF tests, we collect them for a sparse subset of die on each
wafer. With the proposed methodology, we demonstrate that
sparse spatial sampling can dramatically reduce test cost while
incurring minimal additional test error.

To achieve this, we employ a spatial interpolation method-
ology targeted at providing accurate predictions for probe test
outcomes at unobserved die locations. The spatial models
generating such estimates are trained using a small subset
of explicitly tested die, and consequently make a dramatic
reduction in the cost of probe testing. Figure 1 depicts an
overview of the proposed spatial interpolation methodology,
and the following section provides a description of the statis-
tical theory underlying the methodology, known as Gaussian
process models.

IV. GAUSSIAN PROCESS MODELS

In this section, we articulate the theoretical underpinnings
of Gaussian process models, as well as their usefulness for
modeling spatial variation of wafer probe test parameters.
Gaussian process modeling [5] is a spatial regression approach
that models functions over Gaussian random fields based on
sampled data. Such a regression approach is well-suited for
spatial modeling of semiconductor test data, as it is extremely
flexible in modeling data and imposes none of the traditional a
priori assumptions about the underlying form of the generative
function that tend to bias ordinary linear regression models.

Gaussian process models are birthed from the union of
Bayesian statistics and the kernel theory of Support Vector
Machines [12]-[14]. The fundamental concept underlying
Gaussian processes is to model function outputs as drawn
from a prior distribution with a fixed mean and a kernel-based
covariance function.

We begin our discussion of Gaussian process model theory
by considering the monolithic linear regression formulation
t = f(x) + e where f(x) = x'w and ¢ represents
independent and identically distributed (i.i.d.) additive noise.

With Gaussian processes, we do not presume the genera-
tive function f(x) is of linear form in the original feature



Cov(f(z1), f(x2)) = k(21,22)
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Fig. 2. Overview of Gaussian Process modeling

space, as shown by the one-dimensional input space curve
on the left side of Figure 2. Instead, we define a Gaussian
process as a collection of random variables f(x) indexed
by coordinates x, such that every finite set of n function
evaulations { f(x1), f(x2), ..., f(x,)} over the coordinates is
jointly Gaussian-distributed?>. To derive a Gaussian process
model for regression, we first consider a noise-free linear
model, shown by the right side of Figure 2, which has the
form:

t=f(x)=9¢(x)"w )

where ¢(x) is a function of the inputs mapping the input
columns into some high dimensional feature space, shown by
the bottom plane on the right side of Figure 2. For example,
a scalar input x could be projected into the feature space:
#(x) = (1,x,x?)T. We assign a Bayesian prior on the
weights such that w ~ N(0,%,). As the realizations of
the Gaussian process at points { f(x1), f(x2),..., f(xn)} are
jointly Gaussian, we can fully specify the Gaussian process
with mean and covariance functions:

E[f(x)] = ¢(x) "E[w] =0, (2)
E[f(x)f(x)] = ¢(x) E[ww " ]¢(x’)
= ¢(x) " S (x) 3)

A. Modeling Covariance with Kernel Functions

Consider the covariance function specified in Equation 3.
Now, since covariance matrices are by definition positive semi-
. 1/2 . .
definite, we can redefine X, as (Ep/ )2, and rewrite Equation
3 as:

E[f(x)f(x)] = ¢(x) Spo(x')
= o(x) (/%) "5,/ %0(x')

“)
®)
We now introduce the parameter ¢ (x) by defining ¢ (x) =

Z,lj/ 2¢(x), and subsequently rewrite the covariance of Equa-
tion 3 as:

E[f(x)f(x")]

o(x) " (3,/2) T8,/ 26(x)
(W (x),1%(x"))

2In this section, we adopt notation similar to [5] for convenience.

