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ABSTRACT
We introduce a machine learning approach for distinguish-
ing between integrated circuits fabricated in a ratified fa-
cility and circuits originating from an unknown or unde-
sired source based on parametric measurements. Unlike
earlier approaches, which seek to achieve the same objec-
tive in a general, design-independent manner, the proposed
method leverages the interaction between the idiosyncrasies
of the fabrication facility and a specific design, in order to
create a customized fab-of-origin membership test for the
circuit in question. Effectiveness of the proposed method
is demonstrated using two large industrial datasets from a
65nm Texas Instruments RF transceiver manufactured in
two different fabrication facilities.

1. INTRODUCTION
As the semiconductor industry has largely adopted the

fab-less paradigm and as globalization has amplified con-
cerns regarding integrity of the electronics supply chain, the
ability to definitively identify the fabrication facility wherein
an integrated circuit (IC) was manufactured has become im-
perative. Such a fab-of-origin attestation ability could con-
stitute the cornerstone for numerous applications in the elec-
tronics industry, including intellectual property (IP) protec-
tion, licensing enforcement, quality and hardware integrity
assurance, supply chain risk management, counterfeit IC de-
tection and failure analysis, among others.

The importance of fab-of-origin attestation is highlighted
by a recent US government research initiative whose ob-
jective is to devise methodologies which use measurable elec-
tronic or physical characteristics for determining the specific
fabrication facility of origin of a given electronic component
[4]. The various methods developed under this initiative seek
to leverage the specifics of a manufacturing process, such
as the use of particular materials or geometric rules during
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fabrication, in order to identify the fab-of-origin. Utilizing
on-die laser markings during fabrication, atomic force mi-
croscopy (AFT), nanoscale structural, mechanical and elec-
trical characterization based on transmission electron mi-
croscopy, device characterization, and using features of spec-
troscopic chemical signals from electronic components for
identifying the source fab are among the explored directions
[4]. All of these approaches, however, require additional
complicated steps during manufacturing or specialized and
expensive equipment during characterization in order to per-
form fab-of-origin attestation. An earlier approach to ad-
dress this problem was introduced in [3], where the authors
proposed a methodology to etch forensic information regard-
ing the fabrication process on the die, or add memory ele-
ments to electrically store such data. While recovering this
information can reveal the fabrication facility, this approach
also incurs additional processing and characterization over-
head and introduces the need for measures to ensure that
the forensic information has not been tampered with.

Along a different direction, a methodology which lever-
ages intrinsic variation of the semiconductor manufacturing
process for foundry identification purposes was introduced
in [16]. Process variation has been successfully exploited
in various other tasks, including IC identification through
physical unclonable functions (PUFs) [7, 11], hardware Tro-
jan detection [2, 13], as well as counterfeit IC detection [5,
8]. The authors of [16], however, were the first to demon-
strate its utility in this context. Specifically, they intro-
duced a methodology for reverse engineering process param-
eters, such as threshold voltages and effective channel length
of CMOS devices, using gate delay measurements obtained
through an elegant path decomposition formulation. Statis-
tical tests comparing the distribution of these parameters to
the profiles of known foundries may, then, be used to iden-
tify which foundry fabricated the IC in question. While this
method is design-independent, it requires access to the gate
level implementation of the fabricated IC in order to reverse
engineer these process parameters, which may pose an ob-
stacle due to IP protection issues. Moreover, as explained
in [16], reverse engineering of these parameters can become
quite complicated in practice. Nevertheless, leveraging in-
trinsic process variation and simple electronic measurements
for the purpose of fab-of-origin attestation is very appealing,
as it does not require specialized process or characterization
efforts and can be readily applied to existing ICs.



