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Abstract—Yield estimation is an indispensable piece of infor-
mation at the onset of high-volume production of a device. It can
be used to refine the process/design in time so as to guarantee
high production yield. In the case of migration of production of a
specific device from a source fab to a target fab, yield estimation in
the target fab can be accelerated by employing information from
the source fab, assuming that the process parameter distributions
in the two fabs are similar, but not necessarily the same. In this
paper, we employ the Bayesian Model Fusion (BMF) technique for
efficient yield prediction of a device in the target fab. BMF adopts
prior knowledge from the source fab and combines it intelligently
with information from a limited number of early silicon wafers
from the target fab. Thus, BMF allows us to obtain quick and
accurate yield estimates at the onset of production in the target
fab. The proposed methodology is demonstrated on an industrial
RF transceiver.

I. INTRODUCTION

The rapidly growing and dynamically changing consumer
electronics market introduces interesting challenges to pro-
duction planning of semiconductor manufacturing companies,
calling for agility and flexibility, in order to efficiently respond
to fluctuating demand. Contingency plans for dealing with
catastrophic events, such as earthquakes and floods, as well
as political or sheer financial reasons, also call for flexibility
in production planning. In view of the increasing complexities
in semiconductor industry, as well as the increasing demand
for faster designs with growing quality requirements, a quick
and successful migration of production becomes crucial, in
order for companies to maintain their profitability. Migrating
the production of a device from one fab to another, however, is
not a trivial endeavor. Accurate and fast prediction of yield in
the target fab is an indispensable piece of information during
production migration, in order to identify and quickly resolve
any issues that may jeopardize production ramp-up.

Figure 1 shows an overview of the production migration
problem. Consider a device currently produced in high volume
manufacturing (HVM) in fab A, for which both e-test and
probe-test data is available for a statistically significant number
of wafers. E-tests are measurements obtained via simple cir-
cuits (i.e. Process Control Monitors) which are typically placed
on the scribe lines of the wafer and which reflect how a wafer
has been affected by process variations. Probe-tests, on the
other hand, are direct measurements of device performances,
as obtained at wafer-level. Let us now assume that we want
to migrate production of this device to a different fab B of
the same technology node. While probe-test data from fab B
is not available, since this device has not been produced there
before, we assume that e-test data is available for a statistically
significant number of wafers from a previous device fabricated
in fab B. Indeed, since e-tests are technology-specific rather
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Fig. 1: Yield prediction during fab-to-fab migration.

than design-specific, they are typically common across these
two devices. Using these three pieces of information, the
original incarnation of the yield prognosis problem [1] seeks
to predict how well the current device will yield, once its
production is migrated from fab A to fab B.

A straightforward approach, called model migration, uses
the data available in fab A to train statistical models which can
predict parametric yield of a wafer as a function of its e-test
vector. These models are then “migrated” to fab B and applied
on the large-scale e-test data available from a prior device
fabricated therein, in order to predict the expected parametric
yield of the new device once it is migrated to fab B. Fab-to-fab
discrepancies, however, result in rather poor predictions in this
case. A more elaborate approach, called predictor calibration
[1], addresses this limitation by first calibrating the e-test
distribution of fab B based on the e-test distribution of fab
A. Applying the trained models on the calibrated e-tests of
fab B drastically improves prediction accuracy. In either case,
the assumption is that no wafers of the device in question have
been produced by fab B.

However, prior to migrating a product, a few engineering
wafers are typically produced and characterized in the target
fab. Therefore, herein we seek to investigate the utility of
e-test and probe-test measurements obtained from these few
engineering wafers (or from the first few wafers in HVM
production), in improving the accuracy of parametric yield
prediction in fab B. Once again, a straightforward approach,
which we will refer to as early learning, is to simply use the
limited available data from fab B to train statistical models for
predicting parametric yield of a wafer as a function of its e-
test vector. These models can, then, be used on the large-scale

978-1-4673-8388-2/15/$31.00 ©2015 IEEE 9



e-test data available from a prior device fabricated in fab B,
in order to predict the expected parametric yield of the new
device when it is produced in high-volume. The accuracy of
these predictions, however, is expected to be limited, as the
number of available wafers is usually small and may not be
representative enough to learn a model that accurately predicts
the parametric yield for future wafers.