(6)
(7
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Crucially, this covariance function is formed as an inner
product, permitting us to leverage the kernel trick [15] and
express Equation 7 as a kernel function k(x,x’). In other
words, the covariance between any outputs can be written
as a function of the inputs using the kernel function without
needing to explicitly computing ¢(x). Many kernel functions
exist, and any function k(-,-) that satisfies Mercer’s condition
[12] is a valid kernel function. However, only a handful of
kernels are commonly used. Among these common kernels,
the most prevalent is the squared exponential, also known as
the radial basis function kernel. In this work, we employed a
squared exponential kernel of the form:

k(x,x') = exp <—2;2|x - x'|2> (3)
where [ is some characteristic length-scale of the squared
exponential kernel. Employing this kernel is equivalent to
training a linear regression model with an infinite-dimensional
feature space. Substituting our squared-exponential covariance
function into the definition of the Gaussian process, we arrive
at a Gaussian process formulation as:

t= f(x)~GP(0,k(x,x")) )

The following section describes how to employ this process
to derive predictive distributions, as well as how to manage
the inclusion of additive noise in the model.

B. Training and Prediction

Suppose that we are provided a training set of n data points
X = {x1,Xs,...,%,} ' observed in an N-dimensional space,
e.g., each vector in X is x; = {x1,29,...,2n}, and a set of
predictive targets, t = {t1,t2,...,t,} . Now, we wish to
model the observed data as a noise-fee Gaussian process and
define, as before, y = f(x) ~ GP(0, k(x,x’)).

To derive the predictive distribution of this Gaussian pro-
cess, we first write the joint distribution of the training set
targets and a new test function value as:

PRt

k] k(X X4)

Where x, is a location we wish to extrapolate to, and where
we have defined K = K (X, X’) as the matrix of the kernel
function k(x,x’) evaluated at all pairs of training locations.
We have also defined k, = K(X,x,) as the column vector
of kernel evaluations between the test point and the entire
set training points, and lastly, k(x.,x,) as the variance of
the test function value at the observation point x,. With this
distribution, we can condition the test function value on the
observed data to obtain the predictive distribution (we omit
the derivation for brevity):

fol Xt x, ~ N (k] K71t
k(x.,x,) — k] K 'k,

(10)

an

In this work, we primarily concern ourselves with point
predictions, and so we use simply the distribution mean



f« = k] K~'t to generate a point prediction from the pre-
dictive distribution. This corresponds to decision-theoretic risk
minimization [12], [13], [16] using a squared-loss function.

C. Regularization

To avoid overfitting, a technique known as regularization
[16] is often employed in decision-theoretic empirical risk
minimization. Gaussian process models handle regularization
by considering the predictive tagets t = {¢},t5,...,t),} as
affected by additive noise such that t; = ¢; + ¢, where we
make the usual i.i.d. assumptions about the additive noise
e ~ N(0,02). To incorporate this into our Gaussian process
model, we update Equation 9 to model additive noise in the

observations:
y= f(x)+e~GP0,k(x,x") + 07215,(’,(/) (12)

where 0x x is the Kronecker delta function. This, in turn,
affects the joint distribution of Equation 10:

t K+ o2l k.
O i ) o
as well as the predictive distribution:
f*'thaX* NN(kI(K_I_UTQLI)_lta
E(xe, %) — k] (K +021)7 'k, (14)

resulting in a point prediction for new observations of f, =
k] (K + 021)~'t. This constrains the fitted model to avoid
extreme predictions. For example, consider the univariate fit
of Figure 3, shown with 4 monotonically increasing noise
parameters o2 = {0,0.0001,0.01,0.5}. The blue line is the
fit model, the red dots are the original data, and the dotted red
line is the true generative function. As this noise parameter
increases, the model gradually flattens, and for very large o2,
approaches a constant fit. Applying a model with a 02 = 0 is
equivalent to the hypothesis that our observations are noise-
free, this would be particularly useful to handle extreme
excursions when modeling spatial correlation. As a practical
matter, we have found empirically that 2 = 0.1 works well
for our data. In the general case, this parameter should be
adjusted to the particular application using a hold-out set of
data.

In Figure 4, we show the effects of incorporating
additive noise on example wafer data, with 0'T2L
{0,0.00001,0.01,0.1}. The bar on the right of each graph
shows the measurement range on the wafer. As can be seen
from the figure, modeling observations as noise-free leads
to extreme variation in the model as it fits the response
surface exactly through each point observation, and relaxing
this constraint leads to smoother response surfaces.