In contrast to the aforementioned design-independent ap-
proaches to fab-of-origin attestation, in this paper we intro-
duce a machine learning approach which leverages the in-
teraction between the idiosyncrasies of a fabrication facility
and a particular design. Specifically, we develop solutions for
four variants of the fab-of-origin attestation problem. The
first two variants assume availability of the test data profile
from the ratified fabrication facility only, and seek to attest
whether a single chip or a batch of chips, respectively, has
been fabricated therein or not. The other two variants as-
sume availability of the test data profile from all facilities
which fabricate this chip and seek to identify whether a sin-
gle chip or a batch of chips, respectively, were fabricated in
the ratified fab or not. The proposed solutions rely only on
the typical parametric test measurements1 of a fabricated
IC and require neither knowledge of the design, nor any ad-
ditional provisions during manufacturing or any specialized
measurement equipment.

Effectiveness of the proposed solutions is demonstrated
using two large industrial datasets from a 65nm Texas In-
struments RF transceiver produced in two geographically
dispersed fabrication facilities. Considering that alternate
fabrication facilities within the same company are highly
tuned to resemble each other as much as possible, we point
out that our evaluation is performed not only using realistic
datasets but also ones that are very hard to tell apart.

The rest of this paper is organized as follows. In Section
2, we briefly define the four variants of the fab-of-origin at-
testation problem which we address herein. In Section 3, we
describe the proposed solutions. In Section 4, we experimen-
tally assess the accuracy of these solutions and, in Section
5, we draw conclusions.

2. PROBLEM DEFINITION
The methods proposed in this work seek to identify whether

an IC was manufactured in a ratified fabrication facility
based solely on the parametric measurements obtained dur-
ing post-manufacturing testing. We note that these mea-
surements have predefined acceptable ranges; any IC whose
values fall outside these ranges is considered faulty and is
discarded. Hence, what we are seeking is the ability to dis-
tinguish between the footprints of healthy chips from the
ratified fab and the footprints of healthy chips from other
fabs within the hyper-dimensional parametric space of ac-
ceptable performances. The conjecture here is that, for the
same design and process, certain idiosyncrasies stemming
from manufacturing tool installations, chemical sources, as
well as altitude and geomagnetic location of the fabrication
facility, lead to minor, yet systematic disparities in the re-
sulting products of different fabs. These disparities may,
therefore, be leveraged through machine learning methods
in order to attest the source of origin of a given IC [4].

Four variants of the fab-of-origin attestation problem are
considered herein:

• AttestMe-I: In this variant of the fab-of-origin attesta-
tion problem we assume that the only data to which we
have access is the parametric test data profile from a sta-
tistically significant number of chips manufactured in the
ratified fab. Given this profile and the parametric tests of

1While in this work we only consider probe-test data, should
on-die process control measurement (PCM) data be avail-
able, they can be seamlessly integrated into our solutions.

a single IC, we seek to decide whether it was manufactured
in the ratified fab or not.

• AttestUs-I: This variant assumes availability of the same
information as above; instead of making a decision for a
single IC, however, it considers the parametric tests of an
entire batch of ICs and seeks to make a collective decision
for the batch, assuming that they were all manufactured
in the same fabrication facility.

• AttestMe-II: In this variant, we assume availability of
the parametric test data profile from a statistically signif-
icant number of chips manufactured in each of the fabs
wherein a given design could have been produced. Given
these profiles and the parametric tests of a single IC, we
seek to decide whether it was produced by the ratified fab
or any other fab.

• AttestUs-II: Using the same information as above, this
variant seeks to decide whether an entire batch of ICs,
originating from the same facility, was manufactured in
the ratified fab or any other fab.

We note that the Attest(Me/Us)-I variants require less
training data, since they only rely on the profile of the
ratified fab, as opposed to all fabs, yet are more difficult
than their Attest(Me/Us)-II counterparts. Similarly, the
AttestMe-(I/II) variants require less test data, since they
make decisions for individual ICs, as opposed to batches of
ICs, yet are more difficult than their AttestUs-(I/II) coun-
terparts.

3. PROPOSED SOLUTIONS
In this section, we present the proposed solutions for the

four variants of the fab-of-origin attestation problem, which
we introduced in Section 2.