In this work, we address this limitation by intelligently
combining data from both fab A and fab B, in order to con-
struct a robust and accurate parametric yield prediction model
for fab B. More specifically, we employ the Bayesian Model
Fusion (BMF) technique to refine the inaccurate prediction
model for fab B, which is learned based on the limited data
available from fab B, using the prediction model that was
learned through the abundance of data available in fab A.
Thereby, the fused prediction model becomes far more robust
and predicts far more accurately the parametric yield of future
wafers that are produced in fab B. BMF is a very powerful
technique which has been used successfully for model im-
provement in various contexts in the past, including pre-silicon
validation, yield learning, post-manufacturing tuning, bit error
rate estimation, and alternate test [2]–[7].

The remainder of this paper is organized as follows. In Sec-
tion II, we discuss a regression-based approach for predicting
parametric yield based on e-test measurements, both within a
fab and during fab-to-fab migration. Then, in Section III, we
elaborate on the four yield prediction methods, namely model
migration, predictor calibration, early learning, and Bayesian
Model Fusion. Experimental results comparing the accuracy
of these four methods using industrial data are presented in
Section IV and conclusions are drawn in Section V.

II. PROBLEM FORMULATION

A. E-test to probe-test correlation

Let us consider a device that is currently being manufac-
tured in fab A. Also assume that we have at hand the e-test
measurements from wA wafers that contain this device and
the probe-test measurements from all nA devices contained
in each of these wafers. Let ET i

A = [ET i
A,1, · · · , ET i

A,l]
denote the l-dimensional e-test measurement pattern of the i-
th wafer, where ET i

A,k denotes the k-th e-test measurement.
Let PT ij

A = [PT ij
A,1, · · · , PT

ij
A,d]

T denote the d-dimensional
probe-test measurement pattern obtained on the j-th device
contained in the i-th wafer, where PT ij

A,k denotes the k-th
probe-test measurement on the j-th device in the i-th wafer.
Let also PT i

A = [PT i1
A · · ·PT inA

A ] denote the d×nA matrix
of probe-test measurements on the i-th wafer.

By knowing the specification limits for the k-th probe-test
measurement, we can compute the parametric yield of the k-
th probe-test measurement (e.g. wafer-level yield of the k-th
probe-test measurement) for the i-th wafer, denoted by yiA,k,
as the percentage of devices in the i-th wafer that pass the
k-th probe-test specification limits. Let yi

A = [yiA,1, · · · , yiA,d]
denote the d-dimensional parametric yield vector of the probe-
test measurements for the i-th wafer. yi

A is directly computed
from PT i

A given the specifications of the probe-test measure-
ments. Therefore, information from fab A includes

waferiA = [ET i
A,y

i
A], i = 1, · · · , wA. (1)

We conjecture that a relationship exists between the para-
metric yield of the k-th probe-test measurement and the e-test
measurement pattern for the i-th wafer, since the purpose of e-
test is to reflect process variations that lead to yield loss and to
drive yield learning. This relationship, however, is intricate and
does not have a known closed-form mathematical expression.
For this reason, it is approximated using a regression function
fA,k. The training data in (1) is used to learn this regression
function that predicts the parametric yield of the k-th probe-
test measurement for the i-th wafer from its e-test measurement
pattern.

ŷiA,k ≈ fA,k

(
ET i

A

)
. (2)

Once the regression function is learned and its generaliza-
tion accuracy is validated, we can readily use it to estimate
the parametric yield ŷi

A for future wafers, i.e. i > wA, based
solely on their e-test vector. We will show that these estimates
approximate accurately the ground truth values yi

A. In this
way, in order to compute the parametric yield of a wafer, we
only need to obtain the e-test measurements; thereby, we can
circumvent the need to obtain the probe-test measurements for
all devices in a wafer, thus saving significant cost.

B. Yield prognosis in fab-to-fab migration

Let us now consider that the same device is planned to be
manufactured in high-volume in fab B. By employing prior
information from fab A, we will show that we can build an
accurate parametric yield prediction model for fab B by relying
on limited information from the first few wafers manufactured
in fab B. For this purpose, we will rely on the BMF technique.
In this way, we will show that an accurate parametric yield
prediction model for fab B can be generated very quickly,
without needing to collect data from a large volume of wafers.