D. Modeling Radial Variation

A key contribution of this work is the extension of Gaus-
sian process modeling over Cartesian coordinates to a joint
Cartesian-radius space, capturing our intuition that wafer
variance is often radial. By including a radius feature, we
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canonicalize the notion that any set of die drawn from a wafer-
centered ring should present similar probe test measurement
profiles.

An advantage of using Gaussian process regression is the
ability to apply a Gaussian process over arbitrary index sets.
Thus far, we have been describing a Gaussian process im-
plementation that estimates probe test parameters over a 2D
Cartesian plane, but we are free to use any other field. As noted
above, many parameters will manifest radial variation patterns
due to the physical realities of semiconductor manufacturing.
To accommodate this in our Gaussian process model, we can
simply update our coordinates from x = [z,y] to include a

radius r = /22 + y2:
X = |:xay7 \/‘1’2+y2i|



Now, applying the Gaussian process regression model over
this space will result in a model that takes radial variation
patterns into account. In Figure 5, we show the impact on the
prediction outcomes.

Without Radius With Radius

Fig. 5. Radial Modeling

E. Gaussian Process Models for Probe Test Interpolation

To spatially interpolate probe test measurements across each
wafer, we build per-wafer Gaussian process models of spatial
variation by training on a small sample of explicitly tested
devices and predicting all of the remaining test outcomes at
unobserved wafer [x,y] die locations. By approaching spatial
modeling on a per-wafer basis, we sidestep the need for the
“median polishing” methodology of [11].

We capture the effectiveness of our proposed methodology
by recording the percentage prediction error of our statistical
model on each measurement and each wafer. Consequently,
the output of our Gaussian process implementation is a j X k
matrix £ composed of prediction errors €3, where €, is the
prediction error of the model for the j-th wafer and the k-th
probe test parameter.

To train the Gaussian process model for a particular wafer j,
we collect probe test data from a small sample (approximately
20) die. These die are then used as a training set to train the
Gaussian process model. The remaining die are collected as
the test set on which we apply the trained model. Specifically,
consider observations of the k-th probe test parameter t,(j)
measured at training sites ¢ € {1,2, ..., N¢pain }, Where each
site has an associated x; = [z,y] location consisting of the
Cartesian coordinates of the die. After training the model on
this data, it is then used to predict probe test outcomes for the
remaining die and produce an estimate:

iD= fo =k (K + 020"t (15)

This process is then repeated for every die in the test set. We
compare these predictions to the true probe test outcomes for
the test set to compute test error, and record the mean absolute
percent error across all predictions:

€k = ST — 60y (16)
Ntest i1

Thus, €;; represents the mean percent error of predicting the
k-th probe test parameter for all test set die locations on a
particular wafer j. Applying the model in this fashion for all
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wafers and all probe test parameters, we populate the matrix
E that completely characterizes the performance of the spatial
interpolation models on the dataset at hand. We can also
summarize mean prediction error for a particular probe test
parameter by computing the mean error over all wafers:

N’wafers
1
€ = — €ik a7
Nwafers ; !

V. EXPERIMENTAL RESULTS

In this work, we demonstrate results on probe test data
from high-volume semiconductor manufacturing. The device
under consideration is an RF transceiver with multiple radios
built in a 65nm technology. Our dataset has a total of 3,499
wafers with 57 probe test measurements collected on each
device. Each wafer has approximately 2,000 devices, and a
training sample of 20 devices randomly sampled on each wafer
were used to train the spatial models. The models trained
on these 20 devices were then used to predict the untested
probe test outcomes at the remaining die coordinates, and the
mean prediction errors were computed through Equation 16, as
described in Section IV-E. Consequently, the resultant matrix
of prediction errors E' was of dimension 3,499 x 57.
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A. Virtual Probe Results

To provide a reference for the performance of the proposed
methodology, we first applied the Virtual Probe approach of
[9] to the dataset at hand. In Figure 6, we present a histogram
of the experimental prediction errors for Virtual Probe. The
superimposed black line on the histogram represents the
cumulative number of probe test measurements. Virtual Probe
performs moderately well, with global mean prediction error
of 21.0%. However, several of the probe test measurements
observe high prediction error, exceeding 40%.