3.1 AttestMe-I
The AttestMe-I variant is, essentially, a one-class classi-

fication problem, for which numerous solutions exist in the
literature [10]. Specifically, given a statistically significant
set of parametric test data from the ratified fab, we need
to learn a boundary that encloses this population in the
multidimensional space of these measurements. The trained
one-class classifier then compares the footprint of a new IC
to this boundary, in order to decide whether it came from
the ratified fabrication facility or not.

The key challenge in the context of AttestMe-I, however,
is the high dimensionality of our data, which is typically in
the few hundreds (i.e., number of probe-tests). Indeed, due
to the curse of dimensionality, it is practically impossible
to capture the underlying interaction between the design
and the idiosyncrasies of a specific fab and to establish any
meaningful boundary in the raw data space. Instead, the
proposed method employs the following steps:

Dimensionality Reduction: In order to reduce the di-
mensionality of the test data, we employ the t-Distributed
Stochastic Neighbor Embedding (t-SNE) [15] technique.
t-SNE is a non-linear transformation of the parametric test
data into a lower-dimensional feature space, wherein enough
discriminative power exists for learning the boundary that
encloses the population.

Clustering: Once the data is projected in the trans-
formed space, we use the GAP statistic method [14] to es-
timate the number of clusters that the data consists of, fol-



lowed by k-means clustering to separate the data into the
corresponding number of clusters.

Boundary Identification: A simple one-class classi-
fier (i.e., a convex hull) is then trained to enclose the data
of each cluster. Collectively, the acceptance region of the
trained one-class classifiers for all the clusters, define the
space where ICs from the ratified fab are expected to reside.

Decision Making: Given the test data of a new IC, its
footprint in the transformed space is computed and com-
pared to the acceptance region. The IC is considered as
originating from the ratified fab if and only if this footprint
falls within any of the learned clusters.

We note that we considered the simpler and very pop-
ular Principal Component Analysis (PCA) [9] method for
dimensionality reduction. However, as we will demonstrate
in Section 4.1, the variance of our data appears to be highly
non-linear; therefore, PCA, which linearly transforms the
original data to a lower dimensional subspace, while retain-
ing most of its variance, performs poorly. We also note that
we considered training an advanced one-class classifier (i.e.,
SVM) to directly learn a single boundary in the reduced fea-
ture space. However, the data in this space is highly discon-
tinuous, with the vast majority of the points congregating
in small clusters. Therefore, as we will demonstrate in Sec-
tion 4.1, learning a single boundary to successfully include
all these discontinuous regions while excluding the rest of
the space is of limited effectiveness.

3.2 AttestUs-I
Our solution to the AttestUs-I variant seeks to take ad-

vantage of the fact that process variations are expected to
affect ICs produced within the same fab in a correlated way.
Accordingly, this correlation can be leveraged to improve
fab-of-origin attestation effectiveness for a batch of ICs, all
of which originate from the same fab. To achieve this, we as-
sess the underlying distribution of performance parameters
for this batch against the profile of the ratified fab using a
non-parametric statistical test. In particular, we employ the
Anderson-Darling (AD) test [1], which is a well-known pro-
cedure for determining whether a sample of k observations
comes from a given distribution or not. Its main advantages
include its sensitivity to the distribution shape and its ap-
plicability to small sample sizes. In order to utilize the AD
test in the fab-of-origin attestation context, we apply the
following procedure:

Density Estimation: For every performance parame-
ter t of the device under attestation, we use the paramet-
ric measurements in the statistically significant training set
from the ratified fab, along with Kernel Density Estimation
(KDE) [12] using Epanechnikov kernel, in order to compute
its probability density function, PDFt.

Membership Test: Consider mt as the measurement
vector of performance parameter t from all ICs in the batch
under attestation. We apply the AD test to the estimated
density and the measurements from the chips in the batch,
i.e., AD(PDFt,mt), where the null hypothesis is that the
measurement vector, mt, comes from the estimated density
of the ratified fab. The output of the AD test is an asymp-
totic p-value in the range 0 to 1. For a p-value less than
a chosen threshold (usually 0.05), the null hypothesis is re-
jected and we deduce that the distribution of the measured
data, mt, is dissimilar to the estimated density (i.e., this
batch of chips does not originate from the ratified fab).