Suppose that we consider the first wB wafers and that
we have at hand e-test measurements from each of these
wafers, as well as probe-test measurements from all nB devices
contained in each of these wafers. Following similar notation
as in Section II-A, information from fab B includes

waferiB = [ET i
B ,y

i
B ], i = 1, · · · , wB . (3)

We are interested in learning a regression function that models
the relationship between the parametric yield of each k-th
probe-test measurement and the e-test measurement pattern for
the i-th wafer produced in fab B

ŷiB,k ≈ fB,k

(
ET i

B

)
. (4)

Let ET ′i
B = [ET ′

i
B,1, · · · , ET ′

i
B,l] denote the l-

dimensional e-test measurement pattern of the i-th wafer that
contains another device produced in fab B, that is, not the
device whose production is planned to be migrated from fab
A to fab B.

We will show that the model in (4), which is learned
based on the first few wafers using the BMF technique:
(a) provides accurate parametric yield predictions that are
practically indistinguishable from the predictions of a model
that is learned based on a large volume of wafers, as is the
model in (2), (b) provides better parametric yield predictions
as compared to migrating the models fA,k learned in fab A
directly into fab B,

ŷiB,k ≈ fA,k

(
ET ′i

B

)
, (5)
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and (c) provides better parametric yield predictions as com-
pared to the predictor calibration method proposed in [1].

III. YIELD PREDICTION METHODS

A. Model migration

As mentioned earlier, a straightforward approach for pre-
dicting yield in fab B is model migration. In this method, a
model is first trained in fab A to express parametric yield of a
wafer as a function of its e-test signature, ŷiA,k ≈ fA,k

(
ET i

A

)
.

Then, the trained regression function is applied directly to
the e-tests of fab B, in order to predict parametric yield,
ŷiB,k ≈ fA,k

(
ET ′i

B

)
. However, since the e-tests of fab A

and fab B come from different distributions, the accuracy of
this model is expected to be limited.

B. Predictor calibration

This technique was proposed in [1] as a solution for
parametric yield prediction during fab-to-fab migration. The
proposed method is based on e-test and probe-test measure-
ments of fab A, as well as the e-test profile of fab B, which can
be obtained using another device that is fabricated in the same
technology node in fab B. Therein, the authors proposed an
algorithm to calibrate the e-test distribution of fab B based on
the e-test distribution of fab A. Then, the calibrated e-tests are
utilized for parametric yield prediction in fab B. In summary,
this approach comprises the following steps:

• A regression function is first trained to express para-
metric yield in fab A as a function of the e-test
signature, e.g. ŷiA,k ≈ fA,k

(
ET i

A

)
.

• Then, the calibration algorithm maps the distribution
of e-test measurements in fab B into the distribution
of e-test measurements in fab A, e.g. ÊT ′i

B =

F−1A

(
FB(ET ′i

B)
)

, where FB is the Cumulative Dis-
tribution Function of the e-test profile in fab B.

• Finally, in order to predict parametric yield in
fab B, the trained regression model is applied to
the calibrated e-test measurements, e.g. ŷiB,k ≈
fA,k

(
ÊT ′i

B

)
.

This method is very successful in mapping the distribution
of fab B into that of fab A and is capable of predicting yield
without requiring probe-test measurements from fab B.

C. Early learning

Model migration and predictor calibration were developed
in the context of yield prognosis when migrating a device
from fab A to fab B, while assuming that no probe-test
measurements are available for this device from fab B. We
now consider the scenario where we have access to probe-test
measurements from wB early silicon wafers from fab B during
production migration. This enables us to train a regression
model to express parametric yield as a function of the e-test
signature, i.e. ŷiB,k ≈ fB,k

(
ET i

B

)
. Subsequently, this model

can be applied to the available e-test profile from fab B, which
can be obtained from a prior device fabricated therein, in order
to predict parametric yield, i.e. ŷiB,k ≈ fB,k

(
ET ′i

B

)
. The

accuracy of this method is very limited, however, because
the regression model is trained on a small, possibly not
representative, training set.

D. Bayesian Model Fusion (BMF)

Early learning solely uses data from a few initial wafers to
build a regression model for fab B. However, a more elaborate
technique can utilize rich measurements from fab A to enhance
the prediction accuracy. In this work, we employ BMF to
intelligently fuse data from both fabs, in order to provide an
accurate yield prediction in fab B.