In Figure 7, we present an overview of the Virtual Probe pre-
diction errors with 10%—-90% error bars shown for all 57 probe
test measurements, sorted by median Virtual Probe prediction
error. The x-axis corresponds to probe test measurements, and
the y-axis shows the prediction error, in percent, incurred by
Virtual Probe. Again, note that for many of the probe test
measurements, the prediction error is quite high.

B. Gaussian Process Modeling Results

The proposed Gaussian process modeling approach was
evaluated via the same metrics as Virtual Probe. In Figure 8, a
histogram of the mean probe test prediction errors is presented,
again as computed via Equation 17. Note that, as in Figure
6, the superimposed black line represents cumulative probe
tests. Evidently, the Gaussian process model prediction errors
are substantially lower than those observed by Virtual Probe,
with more than 93% of the probe test measurement predictions
exhibiting less than 10% error.

In Figure 9, we present the Gaussian process model pre-
diction errors with 10%-90% error bars. By comparing the
observed errors to those of Virtual Probe presented in Figure
7, we observe that the proposed methodology generates sub-
stantially lower prediction errors in the test set, and with much
tighter error bars. Note that the widths of the error bars are
quite small, indicating that the prediction errors demonstrate
low variance over the complete dataset of 3,499 wafers. Since
we construct our statistical models on a per-wafer basis using
a small sample from each wafer, the models are relatively
insensitive to temporal process shifts.
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Figure 10 presents a zoomed-in version of Figure 9 focusing
on the best-predicted 10 probe measurements, e.g., the left-
hand side of Figure 9. The x-axis shows these 10 probe test
parameters, which include a mixture of RF performances; the
y-axis presents percent error. For these 10 measurements, the
mean prediction error is less than 0.05%, indicating that we
can very successfully model these parameters.

In Figure 11, we present another zoomed-in version of
Figure 9, in this case focusing on the worst-predicted 10 probe
measurements, or the right-hand side of Figure 9. Even in the
worst case, our prediction errors are typically below 10%.

C. Comparison to Virtual Probe

In Figure 12, we present a comparison of the two method-
ologies, with Virtual Probe set as the baseline at 0%. The
proposed methodology consistently outperforms Virtual Probe
by an average of 16.5%, and in a few cases by more than 25%.
In absolute terms, the overall mean prediction error of Virtual
Probe across all probe test measurements and all wafers is
18.2%, while the overall mean prediction error for Gaussian
process-based spatial models is only 1.71%, as shown in Table
I. The per-wafer training and prediction time for Virtual Probe
and Gaussian process models is also presented in Table I;
the proposed methodology is extremely fast and requires less
than a second to complete the full train-predict cycle for
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an entire wafer. Notice that the measurements used to train
the models are specification probe measurements required to
release the products, thus no additional costs are incurred to
train the model. The timing measurements were collected on
a 2010 Core i5 2.4GHz MacBook Pro, and represent the mean
total time required to construct all 57 models and predict
performances for all die on a given wafer.

In summary, the proposed methodology consistently ex-
hibits lower error than Virtual Probe, while requiring dra-
matically less runtime to construct and evaluate the predictive
models, which can significantly reduce the time and cost of
applying probe specification measurements.
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Method Overall Mean

Percent Error

Avg. Running Time
(per wafer)

Virtual Probe 18.2% 422.5s
Gaussian Process Model 1.71% 0.586s
TABLE I

COMPARISON OF VIRTUAL PROBE & GAUSSIAN PROCESS MODELS

VI. CONCLUSION

We have demonstrated a spatial correlation modeling ap-
proach which dramatically reduces probe test cost for RF
devices. By sparsely sampling probe tests and extrapolating
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to untested die locations, our proposed methodology avoids
the requirement for dense application of costly probe tests.
As demonstrated on more than 3,000 high-volume manu-
facturing wafers, the proposed methodology requires only a
very small sample (on the order of 1%) of die on each
wafer to construct highly accurate spatial interpolation models.
Despite this sparse sampling, a mean prediction error of less
than 2% is achieved, an order of magnitude lower than the
existing state-of-the-art. Moreover, the proposed methodology
is considerably faster to apply, requiring less than a second to
train and predict on each wafer.
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