Decision Making: This procedure is repeated individ-
ually for each performance parameter. A majority vote is,
then, employed to provide the final decision for the batch.

3.3 AttestMe-II
The AttestMe-II variant of attesting an individual chip,

when parametric measurements from a statistically signifi-
cant number of chips from both the ratified and all other
(i.e., undesired) fabs are available, boils down to a two-class
classification problem. Availability of populations from both
classes simplifies the problem drastically and eliminates the
need for clustering. Instead, our solution to this variant
involves the following steps:

Classifier Training: We use the available training data
to train Deep Neural Networks (DNNs), which have recently
achieved state-of-the-art performance in a wide range of clas-
sification tasks of high dimensionality [6]. For our two-class
classification problem, a five-layer DNN with two output
neurons is trained using measurement data from both the
ratified and the undesired fabs. To train the entire network,
a generative pre-training step is applied to train one layer
at a time. Then, the whole network is fine-tunned using the
back-propagation learning algorithm. Note that dimension-
ality reduction is intrinsic to the DNN, and a separate step
is not required in this approach.

Decision Making: Given a new IC whose source of ori-
gin needs to be attested, its performance parameters are
measured and provided to the trained DNN, which deter-
mines which of the two classes the IC belongs to, i.e., whether
it was produced in the ratified fab or in an undesired fab.

3.4 AttestUs-II
Our solution to the AttestUs-II variant follows the general

principles of what we described in Section 3.2 and consists
of the following steps:

Density Estimation: For every performance parameter
of the IC batch under attestation, we compute its proba-
bility density function (PDF) in both the ratified fab and
the undesired fab(s) by applying KDE on the corresponding
training sets.

Membership Test: For every performance parameter,
we apply the AD test using the measurement vector from
all ICs in the batch under attestation and the PDFs of the
ratified fab and the undesired fab(s). The combination of
the two p-values determines whether, with respect to this
performance parameter, the ICs in the batch were manufac-
tured in the ratified fab or in an undesired fab.

Decision Making: This procedure is repeated individ-
ually for each performance parameter. A majority vote is,
then, employed to provide the final decision for the batch.

4. EXPERIMENTAL RESULTS
In this section, we experimentally evaluate the effective-

ness of the proposed solutions using actual production test
data from a 65nm RF transceiver currently in high volume
manufacturing (HVM) by Texas Instruments.

Our dataset comprises devices from two geographically
dispersed fabs wherein this RF transceiver is fabricated. For
the purpose of this study, we consider one of these facili-
ties as the ratified fab and the other one as the unknown
or undesired fab. The dataset for the ratified fab includes
600 wafers from 20 lots, with approximately 1500 die per
wafer. For each die, 276 probe-test measurements are pro-



vided. These tests are the typical measurements performed
at wafer probe to ensure compliance of the performances of
an RF transceiver design to its specifications (i.e., produc-
tion tests). They include both structural tests (open/short
circuit, power consumption, IDDQ, input voltage threshold,
output voltage level, etc.) and functional tests (BER, EVM,
CMMR, receiver sensitivity, output power, phase noise, etc.)
and indirectly cover a broad range of process parameters.
We note that we chose not to use in-line tests (e-tests) which
directly reflect process parameters, since they are on the
wafer scribe-lines rather than the die, hence they are not
available at the final chip level. The dataset of the unde-
sired fab includes the same 276 probe-test measurements
from 500 wafers in 20 lots. These two datasets were ob-
tained from the two fabs at approximately the same period.
Using this dataset, we seek to:

• Visualize the overlap of the two populations in the raw
data space and in the linearly transformed PCA space,
as well as the effectiveness of the non-linear t-SNE trans-
formation in increasing discrimination, and demonstrate
the limited effectiveness of training a one-class classifier
(i.e., SVM) to separate the populations through a single
boundary, due to data discontinuity.