Suppose that we have wA wafers from fab A. The training
data

waferiA = [ET i
A,y

i
A], i = 1, · · · , wA (6)

allows us to learn an accurate regression function for predicting
yield of the k-th probe-test

ŷiA,k ≈ fA,k

(
ET i

A

)
=

M∑
m=1

aA,k,m · bk,m
(
ET i

A

)
. (7)

We have relied on a general expression of a regression function
based on M basis functions, where bk,m is the m-th basis
function for the k-th probe-test and aA,k,m corresponds to the
coefficient of the m-th basis function for the k-th probe-test,
m = 1, · · · ,M . This general expression can accommodate
any regression approach, such as polynomial, Multi Adaptive
Regression Splines (MARS), etc. [8], [9].

For small wB , given the limited training data

waferiB = [ET i
B ,y

i
B ], i = 1, · · · , wB , (8)

our objective is to learn an accurate regression function

ŷiB,k ≈ fB,k

(
ET i

B

)
=

M∑
m=1

aB,k,m · bk,m
(
ET i

B

)
, (9)

where aB,k,m is the coefficient of the m-th basis function for
the k-th probe-test corresponding to fab B.

The conventional learning procedure is to use a fraction
of the data in (8) for training and the rest for assessing the
generalization ability of the regression function on previously
unseen wafers. However, since we are interested in learning
the regression function based on the very first few wafers, the
data in (8) is not representative enough to learn a regression
function that accurately predicts the parametric yield of future
wafers. The aim of the BMF technique is to learn the regres-
sion function in (9) by leveraging information from the data
in (6), which was produced in fab A.

The BMF learning procedure consists of solving for the
coefficients aB,k = [aB,k,1, · · · , aB,k,M ] that maximize the
posterior distribution pdf(aB,k|waferB), that is,

max
aB,k

pdf(aB,k|waferB), (10)

where waferB = [wafer1B , · · · ,waferwB

B ]. In this way, we
maximize the “agreement” of the selected coefficients with
the limited observed data from fab B.

By applying Bayes’ theorem, we can write

pdf(aB,k|waferB) ∝ pdf(aB,k) · pdf(waferB |aB,k). (11)
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Thus, the problem boils down to
max
aB,k

pdf(aB,k) · pdf(waferB |aB,k). (12)

Next, we will develop expressions for the prior distribution
pdf(aB,k) and the likelihood function pdf(waferB |aB,k).

Assuming that the coefficients aB,k,m are independent, we
can write

pdf(aB,k) =
M∏

m=1

pdf(aB,k,m). (13)

We define the prior distribution pdf(aB,k,m) by involving
the prior knowledge from fab A. Specifically, pdf(aB,k,m) is
assumed to follow a Gaussian distribution with mean aA,k,m

and standard deviation λ|aA,k,m|

pdf(aB,k,m) =
1√

2πλ|aA,k,m|
·exp

[
− (aB,k,m − aA,k,m)

2

2λ2a2A,k,m

]
.

(14)

This approach accounts for the fact that aB,k,m is expected to
be similar to aA,k,m and deviate from aA,k,m according to the
absolute magnitude of aA,k,m.

The likelihood function pdf(waferB |aB,k) is expressed in
terms of the data in (8). Specifically, since the data from each
wafer are independent, we can write

pdf(waferB |aB,k) =

wB∏
i=1

pdf
(
waferiB |aB,k

)
. (15)

Furthermore,
pdf
(
waferiB |aB,k

)
= pdf(εi), (16)

where εi is the prediction error introduced by the regression
for the i-th wafer in fab B

εi = yiB,k − fB,k

(
ET i

B

)
. (17)

This error is a random variable that is assumed to follow a
zero-mean Gaussian distribution with some standard deviation
σ0

pdf(εi) =
1√
2πσ0

· exp

(
−
(
εi
)2

2σ2
0

)
. (18)

Therefore, combining (16), (17), (18), and (9), we can write

pdf
(
waferiB |aB,k

)
=

1√
2πσ0

·

· exp

− 1

2σ2
0

·

[
yiB,k −

M∑
m=1

aB,k,m · bk,m
(
ET i

B

)]2 .