• Quantify the effectiveness of AttestMe-I and AttestUs-I,
which use data solely from the ratified fab for learning the
underlying model, in distinguishing between ICs produced
in the ratified and in an unknown fab.

• Assess the attestation accuracy improvement achieved by
AttestMe-II and AttestUs-II, which are trained with
datasets from both the ratified and the undesired fabs.

• Demonstrate the effectiveness of our solutions in handling
process variations by assessing attestation accuracy on ICs
from future production.

4.1 Population overlap
To demonstrate population overlap, we randomly select

5 wafers from each of the 20 lots in the ratified fab and
we use all probe-test data of all die on these 100 wafers
as our training set. We, then, train a one-class SVM to
learn the boundary that encloses the population originating
from the ratified fab in three different spaces: (i) in the
raw data space which includes all 276 dimensions, (ii) in a
PCA transformed space where the data is linearly projected
on the first 30 principal components, and (iii) in the t-SNE
transformed space where the retained data is non-linearly
projected on 3 dimensions. As our validation set, we use all
die from a randomly selected wafer from each of the 20 lots of
the ratified fab (excluding the wafers used for training) and
from each of the 20 lots of the undesired fab. The trained
SVMs are, then, used to individually decide whether each
die in the validation set originated from the ratified fab or
not.

Figures 1a-c visualize the training and validation data on
the space of the two most discriminative raw measurements,
on the two main components of the linearly transformed
PCA space, and on the two components of the non-linearly
transformed t-SNE space, respectively. As may be observed,
there is an almost complete population overlap in the first
case, which is only slightly reduced after linear transforma-
tion in the second case, because the variability of the data
is non-linear. The non-linear transformation of the third

(a) Raw data (b) PCA

(c) t-SNE (d) One-class SVM results

Figure 1: Population overlap and single boundary classifica-
tion accuracy in raw and transformed measurement spaces

case, however, performs significantly better in separating
the two populations. While this is visualized only in a two-
dimensional space, our extensive experimentation with mul-
tiple dimensions has confirmed this observation, justifying
the use of t-SNE as the method of choice for enhancing dis-
crimination via dimensionality reduction in this context.

The results reported in the table of Figure 1d, which quan-
tify the effectiveness of a single boundary established by
training a one-class SVM in each of the three spaces men-
tioned earlier, are also consistent with this observation. In-
deed, attestation accuracy of a single IC in the raw data
space is only 57.3%, barely higher than a coin-toss. Learn-
ing the boundary in the 30-dimensional PCA space only
slightly improves accuracy to 61%, while doing so in the
3-dimensional t-SNE space boosts accuracy to 71.4%. This
rather low accuracy is attributed to the highly discontinuous
nature of the data in the projected space, which calls for a
clustering-based classification approach, as we show next.

4.2 Learning only from ratified fab
In order to assess the effectiveness of AttestMe-I, we per-

form clustering and boundary identification on the t-SNE
transformed space of the training data, as detailed in Sec-
tion 3.1. Then, for each IC in the validation set, we apply the
decision making step which examines whether its footprint
in this space lies within the boundary of any of the clusters
assigned to the ratified fab. Table 1a reports the attestation
accuracy for AttestMe-I, noting that we consider as positive,
(P ), a chip originating from the ratified fab and as negative,
(N), a chip originating from an undesired source. In this
confusion matrix, True Positive Rate (TPR) denotes the
percentage of ICs that are correctly identified as originat-
ing from the ratified fab, while True Negative Rate (TNR)
refers to the percentage of ICs that are correctly labeled

Table 1: Single IC attestation results

(a) AttestMe-I (b) AttestMe-II



(a) AttestUs-I (b) AttestUs-II

Figure 2: Attestation results for various batch sizes

Figure 3: Histogram of p-values for AD test against the
ratified fab distribution for batches of 15 chips (AttestUs-I )

as originating from an undesired fab. False Positive Rate
(FPR) and False Negative Rate (FNR) are defined simi-
larly. As may be observed, the overall attestation accuracy
is 85%, clearly outperforming the one-class SVM reported
in Figure 1d. This is expected due to the manifold nature
of the t-SNE transformed data, which makes it difficult to
separate via a single boundary, as the SVM tries to do.