(19)

By combining (13), (14), (15), and (19), we obtain an
expression of pdf(aB,k) · pdf(waferB |aB,k). By taking the
natural logarithm of this expression, the maximization problem
in (12), after eliminating constant terms, becomes

max
aB,k

−
(σ0
λ

)2 M∑
m=1

(aB,k,m − aA,k,m)
2

a2A,k,m

−

wB∑
i=1

[
yiB,k −

M∑
m=1

aB,k,m · bk,m
(
ET i

B

)]2
. (20)
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Fig. 2: Datasets from fab A and fab B.

The optimal values of σ0 and λ are determined by v-fold
cross-validation [8], [9].

IV. EXPERIMENTAL RESULTS

A. Case study and datasets

In order to experimentally evaluate the effectiveness of the
proposed yield prediction method for the fab-to-fab production
migration problem, we use actual production data from a 65nm
RF tranceiver currently in HVM production by Texas Instru-
ments1. These data, which are depicted in Figure 2, correspond
to devices from two geographically dispersed fabs wherein this
device is fabricated, which we will refer to as fab A and fab
B. The dataset for fab A includes l=54 e-test and d=45 probe-
test measurements from a total of wA=1800 wafers, each of
which has 9 e-test measurement sites and approximately 1500
die per wafer. The dataset for fab B includes the same e-test
and probe-test measurements from a total of WB=500 wafers,
with the only difference being that e-test measurements are
obtained on only 5 instead of 9 sites. These two datasets were
obtained from the two fabs at approximately the same time
period. Along with the data, we are also provided with the
specification limits for each of the 45 probe-test measurements,
hence for each of the two fabs we can compute the parametric
yield of each probe-test measurement on every wafer and,
thereby, the parametric yield of each wafer. Additionally, for
each of the 54 e-test measurements, we compute the mean and
the standard deviation across the 9 sites on wafers produced in
fab A (5 sites on wafers produced in fab B), hence the e-test
signature of each wafer consists of 108 features.

B. Experiment design

We consider the four prediction techniques described in
Section III. These are summarized in Table I, along with their
corresponding training and validation set.

In our experiment, we vary wB in the range [10, 50], in
order to study the influence of the size of the training set on
the early learning and BMF methods. We use MARS to learn
the regression functions, and we train a separate regression
model for each of the 45 probe-tests. As error prediction metric

1Details regarding the device cannot be released due to an NDA under
which these data have been provided to us.
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Fig. 3: RMS parametric yield prediction error during migration from fab A to fab B.
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Fig. 4: RMS parametric yield prediction error during migration from fab B to fab A.

TABLE I: Prediction techniques
Learning
method Training set Validation set

BMF

Intelligent mixture of data
from fab A and early wafers

from fab B: waferiA =
[ET i

A,y
i
A], i = 1, · · · , wA

and waferjB =
[ET j

B ,y
j
B ], j = 1, · · · , wB

waferjB =
[ET j

B ,y
j
B ], j =

wB +1, · · · ,WB

Early
learning

Early wafers from fab B:
waferjB = [ET j

B ,y
j
B ], j =

1, · · · , wB

waferjB =
[ET j

B ,y
j
B ], j =

wB +1, · · · ,WB

Model
migration

Data from fab A: waferiA =
[ET i

A,y
i
A], i = 1, · · · , wA

waferjB =
[ET j

B ,y
j
B ], j =

1, · · · ,WB

Predictor
calibration

Data from fab A and fab B:
waferiA = [ET i

A,y
i
A], i =

1, · · · , wA and waferjB =
[ET j

B ], j = 1, · · · ,WB

waferjB =
[ET j

B ,y
j
B ], j =

1, · · · ,WB

we use the root mean square (RMS) error computed on the
validation set. Finally, we use bootstrapping in all learning
procedures so as to (a) report a faithful prediction error, and
(b) smoothen the prediction errors and ease the interpretation
of the results, which is especially important for the runs where
wB is small. In each bootstrap iteration, we sample wB wafers
uniformly at random from the WB wafers. In total, we perform
10 iterations.