Effectiveness of AttestUs-I is assessed by first estimat-
ing the performance parameter densities of the ratified fab
through the training set. Then, for a batch of ICs originating
from the same fab, we measure the performance parameters
from all ICs in the batch and we perform the AD member-
ship test for each of the parameters, as detailed in Section
3.2. In our experiment, we randomly draw batches of sizes
in the range [15, 50] from the validation sets of the ratified
and the undesired fab; this procedure is repeated 1000 times
for each batch size. Figure 2a reports the AttestUs-I results.
The horizontal axis denotes the batch size, while the verti-
cal axis is the attestation error rate. As may be observed,
this method is very successful in attesting the fab-of-origin
of a batch, with accuracy exceeding 96% for batch sizes of
as small as 15 ICs. The confusion matrix for this batch size
is also provided in the figure.

To gain further insight, in Figure 3 we show the distribu-
tion of p-values for a batch size of 15 ICs, where the x-axis
represents the range of p-value and the y-axis shows the
percentage of 500 randomly selected batches which have a
p-value within a given range. In the Anderson-Darling dis-
tribution test, the null hypothesis is that the 15-dimensional
measurement vector of the 15 ICs in the batch comes from
a specific population, which in our case is the distribution
of the ratified fab. As shown in the left histogram, for the
vast majority of the 500 samples from the ratified fab, the
p-value is larger than 0.05, hence the null hypothesis is not
rejected, i.e., these batches are correctly assumed to have
originated from the ratified fab. Conversely, as shown in the
right histogram, for the vast majority of the 500 samples
from the undesired fab, the p-value is smaller than 0.05 and
the null hypothesis is rejected, i.e., these batches are cor-
rectly assumed to have originated from the undesired fab.

4.3 Learning from all fabs
In order to quantify the accuracy of the proposed fab-of-

origin attestation solutions when test data from both the

(a) Samples from ratified fab (b) Samples from undesired fab

Figure 4: Histogram of p-values for AD test against the
ratified and the undesired fab distributions for batches of 15
chips (AttestUs-II)

ratified and the undesired fab is available, we enhance the
training set so that it contains data from both fabs. Specif-
ically, in addition to all die from 5 randomly selected wafers
in each of the 20 lots from the ratified fab, the new training
set also includes all die from 5 randomly selected wafers in
each of the 20 lots from the undesired fab. The validation set
remains unchanged, i.e., it contains all die from a randomly
selected wafer from each of the 20 lots of the ratified fab and
from each of the 20 lots of the undesired fab (excluding the
wafers used for training).

Evaluation of the AttestMe-II solution starts with train-
ing a two-class classifier, in this case a five-layer DNN with
two output neurons, using the training set, as explained in
Section 3.3. The trained DNN is then applied to individu-
ally classify each IC in the validation set as originating from
the ratified or the undesired fab. AttestMe-II results are
summarized in Table 1b. As may be observed, the trained
DNN is able to accurately attest 96.5% of all chips and is
significantly better than the AttestMe-I approach. This is
expected, as we now have access to data from both fabs,
which simplifies the process of learning the boundary that
separates them, as compared to the case where training data
is available only from the ratified fab.