C. Results

The accuracy of the four yield prediction methods summa-
rized in Table I is demonstrated in Figure 3 for three different,
randomly-chosen, probe-test measurements. The plots show
the RMS prediction error on the validation set as a function
of the training set size wB for the BMF and early learning
methods. We recall that wB is a set of early wafers produced
in fab B containing the device under consideration. The model
migration and predictor calibration methods do not utilize any
device-specific information from fab B for training purposes.
They only rely on e-test measurements from produced wafers

in fab B which, in theory, could contain any other device,
although in our datasets they actually contain the device under
consideration. Therefore, the corresponding curves for these
two methods are flat and independent of wB . As it can be seen
from Figure 3, the model migration method shows the worst
performance, which is expected since it naively uses the model
that is learned on data from fab A for predicting the yield
in fab B. The early learning method strongly depends on the
size of the training set. The prediction error is small for large
wB and increases exponentially as the training size becomes
smaller. This is expected, since the information available
for training is weakened and our ability to extrapolate the
regression towards the tails of the distribution deteriorates,
resulting in large prediction error on the validation set. In some
cases, for very small training set sizes, it turns out that the
early learning method presents an even worse performance,
as compared to the model migration method. The predictor
calibration method outperforms the model migration method
and, in the case of small wB , it also outperforms the early
learning method, despite the fact that it does not use any
device-specific information.

The BMF method outperforms all other methods regardless
of the size of the training set. It shows a remarkably stable
behavior, maintaining nearly constant prediction error even
when the training set size is very small. This implies that
the BMF method, by statistically extracting prior knowledge
from fab A, is capable of generating accurate prediction models
for fab B based only on few early wafers from fab B. Thus,
the BMF learning procedure can be used to quickly estimate
parametric yield from few engineering wafers or from the
first few wafers in HVM, without having to wait until a large
volume of data is collected. This result, showing that the BMF
method reduces the burden of collecting large datasets for yield
estimation, is consistent with the outcome of other studies that
employ the BMF method [2]–[7].

Figure 4 shows the prediction error of the different methods
when we reverse the roles of fab A and fab B, that is when
the production of the device is migrated from fab B to fab A.
Once again, we observe similar trends as in Figure 3. Next,
we investigate whether the BMF method could perform equally
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Fig. 5: RMS parametric yield prediction error of BMF tech-
nique during migration from fab A to fab B for different values
for wB .

for even smaller training sets than the ones shown in Figures 3
and 4. Figure 5 plots the prediction results for the same three
probe-tests. As it can be seen, the prediction error increases
drastically when the training set size is reduced from wB = 10
to wB = 5, showing that for wB = 10 the BMF method
reaches its limits. However, the prediction error for wB =
5 remains significantly smaller than that of the other three
methods and for devices that do not have a very high yield
may even be considered acceptable. In any case, wB = 10 is
a very small number of wafers that should be quickly become
available at the onset of production.

Finally, in Figure 6 we illustrate the cumulative compar-
ative results for all 45 probe-tests for the fab A to fab B
production migration scenario in the case where wB = 40.
For each prediction method we present a histogram where each
bar shows the percentage of probe-tests that have a prediction
error within a specific range. As it can be seen, the histogram
of the BMF method has most of its weight more on the left
side, i.e. towards smaller prediction errors, as compared to the
histograms of the other three methods. The advantage of the
BMF method becomes even more evident in Figure 7, which
illustrates the same result in the case where wB = 10.

V. CONCLUSION

We presented the use of the BMF learning technique in the
context of predicting parametric yield while migrating produc-
tion of a device from a source to a target fab. More specifically,
we discussed how HVM e-test and probe-test data from the
source fab can be intelligently combined with e-test and probe-
test data from a very small number of early silicon wafers pro-
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Fig. 6: RMS parametric yield prediction error during migration
from fab A to fab B across all 45 probe measurements when
wB = 40.duced in the target fab, in order to develop accurate and robust
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Fig. 7: RMS parametric yield prediction error during migration
from fab A to fab B across all 45 probe measurements when
wB = 10.

models for forecasting parametric yield when production of the
device is ramped up. As we demonstrated using a large dataset
from a 65nm Texas Instruments RF transceiver produced in
two different fabs, the proposed approach outperforms earlier
methods which forecast parametric yield using HVM e-test
and probe-test data from the source fab along with HVM data
from a different device in the target fab, or which rely only on
the limited statistics available in the e-test and probe-test data
of the few early silicon wafers. Indeed, information obtained
from as few as 10 wafers in the target fab, suffices to reduce
parametric yield prediction error to levels comparable to those
achievable only when a large HVM population of wafers is
available.
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