Effectiveness of AttestUs-II requires estimation of the per-
formance parameter densities for both the ratified and the
undesired fab using the enhanced training set. Then, for a
batch of devices from the same fab, we measure the perfor-
mance parameters from all ICs in the batch. For each per-
formance parameter, we perform the AD membership test
against the densities of both fabs to compute the correspond-
ing p-values, and we decide which fab the batch originated
from, as explained in Section 3.4. Once again, in our ex-
periment we randomly draw batches of sizes in the range
[15, 50] from the validation sets of the ratified and the un-
desired fab, and repeat this procedure 1000 times for every
batch size. Figure 2b reports the AttestUs-II results, with
the x-axis denoting the batch size and the y-axis showing the
attestation error. As may be observed, for a batch size of
as few as 25 ICs, the accuracy of this solution exceeds 99%,
while for a batch size of 40 ICs, it achieves error-free attes-
tation. A comparison to the curves in Figure 2a reveals that
availability of the additional training information from the
undesired fab enhances the accuracy of the membership test
and reduces the error. As a point of reference, the confusion
matrix for the batch of size 15 is also provided.



Lastly, Figure 4 presents the histogram of p-values for
batches of 15 ICs. Figure 4a shows the p-values for 500
batches originating from the ratified fab, wherein the top
and bottom graphs compare these samples against the rat-
ified and the undesired fab distributions, respectively. Evi-
dently, for the vast majority of samples the null hypothesis is
not rejected for the ratified fab but is rejected for the unde-
sired fab, hence these batches are correctly attested as orig-
inating from the ratified fab. Conversely, Figure 4b demon-
strates the same results for 500 batches originating from the
undesired fab, in which case the results are reversed.

4.4 Future production attestation accuracy
As a final experiment, we evaluate the robustness of the

proposed solutions against fabrication process shifts. To do
so, we use probe-test data from a new set of wafers from
10 lots, which were fabricated in each of the two fabs a few
months after the wafers of our original dataset. We refer
to these new wafers as “future wafers”. Our training set re-
mains the same, but our new validation set now comprises
all die from 20 randomly selected future wafers, equally dis-
tributed across the 10 new lots from each of the two fabs.
Table 2 compares the effectiveness of the AttestMe-II solu-
tion on the original validation set, which comprises current
wafers (i.e., contemporary to those used for training) to the
effectiveness on the new validation set, which comprises fu-
ture wafers. As may be observed, the trained DNN network
continues to attest ICs from future production with only a
very slight reduction in accuracy. Similarly, Figure 5 com-
pares the effectiveness of the AttestUs-II solution for ICs on
current and future wafers, where the x-axis is the batch size
and the y-axis denotes the attestation error. Once again,
the difference in the two scenarios is small and reduces as
the batch size increases. As an ancillary measure for main-
taining robustness, the underlying trained models can be
periodically updated.

5. CONCLUSION
Parametric measurements, such as the ones taken during

manufacturing testing, comprise valuable information which
reflects the interaction between the design of an IC and the
fabrication process through which it was produced. In con-
junction with machine learning methods, this information
may be harnessed to provide effective solutions to numer-
ous variants of the fab-of-origin attestation problem, without
requiring design modifications, custom processing steps, or
specialized characterization equipment. Four such solutions
were developed and evaluated using actual test data from
a large number of ICs implementing an RF transceiver de-
sign, which were fabricated in two geographically dispersed
foundries. Results indicate that the accuracy of these fab-
of-origin attestation solutions reaches 96.5% when deciding
whether a single IC originated from a ratified fab or an un-
known/undesired facility and 100% when collectively mak-
ing the same decision for a batch of as few as 40 ICs.

It is worth noting that while precise cloning of an IC could
evade our methods, our study was performed on two fabs
of the same manufacturer so it resembles the best cloned
devices one can build. Thus, we expect even higher attes-
tation accuracy when the fabrication facilities are indepen-
dent. Also, it is possible that changes in fabrication process,
such as machine part replacements, software updates or new
material suppliers, may shift the process parameters and af-

Table 2: Comparison of AttestMe-II results for chips from
current and future production

Figure 5: Comparison of AttestUs-II results for chips from
current and future production

fect the accuracy of our models over time. Nevertheless, our
methods were able to attest future productions with only
minor accuracy reduction, demonstrating robustness of the
models to such changes. To reinforce robustness, our future
research focuses on attesting not only a specific fab but also
a specific machine or material used in fabricating an IC.
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